PERVASIVE SYSTEMS DEVELOPMENT: A
STEPWISE RULE-CENTRIC RIGOROUS
SERVICE-ORIENTED ARCHITECTURAL

APPROACH

Nasreddine Aoumeur! and Kamel barkaoui?

1Department of Computer Science, University of Leicester, LE1, 7RH, UK
2SYS:Equipe Systémes Sars, Cedric/CNAM, France

ABSTRACT

To stay competitive in today’s high market volatility and globalization, cross-organizational
business information systems and processes are deemed to be knowledge-intensive (e.g. rule-
centric), highly adaptive and context-aware, that is explicitly responding to their surrounding
environment, user’s preferences and sensing devices. Towards achieving these objectives in
developing such applications, we put forwards in this paper a stepwise service-oriented
approach that exhibits an explicit separation of concerns, that is, we first conceptualize the
mandatory functionalities and then separately and explicitly consider the added-values of
contextual concerns, which we then integrate at both the fine-grained activity-level and the
coarse-grained process-level to reflect their intuitive business semantics. Secondly, the
proposed approach is based on business rule-centric architectural techniques, with emphasis on
Event-Conditions-Actions (ECA)-driven transient tailored and adaptive architectural
connectors. As third benefit, for formal underpinnings towards rapid-prototyping and
validation, we semantically interpret the approach into rewriting logic and its true-concurrent
and reflective operational semantics governed by the intrinsic practical Maude language.

KEYWORDS

Context-awareness, ECA-Driven Rules, Architectural Connectors, Service-orientation,
Adaptability, Maude Validation.

1. INTRODUCTION

Boosted by technological advances in networking, context-sensing and computation and pressed
by stiff and global competitiveness, most of organizations are opportunistically joining their
know-how into dynamic giant cross-organizational alliances. Striking features of any of such
alliances, include: (1) process-centricity, that is, they exhibit very complex business processes
with composing activities; (2) high-agility, where involved business processes and their activities
/ tasks are often governed by adaptive and evolving business rules [6,9,10,11,16]; (3) context-
dependency, with user-preferences, adopted sensing devices and surrounding environment
conditions as driving forces [4, 5, 28]; (4) strong-dependability, where the fatality of mal-
functioning and failures may be economical und humanistic disastrous. Precise
conceptualizations and formal techniques are thus highly required before investing any final
deployment.

David C. Wyld et al. (Eds): NATP, ACSTY, CCCIOT, MLSC, ITCSS - 2022
pp. 115-132, 2022. CS & IT - CSCP 2022 DOI: 10.5121/csit.2022.120110

http://airccse.org/cscp.html
http://airccse.org/csit/V12N01.html
https://doi.org/10.5121/csit.2022.120110

116 Computer Science & Information Technology (CS & IT)

Towards reliably developing such complex, agile and context-dependent business applications,
we are putting forwards in this paper a stepwise rule-based model-driven and context-aware
architectural approach with the following software-engineering milestones:

[Fine-grain Separation of concerns]: We argue that for taming the complexity and agility of
such business applications, involved concerns such as functionalities, context-awareness, security
and quality need to be explicitly and separately handled at a first stage, then integrated at the
architectural-level to reflect the reality of the application. Moreover, due to the intractable
complexity of any business process, we suggest a fine-grained activity-centric handling of such
concerns as first-class modelling entities.

[Rule-centric architectural handling]: Towards intuitively coping with agility in such volatile
business applications, we are capitalizing on the ubiquity of business rules in such applications.
Indeed, business rules reflect evolving policies and laws for doing / collaborating business [6, 9,
10, 16]. Furthermore, to enhance agility and bridge the gap to service-orientation, we shift any
intuitive business rule towards transient architectural ECA-driven connectors [13]. More
specifically, we propose ECA-generic patterns for both functionality- and context-awareness.

[Rule-centric concurrent formalization]: Towards soundly interpreting and validating this
conceptualization, we further enforce to stay compliant with this rule-centricity. For that we
propose Meseguer’s rewriting (rule-based) logic [12] and its enabler efficient Maude language [3,
8].

[Rule-centric service-oriented deployment]: To preserve all strengths of the “business-
foundation” phases, we propose rule-centric web-services for a compliant deployment [22].
However, to enhance readability and simplicity and keep with the space limitations this phase
will not be further discussed. Detail about this phase will be addressed in the extended journal
version.

The remaining sections are as follows. In the next section we summarize recent related work
referring to any of the three milestones of our approach and their interleaving namely: Context-
awareness, adaptability and its rule-centricity. The third section illustrates the working
architecture of the proposed approach. In the fourth section, through a simplified banking
process, we demonstrate how functionalities are captured at the architectural level using a
tailored ECA-driven composition. In the fifth section, we present how context-aware knowledge
is to be modelled at the architectural, with the introduction of the so-called context-intensive
ECA-driven architectural connectors. In the sixth section, to reflect the intended intuitive
business semantics of each activity, we present how both concerns require to be brought together
around their activities within the concerned business process. We then address the formalization
of the approach using rewriting logic and Maude language; Nevertheless, with the aim to boost
the smooth readability of the paper we just skip the phase of the translation of ECA-driven
connectors to the service-oriented RuleML [22]. We finally wrap up this paper with concluding
remarks.

