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ABSTRACT 
 
Systems are continually subjected to faults or malfunctions because of age or sudden events, 

which might degrade the operation performance and even result in operation failure that is a 
quite important issue in safety-critical systems. Thus, this important problem is the main reason 

to use the Fault-Tolerant strategy to improve the system’s performance with the presence of 

faults. A fascinating property in Fault-Tolerant Controllers (FTCs) is adaptability to system 

changes as they evolve throughout system operations. In this paper, a Q-learning algorithm 

with a greedy policy was used to realize the FTC adaptability. Then, some fault scenarios are 

introduced in a Continuous Stirred Tank Heater (CSTH) to compare the closed-loop 

performance of the developed Q-learning-based FTC with concerning conventional PID 

controller and an RL-based FTC. The obtained results show the effectiveness of Q-learning-

based FTC in different fault scenarios. 
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1. INTRODUCTION 
 

In today’s world, the correct functioning of complex industrial systems is required to ensure 
efficient and high-quality production. This is particularly important to those safety-critical 

systems, such as power systems, aircraft, autonomous transportation, or chemical system 

processing hazardous materials where a small component fault/failure may cause catastrophic 

effects. To avoid production deteriorations and enhanced system reliability, measures must be 
taken to stop the propagation of fault and restore the system as much as possible to satisfactory 

performance when the fault occurs. This practical requirement gives rise to lots of studies in 

Fault-Tolerant Control (FTC) from both industry and academia [1]. 
 

Modern systems try to use historical data in their processes. As a result, data-driven 

identifications, diagnosis, and FTC have become a hot research topic. Previous information could 

be used for learning to extract the knowledge base, such as using Fuzzy predictions, Neural 
Network (NN) based methods, k-clustering, and support vector machines (SVM) [2]. 

 

Both sensors and control systems will target the plant to obtain the maximization benefits by 

optimizing the performance indicator within the scope of safety. FTC is a good alternative that 
has the capability of approaching performance indicators without any fault by adjusting the 

system variables. In [3], a gradient-based optimization method was given to optimizing the 
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system performance using disturbance rejection. In [4], a recursive total principal component 
regression (R-TPCR)-based design and implementation approach was proposed for efficient data-

driven FTC and optimization. 

 

The performance indicator without any fault reflects the system’s natural ability and is easy to be 
gained from obtained data. However, it becomes a challenge in the case of fault because the 

unexpected fault has changed the maps of system states, and there are not enough valid data to 

develop an FTC controller for an early fault. Reinforcement Learning (RL) inspires to solve the 
above problem. RL is about learning from the interaction how to behave to achieve a goal. The 

RL agent and its environment interact over a sequence of discrete-time steps and gain a series of 

optimal actions finally. If an unexpected fault is considered as the environment, and the system’s 
performance under fault-free conditions is regarded as the desired goal, the controller can be 

designed by RL to achieve the optimal behavior. In this paper, we compare the use of Q-learning 

algorithm in FTC strategy with conventional PID-controller. Also, their performance was shown 

in the presence of varied fault scenarios. 
 

2. BACKGROUND 
 

2.1. Fault-Tolerant Control (FTC) strategy 
 

Faults in automatic methods will frequently purpose undesired reactions and shut-down of a 

control plant to personnel or environment. Fault-tolerant control is the synonym for a set of 
recent techniques that were developed to increase plant availability and reduce the risk of safety 

hazards. The aim is to prevent that simple faults develop into severe failure [5].  