2. RELATED WORK: CONTEXT-AWARENESS, ADAPTABILITY AND RULE-
CENTRICITY

As we pointed out in the introduction the innovative stepwise approach we are putting forwards
for developing adaptive and context-aware business information systems bring together in a
harmonious and architecturally-based manner, the following software-engineering ingredients:
(1) Context-awareness; (2) Adaptability; (3) Separation in a rule-based way between context- and

Computer Science & Information Technology (CS & IT) 117

functional concerns at the fine-grained activity-level; (4) Adoption of Service-orientation where
the ECA-rules are captured as connectors between different service interfaces (5) Formalisation
through the rule-based rewriting logic for rapid-prototyping and validation.

Saying that in the following we restrict ourselves to any related work that integrates at-least two
of three of these software-ingredients; otherwise, the related work will transcend by far the space
limitation of the paper.

The closest approach to our that integrates at-least the notion of rules and context-awareness in
coping with dynamic and adaptive business processes in forwarded in [26]; furthermore, the
paper addresses most of the related work in this respect and therefore we invite interested reader
to go through these related works. In some detail, the authors propose to distinguish between
internal and external contexts, both managed using what they refer to context-engine-, resources-
and rule-managers. What seems to be close to our approach, is that the transition from one
business activity to another is dynamically governed by the current context of the previous
activity and the associated rules. Not mentioned in their paper compared to our is clearly the
service-orientation and the formal-underpinnings.

Another recent interesting approach with some similarity to ours appeared in [29] and based on
three-level architectural solution to develop context-aware application. The three-level are the
perception layer, which covers in some sense the technical and technological-layer for sensing
and interpreting the context; to mention here that in our approach this layer is assumed given at-
priori as the technology is far advanced in this respect (see [14,16,27, 28]) for more detail
concerning this technical side). The second level named interference layer and concerns the
contextual rules, where the author suggests directly adopting the RuleML [22] XML-based low
representation and not a business-level ECA-driven rules like our approach. Furthermore, besides
the rules, the author proposes an inference-engine and context-brother to compute on these rules.
the third-level is named the application layer; here the so-called application manager decides
depending on the available context whether to run the suitable application. Finally, is to mention
that a prototype called KoDA has been developed as a proof-of-concept for that approach.

Other approaches focussing mostly on the context-awareness and its modelling and
implementation could be found among others found in [26, 27]. Concepts such as RFID, Ambient
systems, Sensors and their classification are among others widely explained context-related
ingredients there. Furthermore, the application of the context-awareness is experienced within
different areas with the very interesting and critical health systems.

Finally, it is important to point out that our early ideas around separating location- from
functionality-concerns, as preliminary work towards this currently more disciplined and stepwise
approach for pervasive systems development, have been forwarded in [1]. That is, the present
paper extends by far these ideas on several perspectives. Firstly, we are leveraging location-
awareness with tailored context-awareness primitives to cope with pervasive systems. Second, we
have been putting these first ideas into a throughout stepwise and service-oriented development
approach. Third, as further contribution of this paper is the formalisation and validation of the
approach using the rule-based rewriting logic and its intrinsic true-concurrent Maude Language.
Last but not least, we are aiming to efficiently implement the approach using RuleML [10] and
putting the approach into the context of development in particular of business information
systems and processes at the fine-grained adaptability activity-level as will be detailed in the
remaining sections.

118 Computer Science & Information Technology (CS & IT)

3. MULTI-CONCERN AGILE SERVICE-ORIENTED BPs: APPROACH
MILESTONES

As depicted in the Figure-1 below, the working general architecture of the approach we are
pushing forwards can be highlighted as follows. Above all, we assume as given initial informal
requirements such as: business goals and objectives, intentional business rules where specifically
context-aware ones have been extracted from the environment sensing devices, actuators and so-
on, informal business processes and their composing activities. Given such initial requirements,
the gradual development of reliable context-aware service-oriented agile business applications,
encompasses the following phases:

PHASE-B: Concern-driven Modelling| PHASE-C: Validation

PHAS_D

Function. Rules Funct. connectors [N2ude Validatio

e
On-trigger ... ‘ ECA- ‘
under ... @ | interaction
acting @/ /

L h |
Service Service -
Interface1 Interfacel

RI1:m1=>m2 if
RI2 : mi => mj if cdi

RuleML
vaior as serv.

ntex. connectors

G
Maude Validation \ @

RI1: m1=>m2 if cdj
Under-cxt ...

- RI2 : mi => mj if cdi
Act-cxt . P
Service - Service K
Interface1 InterfaceN Ompllant Se

Context. Rule
On-trigger ...
where...

3 N\ /.
..Beh

Elicitatio

Informal Business Objectives
Goals and broad Business Processes
uonduoSep SaIIIAIDY |ewloju|

Interfaces

Web-Services

Figure 1. The forwarded Stepwise Architectural Context-aware Approach Milestones

[Phase-A: Informal look at activities]: The purpose of this phase is to re-visit the activities that
may participate in any business process. For instance, we propose to list and describe them
informally as preparation of the “business-conceptual” phase. In particular, we assume at this
phase that context-aware information and knowledge have been already sensed at interpreted [27,
28]

[Phase-B-Separated Rule-centric Modelling of Functionality and Context concerns]: We
consider this as the most decisive phase and as a distinguished capability of our approach with
respect to the state-of-art. As depicted in Figure-1, this phase is progressive and involves two
successive steps:

1. [ECA-driven behaviour for any activity]: That is, for each concern (e.g. functionalities,
context-awareness), we separately describe the corresponding ECA-driven rules governing
any activity. For the context-aware concerns, we propose a set of simple yet tailored
business-level primitives to facilitate an intuitive description.

2. [Architectural conceptualization using ECA-driven connectors]: Towards deriving a
disciplined and agile conceptualization while closing the gap to service-orientation, we
propose to shift such informal ECA-driven descriptions towards architectural concepts.

Computer Science & Information Technology (CS & IT) 119

We propose tailored ECA-driven architectural connectors, with roles playing service
interfaces and their behavioural glues reflecting the composition logic [1].

[Phase-C-Validation of Functionality and Context concerns using Rewriting Logic]: For the
formal validation, rapid-prototyping and verification, we propose yet another rule-based logic
that completely fits within the proposed ECA-driven rule-based modelling phase. That is, this
step within this “business-foundation”-level concerns the formal underpinnings of each concern
at the activity-level using the true-concurrent rewriting logic-based semantics [12] supported by
its Maude governing language [3,8].

[Phase-D: RuleML-centric Service-oriented Deployment]: At this ultimate phase, we propose
to deploy the already certified and reliable service-driven application using Web-Services
technology [21,25]. To stay compliant with the rule-centricity of the approach and thus preserve
all its benefits, we take benefits from rule-based XML languages, specifically reactive RuleML
[22], we leverage to service-orientation.

In the following sections, we will detail these phases, by considering a simplified case-study
dealing E-banking. More precisely, as illustrated in Figure-2, we consider the following service-
oriented business process, where after being identified, a customer can perform any banking
action such a withdrawal, acquiring-loan, and so on.

e Customer identification and authentication.
e Customer performing a withdrawal (or deposits, loans, mortgages).

denti ithghraw
=0

Figure 2. A Simple Petri-Net like Busines Process Model for basic banking Operations

We should already emphasize that most of existing approaches, as detailed in section 2, do not
delve into the inside-behaviour of such activities composing a business process. Indeed, even
service-oriented proposals, are restricted to only the modelling of message exchanges (e.g. send,
receive and invoke) to perform an activity. In terms of Petri nets for instance as shown above, the
activities are mostly considered as black-boxes, which opens a wide room for the programmers to
implement them in ad-hoc and rigid if not in incorrect manner. The main goal of our approach
consists thus in bringing to the conceptual level and precisely at the fine-grained activity-level at
first stance as much multi-dimensional knowledge as possible in a manner that promotes
adaptability, composability and dependability.

4. COMPOSITE SERVICE FUNCTIONALITIES AS RULE-CENTRIC
INTERACTIONS

As we already point out, to capture the mandatory functionalities of any business activity, in each
business process, we first propose to reformulate any governing intentional business rules into
operational ECA-centric ones. Moreover, we endeavour describing such ECA-driven business
rules at the interaction level, that is, we enforce ourselves to find out which business entities,
modelled later as web services requiring from them appropriate interfaces, are involved in the
associated ECA-driven rule. Then, the triggering events, the constraints to observe and the
actions to perform are to be specified.

120 Computer Science & Information Technology (CS & IT)

Afterwards, we propose to smoothly shift this interaction-driven informal business rules
governing any activity into more disciplined architectural interconnections. For the architectural
connector behaviour, which should reflect the ECA-driven rule, we propose a tailored ECA-
driven generic pattern composed of the tailored primitives as to be described below.