 
When stability and closed-loop performance are maintained despite faults, the system is said to 

be fault-tolerant, and the control scheme that ensures the fault tolerance is the fault-tolerant 

controller. FTC relates to recovery from weakness such that the system is controlled under actual 

constraints without replacing part(s) of the faulty system. In general, FTCs fall into two types: 
passive and active FTC systems. In passive FTCSs, controllers are only able to process faults that 

were considered during the controller’s design stage. This system requires no controller self-

repairing/reconfiguration and therefore has limited fault-tolerant capabilities. Unlike passive 
FTCSs, active FTCSs react actively to system fault by control action reconfiguration, stability, 

and good performance can then be recorded. In active FTCSs, the main focus is to design the 

controller. The existing design approaches can be generally classified into two categories: model-

based and data-driven (model-free) methods. In the model-based method, a precise model of the 
existing system should be known a priori, and fault identification is required no construct a post-

fault system model before active FTCS controller design. In the data-driven method, unlike in the 

model-based one, the system model is identified using available historical data [1].  
 

2.2. Reinforcement Learning (RL) Method 
 
RL is the learning of behavior by an agent, or a controller, from feedback through repeated 

interaction with its environment [6]. RL is learning what to do -mapping situations to actions- to 

maximize a numerical reward signal (R) (an agent’s objective). The learner is not told which 
actions to take but instead must discover which efforts yield the most reward by trying them. An 

agent (controller) is connected to (interacts with) the environment through its actions and 

perceptions. The change is perceived as an RL signal from the environment and the agent’s 
measurements of the new state. The standard RL problems can be represented as Markov 

Decision Process (MDP). An MDP consists of a set of states (S), a group of actions (A), a reward 

function R: S×A×S → R, which reinforces after each state change. The history of prior states 
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does not affect the value or reward of following states and actions. This is known as the Markov 
property [7]. In the most exciting and challenging cases, actions may affect not only the 

immediate reward but also the following situation and, through that, all subsequent rewards. 

These two characteristics -trial-and-error search and delayed reward- are the two most important 

distinguishing features of RL. 
 

The value of a state (𝑉(𝑆)) is the maximum reward that an agent can expect from that state in the 

future. 

𝑉(𝑆) = 𝑚𝑎𝑥𝑎∈𝐴(𝐸[𝑅(𝑆. 𝑎. 𝑆𝑡+1) +  𝛾𝑉(𝑆𝑡+1)]) (1) 

Where γ is the discount factor that weighs delayed reward against immediate reinforcement and 

St+1 is the next state. 

 

Alternatively, an agent can learn the value of each action (𝑄(𝑆. 𝑎 )), the q-value, from a state: 

𝑄(𝑆. 𝑎 ) =  𝐸[𝑅(𝑆. 𝑎. 𝑆𝑡+1) +  𝛾𝑚𝑎𝑥𝑎∈𝐴𝑄(𝑆𝑡+1. 𝑎 )] (2) 

 

An agent can exploit either value function to derive a policy that governs its behaviors during 

operation. 
 

Three fundamental classes of methods for solving finite Markov decision problems are Dynamic 

Programming (DP), Monte Carlo (MC), and Temporal Difference-Learning (TD-Learning). Each 
class of methods has its strengths and weaknesses. DP methods are well developed 

mathematically but require a complete and accurate model of the environment. MC methods do 

not require a model and are conceptually simple but are not well for step-by-step incremental 

computation. Finally, TD methods require no model and are incremental but are more complex to 
analyze. 

 

3. RL-BASED FTC 
 
Supervision uses a priori knowledge of the system to choose optimal actions when a fault occurs 

in the system. Fault-tolerant supervision is explored in several fields, including probabilistic 

reasoning, Fuzzy logic, and Genetic algorithms, and one of the supervision methods for FTC is 

RL-based control. 
 

TD-based RL methods iteratively derive a controller’s behaviors by estimating the value of states 

and actions in a system through exploration. During operation, the controller exploits the 
knowledge gained through exploration by selecting actions with the highest value, to the fact that 

tolled above, a stationary system was supposed in this paper.  The agent or controller can achieve 

optimal control by exploring over multiple-episode and iteratively converging on the value 
function. The conservative learning rate can be used such that the value approximation is 

representative of the agent’s history. Dynamic of the system is changed by fault. The extant value 

function may not reflect the most rewarding actions in the environment model. The optimal 

actions should be taken with the agent. Therefore, the agent must estimate a new value function 
by exploration when a fault occurs. 