4.1. Functionalities ECA-based Rules Illustrated and Intuitively Clarified

Let us straightaway consider the withdrawal action, indeed the identification-activity presents no
functionality at-all as thus completely context-aware one as we will see it later, as a business
activity in our banking business process. We propose to externalize at the interaction-level the
rule governing the functioning of the withdrawal (i.e. in its simplicity (balance > amount-to-
withdraw). Instead of speaking about the “withdrawal method”, we are thus speaking about an
agreement between the customer and (one of) his/her account(s) while banking. As direct benefit,
we can now have different agreements depending on the profile of the customer (e.g. silver,
golden) and its account (e.g. running, saving, asset). Moreover, we can address the policies of
defining and adapting such agreements on-the-fly, and thereby increasing the competitiveness of
any associated financial institution. Last but not least, the notion of triggering event (i.e. the
customer wants to perform a withdrawal) is inherently to be understood now as an explicit
“invitation” for the account to enter into composition with that customer.

Coincidently, these are the main features in the essence service paradigm SOC [19,25]. Firstly,
SOC aims at dynamically composing of different partners (service interfaces) to achieve added-
values, impossible to achieve by single partners. Second, SOC is based on service invocation
using subscription and notification and dynamic binding.

As shown in Figure-3, for any withdrawal agreement, we require the following information from
the two partners: From the customer, we require the triggering event and the fact that (s)he is
owning the account; From the account, we require the balance and the debit operation, restricted
to just the decreasing of the balance (i.e. NO internal conditions at all). Important requirement
for the intended composition logic is the activity, as a composite service itself. We thus describe
any activity-behaviour at-first level, based on the ECA-driven interaction puts in place to ensure
the underlying business goal.

Example 1 (The ECA-based Functional rule for the Standard Withdrawal): As depicted
below, the standard withdraw consists simply in externalizing the usual condition from the
account component to the interaction level. The rule says that: On the occurrence of a withdrawal
event (subscription) from the customer, the targeted account balance should be greater than the
requested withdrawal amount and in that case a debit message is (asynchronously) sent to that
account to debit that account.

Computer Science & Information Technology (CS & IT)

@ ECAneraction benavior Withdraw-STD)

participants acco : AcntSdW-Intf cust : CusSdWI-Intf

functionality-rule

at-trigger cust.withdraw (n, acco)

under (acco.balancel() = n) and cust.owns(acco)
acting acco.debit(n)

CustSdW-Intf

AcntSdW-Intf

CUSTOMER
owns(a:ACCOUNT):Bool
withdraw(n:money;a:ACCOUNT)

ACCOUNT
Balance() : money
Debit(a:money) post balance - a

121

Account Service I Customer Service I

Figure 3. The Standard withdrawal ECA-rule as an Architectural Contract

Example 2 (The ECA-based Functional rule for the VIP Withdrawal): The second possible
withdrawal agreement, as illustrated in Figure-4, consists in endowing “privileged” customers
with a credit so that they can withdraw below their account balances. The interaction ECA-based
rule as an architectural connector takes the following form, where all what changes in respect to
the standard case is the condition that becomes more flexible.

2_ECA-Interaction behavior Withdraw-VIP)

participants acco : AcntVIP-Intf cust : CusVIP-Intf
functionality-rule
at-trigger cust.withdraw (n, acco)

under (acco.balancel() + cust.credit = n)

= and cust.owns(acco)
9 acting acco.debit(n+charge)

CustVIP-Intf

AcntVIP-Intf

CUSTOMER
owns(a:ACCOUNT):Bool
credit : money

ACCOUNT
Balance() : money
Debit(a:money) post balance - a

withdraw(n:money;a:ACCOUNT)

Account Service I Custmer Service I

Figure 4. The VIP withdrawal ECA-rule as an Architectural Contract

Notice that a different partner is now required to play the role of the customer: we need a service
that offers an operation for obtaining the credit limit currently assigned to the customer. Please
note that, participants can be hierarchically organized with, for instance, silver and golden
accounts as well as saving, asset accounts. For simplicity, we addressed just the simple flat case.

122 Computer Science & Information Technology (CS & IT)
5. CONTEXT-AWARE CONCERNS AS TAILORED ECA-DRIVEN RULES

As we emphasized, the main objective of this contribution is to first explicitly separately address
different concerns while tackling any context-aware service-oriented business applications. In the
previous section, we demonstrated how interaction-centric functionality concerns can be
conceptualized as transient ECA-driven connectors. In this section, we similarly present how
context-aware concerns need to be extracted from any activity and modelled as tailored ECA-
driven "contextual” connectors.

Towards forwarding suitable conceptual primitives for context-awareness and in contrast to
functionality concerns, we first require contextual predicates [6] for reasoning about the
surrounding environment and any involved devices and so on. In this contribution, we restrict
ourselves to the role of locations in defining the context-aware behavior governing any activity.
Nevertheless, as the reader may easily infer, the approach is flexible enough to be extended with
further predicates to cope with device resources and user preferences, such as GPS when banking
identification is performed using his/her Mobile device and cameras implanted at the ATM for
face-recognition and/or fraud detection for instance. More precisely, we propose three context-
aware predicates to allow reasoning about context-awareness in terms of ECA-driven rules.

e The communication status, reflecting the presence, absence, or quality of the link between
locations where given services are performed but require exchange of knowledge (e.g. data,
message). This is, captured through the "connect" predicate CNT:set(LOC) - BOOL.
Where LOC stands any location-dependent (concrete or abstract) entity.

o The ability to continue the execution of an activity at another location, which requires that the
new location is reachable from the present one so that the execution context can be moved.
The construct RC:LOC x LOC - BOOL is proposed. It informs whether a given location is
reachable from another one.

o The spatial relationship between two locations so that triggering events may be initiated. We
abstract such predicate as: Near2(LOC,LOC) - BOOL.

As already mentioned, In the same manner other contextual predicates can be forwarded for
informing and reasoning about resources such as devices memory, display, GPS-aware devices,
processor-capabilities and cameras among others. We have introduced the three above just for
illustration, but we are working on a complete set of primitives for reasoning about different
context-aware situations. Similar primitives can be found in [6] and [14] among others.

As for interaction concerns, we propose ECA-driven context rules as conceptual architectural
connectors to cope with the context-awareness, through the explicit use of the above contextual
predicates. More precisely, to be compliant with the followed event-driven paradigm, we let
unchanged the triggering primitive, that is, any context-aware rule will start like the interaction
rule with the at-trigger primitive. To emphasize that now the constraints to be involved for any
context-aware involve one or more contextual primitives (to test the current surrounding
environment), we propose to split the condition part into two parts. A first part starting with
where concerns the testing of the status of surrounding context. The second part concerns the
usual conditions, though now dealing with context-awareness issues; we introduce such
conditions by starting with under-cxt. Finally, the actions to perform are to be prefixed by act-cxt.

Computer Science & Information Technology (CS & IT) 123
5.1. Context-awareness Concerns graphically illustrated and explained

In the following, we illustrate these context-aware concerns by considering the same activities we
addressed at the functionality concern. More precisely, we first consider the withdrawal then the
identification activities (which is fully context-dependent).

But before detailing that context concerns, let us again motivate more on the explicit and strict
generic separation of these two concerns (i.e. functionalities and context-awareness) while
modeling business activities. As depicted in Figure-5 and still with respect to the banking
application, we have two strict yet complementary concerns while describing any activity of this
application. That is, on the left hand-side, the behavioral functionality issues are to be expressed
at the interaction level using (ordinary) business entities such as: (different kinds) customers and
accounts.

On the right-side, while we always stick to the modeling at the composition-level to promote
adaptability, the entities coming into play are more intrinsic contextual-aware entities: such as
ATM, INTERNET, CARD, and so forth. These entities are at-least location-aware, where the
context primitives influence by part the interaction.

Finally, it is worth pointing out that these two concerns are to be semantically related to reflect
any activity as will be seen later. For instance, we will be speaking about customer@atm,
customer@internet, account@bank, card@atm and so forth. That is, the business entities will be
using or residing in associated context-aware entities. We finally, point out that such separation
of entities has been recently reported in [29] as we have already detailed in the related work,
although without emphasis on the composition as first-class neither at the fine-grained activity-
level.

Concern-based Banking Activities modelling ‘

| Functionalities concerns

Context-avware concerns

———Context-predicates (CNT. RC. NEARZ—F—
=)

Context-aware ECA
interactions

=

ECA-Interactions

Credit
CARD

£ INTERNET ATM BANK
— 4=

-

Customer

Business
entities

Reside-in

Figure 5. Graphically illustrated how the ECA-based Functionality-Concerns may Interact with the Context
Ones for the banking Example

Now coming back to the specific activities in our simplified banking business process, that are,
the identification and the withdrawal activities. Let us start with the withdrawal activity, we
already discussed its behavioural functionalities at the interaction-level. Indeed, when we
described these ECA-driven functionalities, we did not mention at all what are the contextual
situations governing this activity. We were not concerned with the adopted business channels as
described in the right-hand side of Figure-5 nor with where such withdrawal was taking place.

124 Computer Science & Information Technology (CS & IT)

Example 3 (Context concerns for the Withdraw Activity): The conceptualization as shown in
Figure-6 details the behavioural added-values and / or restrictions to be observed when baking at
an ATM. Indeed, first as involved context-aware entities, we should have the ATM and BANK.
From the ATM, we implicitly require its location but also properties such as the available cash
and the default amount, both as hidden. An event for triggering the withdrawal is further
required; but from the context-aware perspective, we do not care whether it is initiated
automatically or from the user by pressing a specific button. Finally, the ATM is to be able to
deliver money when the following constraints hold. First, as the first rule details, if the ATM is in
a full connection with the corresponding BANK, the withdrawal is performed with the requested
amount unless it surpasses the agreed-on maximum to withdraw or no enough cash is available.
The second rule in contrast concerns the case where no connection is available (i.e. CNT(ATM,
BANK) is false). In this case, only a default amount is allowed using the conditions that such
ATM is endowed with off-line reachability to report on the performed transaction later (i.e.
RC(ATM, BANK) is true). That is, the transaction is to be moved or migrated later using a
banking operation such mv(wdr-op(atm-internal), bank).