 

The TD-RL approach is inherently adaptive as it frequently updates its policy from exploration. 
Its responsivity can be enhanced by increasing the learning rate α. In the extreme case, α = 1 
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replaces the last value of an action with the new estimate at that time step. However, large values 
of α may not converge the value estimate to the global optimum. 

 

We used a reference model to detect the presence of a fault in the system. This model is obtained 

by Neural Network approximation and data in the state of no-fault. 
 

In this paper, we consider the difference between the output of the system and the output of the 

reference model (Error) on time as our state in RL and consider reward according to our state that 
shows below: 

 

R = {

𝐼𝑓 𝑆𝑡𝑎𝑡𝑒 ≤ 2 → 1
𝐼𝑓 𝑆𝑡𝑎𝑡𝑒 ≥  2 →  −1

𝐼𝑓 𝑆𝑡𝑎𝑡𝑒  >   5 → −100
 

 

Figure 1 shows an overview of the system with an RL-based Fault-Tolerant controller. The 

following subsection discusses a practical approach of TD-learning in control theory. 
 

3.1. Q-Learning: off-policy TD control 
 
In the on-policy method, off-policy methods evaluate or improve a policy different from that was 

used to generate the data. The policy being learned about is called the target policy (π), and the 

policy used to generate behavior is called the behavior policy (b). One of the early breakthroughs 
in RL was the developing an off-policy TD control algorithm known as Q-Learning [8], defined 

by equation 3. 

𝑄(𝑆𝑡 . 𝐴𝑡) =  𝑄(𝑆𝑡 . 𝐴𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾 𝑚𝑎𝑥𝑎𝑄(𝑆𝑡+1 . 𝑎) − 𝑄(𝑆𝑡 . 𝐴𝑡)] (3) 

In this case, the learned action-value function Q directly approximates q*, the optimal action-
value function, independent of the policy being followed (b). This dramatically simplifies the 

analysis of the algorithm and enables an effect in that it determines which state-action pairs are 

visited and updated. The Q-Learning control algorithm is shown in Table 1 [9].  
 

Note: in this algorithm, all that is required for correct convergence is that all pairs continue to be 

updated. Under this assumption and a variant of the usual stochastic approximation conditions on 

the sequence of step-size parameters, Q has been shown to converge with probability 1 to q*0F1. 
 

 
 

Figure 1. Block diagram of close loop system with RL-based FTC 

 

                                                
1

*: It is a symbol of optimality 
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4. CASE STUDY 
 
CSTH is commonly used as a subsystem in heavy industrial processes [10].  A CSTH Process is 

depicted in Figure 2. We are interested in using a linear model of CSTH in Python application to 

be used in our closed-loop system. The total mass and energy balance equations for the process 

can be expressed as: 
 

𝐴𝑇

𝑑ℎ𝑇

𝑑𝑡
= 𝑞𝑖 − 𝑞𝑜 (4) 

𝐴𝑗

𝑑ℎ𝑗

𝑑𝑡
= 𝑞𝑖𝑗 − 𝑞𝑜𝑗  

 

(5) 

𝑑𝑇

𝑑𝑡
=

𝑞𝑜

𝑉𝑇

(𝑇𝑖 − 𝑇) +
𝑈𝐴(𝑇𝑗 − 𝑇)

𝑝𝐶𝑝𝑉𝑇
 

 

  (6) 

𝑑𝑇

𝑑𝑡
=

𝑞𝑜𝑗

𝑉𝑗
(𝑇𝑖𝑗 − 𝑇𝑗) −

𝑈𝐴(𝑇𝑗 − 𝑇)

𝑝𝑗𝐶𝑝𝑗𝑉𝑗
 

 

  (7) 

We assume that the level of the fluid in the tank and the jacket is constant either by process 
design or the use of a high gain controller. So it could be written as: 

 

 

 
 

 