[)
Context ECA-interaction ATMWdr-L

locations atm : ATMWdr-Cxtl ; bank : BANKWdr-Cxtl
attribute acco() : money—to be passed by the identif.
activi
context-rule : Withdraw
when atm.withdraw(n,a)

where CNT(atm, bank)

under-cxt (n < bank.maxatm(atm.acco())

and n < atm.cash()

acting-cxt atm.give(n)

when atm.withdraw(n,a)
where =CNT (atm,bank) and RC(atm, bank)
let N = min(atm.default(),n)) in
under-cxt (N < atm.cash())
cting-cxt atm.Give(N) and
v (bank.wdr-op(N, atm.acco(), bank)

ATMWdr-Cxtl ATM .

default() . money BANKWdr-Cxtl
cash() : Hidded (money) BANK
give(n: money) post cash() - n maxatm(n:money,a:ACCOUNT

withdraw(n:money,a:ACCOUNT)

wdr-op(n:money, a:ACCOUNT)

Contextual Service ATM Contextual Service BANK

Figure 6: The ECA-based architectural Context-aware Rule for the Withdraw Activity

Example 4 (Context concerns for the Identification Activity): With the aim to illustrate more
the crucial importance of context-awareness concerns, let us consider now the identification
activity in any banking business process which in our case must precede the withdrawal activity.
From the functionality’s perspective, we did not skip it, instead there has been nothing to
functionally describe for this identification activity. In other words, the identification is purely
context-aware activity as it concerns the exclusive interaction of context-aware entities such as:
INTERNET, PDA, ATM, CARD and where the connections and the other contextual primitives
are decisive in defining the associated behaviour. As detailed in Figure-6, for the case of banking

Computer Science & Information Technology (CS & IT) 125

at the ATM, that is, the identification via a Bank-CARD, we require from the ATM the ability to
accept /(r)eject Bank-Cards and to enter Pins. We note that the accept message records the
account and customer when successful. From the CARD, the hidden coded should present as well
as the acceptance and rejection. We also require that the account number and the customer ids to
be offered from the Card-magnetic. The corresponding ECA-driven interaction-rule says that we
have first to enter the triggering event EnterPin(Num). If the ATM reacts to that CARD, that is
either the CARD is inserted or simply it is just near it (via infrared or Bluetooth connection), the
entered code is checked with the stored card-code. Then, three attempts are allowed as possible
ATM capabilities. That is, even this ATM withdrawal rule could have several variants reflecting
specific ATM capabilities and Card (holder) specificities.

We similarly note that, the identification could be done via Internet / PDA. In this case we must
enter password under the constraints that a LAN or WLAN connection is available.

Context ECA-interaction ATM.Idf

locations atm : ATMId, card :Cardld

acco() : ACCOUNT, cust(): CUSTOMER
attempt() : nat initialize O
context-rule : Identification
at-trigger atm.enterPIN(n)
where NEAR2 (atm,card) and
under-cxt (card.attempts()<=3)
act-cxt if (n = card.code())
then card.accepted() and atm.accept
then card.rejected()

ATMIdf-Intf ATM CARDIdf-i CARD
accept(c:CARD) code() : PIN
post acco() = ac(c) rejected
and cust()=ct(c) post attempt() = old attempts + 1
reject(c:CARD) accepted post attempts () =0
enterPIN(n:PIN) ac() : ACCOUNT ;
ct(): CUSTOMER

Contextual Service ATM Contextual Service CARD

Figure 7. The ECA-based architectural Context-aware Rule for the Identification Activity

6. INTEGRATION OF CONCERNS: ACTIVITIES AND PROCESS MODELLING
REFERENCES

In the two previous sections, we separately dealt with functionalities and context-awareness while
modeling any activity as highly adaptive and behavioral tailored ECA-driven interactions. In this
sense, both concerns can be modeled, evolved and reasoning about completely in separate
manner, enhancing thus the mastering the application complexity and evolution.

Nevertheless, once such concerns and with respect to any involved business activity, in each
service-driven business application are developed, we require bring them together to reflect the
complete and intuitive business semantics we aim for any business activity. Being able to model
these concerns separately does not thus mean that they are independent. The way a business
activity is performed within a process system emerges from the functionalities as well as from the
contextual ECA-driven rules that jointly apply to that activity. Indeed, whereas and still at the

126 Computer Science & Information Technology (CS & IT)

conceptual-level the “What” question reflects the functionality concerns, the “Where” with its
“How” capabilities (such as sensors, actuators, cameras, etc.) should reflect the context-
awareness of any activity.

6.1. The Intrinsic Integration of functionalities and Context-awareness graphically
illustrated and explained

To be more illustrative, when banking at ATM for instance, we have on the one side the
withdrawal functionalities reflecting the intended interaction of the customer with its customer to
perform the right withdrawal. On the other side, we have the added-value of opting for a
withdrawal using the ATM, that is, the context-aware interactions while withdrawing.

As illustrated in Figure-7, with respect to this withdrawal activity, it is more logical at the end to
speak about customer@atm and account@bank. That is, we have to bring together the
functionalities and context-awareness ECA-driven rules together while running any withdrawal
activity using the ATM. As shown in the picture, for different customers and ATMs, we may
have different instances running each with the right functionalities and context-aware rules. Since
that we were coherently using ECA-driven rules, this integration of concerns around activities is
not that much difficult and become very intuitive. Indeed, we have just to join together different
clauses as conjunction. More precisely, first the events require to be unified by integrating all
their parameters. Then, all conditions in both selected rules have to gathered as conjunction.
Finally, all actions in both selected rules have to performed.

identification. s A a Witllldraw oo Activity Flow

contextual partcipants atrn : ATMWdr-Cxtl ;

bank : BANKWdr-Cxtl Q
rule : VWihdraw)] Es
when atm withdraw(n,a) S e
= &
3 wn
Gl BANRWAr-Cxt =
withdraw(n:money, a:ACCOUN ')“ I money, a:ACCOUNT)
/ atmin: ez,)
/
/ / 1
g E
e
Customer@ATM Accounts@Bank £ &
g ®©
=8
\ \ =1
CustCrdW-Fl AcntCrdW-Fl
CUSTOMER ACCOUNT
awns(a: ACCOUNT).Bool Balance{) : money
snithek fLmone f'a'ﬁl\:CCOUNT - Debit{a:mone

=

artners acco : AcntCrdW-FI cust @ CusCrdvl-Fl
gﬂril)utes charge : money ;

SILIAOU0))
anIeuonIuNn g

1

identification. . . . Withdraw .

Figure 8. The Architectural Integration of the both Functional and Context-based Concerns Graphically
Explained for the Withdrawal activity

Computer Science & Information Technology (CS & IT) 127

Example 5 (Concerns Integration for the Withdraw Activity): The integrated rule of a
withdrawal at ATM with customer enjoying a credit withdrawal could thus be represented as
detailed in Figure-8. That is, first we have to unify the withdrawal triggering to become
cust@atm.withdraw(cs, m). Then, we have to check that a connection between the ATM and
corresponding Bank is holding (if not the integration concern the second context-aware rule of
the withdrawal as given above). First, we have to check that the functionality rule holds, that is,
there is enough money in the account plus the credit and that the customer is owning that account

) withdrawactigity |

when cust@atm withdraw(n,a) where CNT(atm, bank)
and (accobalance () + custcredit() 2 n) with (n <bz '~ “m(atm.acco())
and cust.owns(acco) and n < atm.casny uo atm.give(n)
and if accobalance = n
then acco.debit(n) do atm.give(n)
else acco.debit(1.02*n)

Figure 9. The Integration of the Functional and Context ECA-Driven Rules for the Withdrawal Activity

On the ATM context-aware side, we have to verify that the customer is allowed to withdraw such
amount from the ATM and there is enough cash in that ATM. When all these constraints are
holding, the account is debited, and the ATM deliver that requested amount.

Example 6 (Concerns Integration for the Identification Activity): We stress again that the
integration of the identification activity of both concerns remains purely context-aware as no
functionalities are bounded to that activity, nevertheless, we have to adapt the previous context-
aware ECA-rule so that, for instance, the trigger atm.enterPIN(n) has to be changed to
cust@atm.enterPIN(n), the condition from NEAR2 (atm,card) to NEAR2 (cust@atm,card@atm)
and so on. That is the identification activity should look like as reflected in Figure-9 below.

when cust@atm withdrawi{n, a) where CNT(atrn, bank)
and {acco balance () + custcredit()= n} with (n < bank. maxatm(atm.acco())
and cust.owns{acco) and n = atm.cash) da atm.givein)
and if acco balance = n

; then acco.debit{n) do atm.givein)
A else accodebit(1.02'n)

Figure 10. The Integration of the (Functional and) Context ECA-Driven Rules for the Identification
Activity

7. FORMAL VALIDATION USING MAUDE AND REWRITING LOGIC

The semantical framework we are proposing for this new concern-based ECA-compliant service
oriented architectural conceptualization is based on rewriting logic [Mes92], which has been
proved very appropriate for dealing with concurrent systems. Further strengths making this logic
very practical is the current implementation of the MAUDE language [3, 8]. In MAUDE object
states in are conceived as terms — precisely as tuples— of the form <Id : Clatl : v1, .., atk :

mailto:cust@atm.withdraw(cs
mailto:cust@atm.enterPIN(n)

128 Computer Science & Information Technology (CS & IT)

vki>. In this tuple : Id stands for object identity; C identifies an object class; and atl, ..., atk
denote attribute identifiers with v1, ..., vk as current values. Messages (i.e. method invocation) are
regarded as operations sent or received by objects, and their generic sort is denoted Msg. Object
and message instances flow together in the so-called configuration, which is a multiset, w.r.t. an
associative commutative operator denoted by * °, of messages and (a set of) objects. The effect of
messages on objects is captured by appropriate rewrite rules.