𝑑𝑇

𝑑𝑡
=

𝑞

𝑉𝑇

(𝑇𝑖 − 𝑇) +
𝑈𝐴(𝑇𝑗 − 𝑇)

𝑝𝐶𝑝𝑉𝑇
 

 

 (10) 

𝑑𝑇

𝑑𝑡
=

𝑞𝑗

𝑉𝑗
(𝑇𝑖𝑗 − 𝑇𝑗) −

𝑈𝐴(𝑇𝑗 − 𝑇)

𝑝𝑗𝐶𝑝𝑗𝑉𝑗
 

 

 ( 11) 

Now we use steady-state analysis as follow, 

 

𝑑𝑇

𝑑𝑡
=

𝑞

𝑉𝑇

(𝑇𝑖 − 𝑇) +
𝑈𝐴(𝑇𝑗 − 𝑇)

𝑝𝐶𝑝𝑉𝑇
= 0 

 

 (12) 

𝑑𝑇

𝑑𝑡
=

𝑞𝑗

𝑉𝑗
(𝑇𝑖𝑗 − 𝑇𝑗) −

𝑈𝐴(𝑇𝑗 − 𝑇)

𝑝𝑗𝐶𝑝𝑗𝑉𝑗
= 0 

 

 (13) 

The steady-state value of above variable could be found in Table 2. 
 

Table 1. Q-Learning Algorithm 

 

Q-Learning (off-policy TD control) for 

estimating by π ≈ π* 

𝑞𝑖 = 𝑞𝑜 = 𝑞 
 

 (8) 

𝑞𝑖𝑗 = 𝑞𝑜𝑗 = 𝑞𝑗 

 
 (9) 
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Initialize 𝑄(𝑆. 𝐴), for all s ∈ S, a ∈ A(S), 

arbitrarily, and 𝑄(𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙.  𝑎𝑙𝑙) = 0. 

Repeat (for each episode): 

   Initialize S 

   Repeat (for each step of episode): 
     Choose A from S using policy derived 

from 𝑄(e.g. ε-greedy) 

     Take action A, observe R, 𝑆𝑡+1 

𝑄(𝑆𝑡 . 𝐴𝑡) =  𝑄(𝑆𝑡 . 𝐴𝑡) + 𝛼 [𝑅𝑡+1

+ 𝛾 𝑚𝑎𝑥𝑎𝑄(𝑆𝑡+1. 𝑎)
− 𝑄(𝑆𝑡 . 𝐴𝑡)] 

 S = S𝑡+1 
 Until S is terminal 

 
Table 2. Steady-state value of variables 

 

Variable SS Value Parameter Value 

𝑇𝑖𝑠 50 𝑈𝐴 183.9 

𝑇𝑖𝑗𝑠 200 𝑝𝐶𝑝 61.3 

𝑇𝑠 125 𝑝𝑗𝐶𝑝𝑗 61.3 

𝑇𝑗𝑠  150 𝑉𝑇 10 

𝑞𝑠 1 𝑉𝑗 1 

𝑞𝑗𝑠 1.5 ------ ---- 

 
By using Taylor series expansion for linearizing the system, the following state-space equations 

are obtained: 

 

[
𝑇
𝑇𝑗

] = [
1 0
0 1

] [
𝑇
𝑇𝑗

] 

 

(14) 

[
𝑇̇
𝑇𝑗̇

] =

[
 
 
 
 −

𝑞

𝑉𝑇
−

𝑈𝐴

𝑝𝐶𝑝𝑉𝑇

𝑈𝐴

𝑝𝐶𝑝𝑉𝑇

𝑈𝐴

𝑝𝑗𝐶𝑝𝑗𝑉𝑗
−

𝑞𝑗

𝑉𝑗
−

𝑈𝐴

𝑝𝑗𝐶𝑝𝑗𝑉𝑗]
 
 
 
 

[
𝑇
𝑇𝑗

]

+

[
 
 
 
 
𝑞

𝑉𝑇
0

(𝑇𝑖 − 𝑇)

𝑉𝑇
0

0
𝑞𝑗

𝑉𝑗
0

(𝑇𝑖𝑗 − 𝑇𝑗)

𝑉𝑗 ]
 
 
 
 

[

𝑇𝑖

𝑇𝑗𝑖
𝑞
𝑞𝑗

] 

 

(15) 

 

Substitute given values: 
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[
𝑇̇
𝑇𝑗̇

] = [
−0.4 0.3

3 −4.5
] [

𝑇
𝑇𝑗

] + [
0.1 0 −7.5 0
0 1.5 0 50

] [

𝑇𝑖

𝑇𝑗𝑖
𝑞
𝑞𝑗

] (16) 

 

The control tank’s output temperature (T) was studied by adjusting the jacket’s output flow (Fj). 
Thus, the transfer function was shown in equation 17. 

 

𝑇 =
15

𝑠^2 +  4.9 𝑠 +  0.9
 (17) 

 

Finally, we use the Scipy library in Python to implement our system. 
 

 
Figure 2. CSTH system 

 

5. RESULT AND DISCUSSION 
 

The RL-based fault-tolerant controller was evaluated with the presence of three fault scenarios, 
which were discussed in the following subsections. In addition, we run the program for 100 

loops, and results were presented. 

 

5.1. Sensor Fault Scenario 
 

A time incipient fault with an amplitude of 5 and slope of 0.01 was added to the control system 
that is shown in Figure 3 [11]. The result was shown in Figure 3, and the total MSE was written 

in Table 3. According to  

Figure 4 and Table 3, the performance of the system was evaluated with two controllers, 
conventional PID-controller and Q-Learning-based FTC, in the presence of the sensor fault. The 

performance of a closed-loop system with the proposed method is quite efficient than another 

controller.  

 

5.2. Actuator fault scenario 
 
According to Figure 3, a constant fault with an amplitude of 0.4 was added to the actuator, 

moreover, the result was picketed in  

Figure 5, and the total MSE could be found in Table 3. As shown in  
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Figure 5 and Table 3, the Q-learning controller performed flawlessly, and the output remained at 
the optimal point.  

 

 
Figure 3. Location of actuator and sensor fault 

 

 
 

Figure 4. Sensor fault scenario 

 

 
 

Figure 5. Actuator fault scenario 
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5.3. Actuator and Sensor Fault Scenario 
 

In this section, a constant actuator fault with an amplitude of 0.1 plus a time incipient sensor fault 

with an amplitude of 4 and slope of 0.01 were added to the closed-loop system. Their location 
could be found in Figure 3. In addition,  

Figure 6 shows the performance of closed-loop with conventional PID-controller and closed-loop 

system with Q-Learning-based FTC. Also, the total MSE was shown in Table 3. The results show 

that the Q-learning controller could find optimal actions to be stable the closed system as well as 
possible, and its performance is much better than PID-controller. 

 

 
 

Figure 6. Sensor and actuator fault 

  

6. CONCLUSION AND FUTURE WORK 
 

A Q-learning algorithm with a greedy policy is used in the FTC framework. The result is a data-
driven online method, which directs to the goal without knowing any system dynamic 

characteristics that are difficult to understand at the beginning when a fault occurs.  A CSTH 

process was used to test the control systems. The comparison results showed that Q-learning 
algorithm-based FTC presents an efficient methodology to stabilize the CSTR performance when 

sensor and actuator faults occur in a closed-loop system. In addition, we compared its 

performance with conventional PID-controller, and the superiority of the proposed method was 

shown in the result section. In this paper, we used the greedy policy for the Q-learning algorithm. 
For further work, it would be interesting to search for another policy to obtain more efficiency 

and get a better result with respect to the RL-based FTC. 

 
Table 3. Total MSE 

 
 

Controller          

 

 

 Scenario 

 

 

 

 

PID 

 

 

 

Q-

Learning 

A 4.4938 1.2223 
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B 5.6672 0.0845 

C 0.5691 0.051648 
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