Example 7 (The validation of the Withdrawal Rules Using Maude): Without delving into
detail about how to we systematically allow deriving the rewrite rules from the ECA-driven
interactions of both concerns, we sketch here directly the Maude code corresponding to the
withdrawal case, which should look like this module as illustrated in Figure-9.

omod Withdrawalaway is
protecting Monsy .
sub-sorts CustId RontId <« OID .
g 1:-a.rl:ic'ipant£l

class account | Bal : Money.

class Customer | Own @ CustId .

event Withdraw : ©CustId Money — Events
msg-lac Dekit 1 AcntId Money — Mag .
Vars M, Max. , Charge : Mcney .

[Wdrmwy] Withdraw(Cs, M) {Ac
AentId|Bal(Ae)y {Cs: Custld|Own(Ca, Ac) : True)

= {Ae : Acntld|Bal{AentId)) {C'a :
Custld|OwniCa, Ac) : True)debat{de, M+

Charge) 1f (M = Maz.) A (Bal{Ac) = M)

Figure 9. The Validation of the Withdrawal Rules using the Maude Language

Then using the current implementation and environment of the Maude language we can run this
specification with respect to concrete agreements between different customers and their
respective accounts. The first aim is to check for ambiguity and misconception. Then, as second
level we have to tackle inconsistency and conflict between different rules. As third aim, and
because Maude is endowed with model-checking properties can be verified. We have to do that
independently with respect to both functionalities and contextual concerns. Finally, we have to
tackle the integration as we informally described and check again the above issues such
misconception, conflict and crucial properties at that formal level.

A detailed specification and validation of the functionalities ECA-driven rules we implemented
using the Windows Maude Workstation are shown in Appendix-A.

In order to dynamically integrate different functional and context-aware rules, we take benefits of
the reflection of rewrite logic and its implementation as so-called strategies in the Maude
language. The following Figure depicts an illustration how different rules can be combined.

The semantical framework we are proposing for this new concern-based ECA-compliant service
oriented architectural conceptualization is based on rewriting logic [Mes92], which has been
proved very appropriate for dealing with concurrent systems. Further strengths making this logic
very practical is the current implementation of the MAUDE language [3, 8]. In MAUDE object
states in are conceived as terms — precisely as tuples— of the form <Id : CJatl : v1, .., atk :
vki>. In this tuple : Id stands for object identity; C identifies an object class; and atl, ..., atk
denote attribute identifiers with v1, ..., vk as current values. Messages (i.e. method invocation)
are regarded as operations sent or received by objects, and their generic sort is denoted Msg.

Computer Science & Information Technology (CS & IT) 129

Object and message instances flow together in the so-called configuration, which is a multiset,
w.r.t. an associative commutative operator denoted by * °, of messages and (a set of) objects. The
effect of messages on objects is captured by appropriate rewrite rules.

Without delving into detail about how to we systematically allow deriving the rewrite rules from
the ECA-driven interactions of both concerns, we sketch here directly the Maude code
corresponding to the withdrawal case, which should look like this module.

Then using the current implementation and environment of the Maude language we can run this
specification with respect to concrete agreements between different customers and their
respective accounts. The first aim is to check for ambiguity and misconception. Then, as second
level we have to tackle inconsistency and conflict between different rules. As third aim, and
because Maude is endowed with model-checking properties can be verified. We have to do that
independently with respect to both functionalities and contextual concerns. Finally, we have to
tackle the integration as we informally described and check again the above issues such
misconception, conflict and crucial properties at that formal level.

A detailed specification and validation of the functionalities ECA-driven rules have implemented
as depicted in the following Figure A-1 (in Appendix-A). We should further point out that the
execution of these rules can be dynamically controlled using the so-called strategy as a reflection-
based manner to control the order in which different rules can be executed. An illustration of such
strategy for the withdrawal Activity is depicted in Figure A-2 in the Appendix.

8. CONCLUSIONS

In this paper, we put forwards a service-oriented architectural-based approach that addresses
current challenges in modern business process modelling for reflecting dynamic cross- and intra-
organisational interactions as well as context-aware dependencies. We proposed ECA-driven
semantics primitives to separately model, evolve and validate both concerns at the activity-level.
We further explained how these concerns to-be integrated to reflect the intuitive business
semantics of any business activity. Rewriting logic and its Maude language have been proposed
for the formal validation and verification of both concerns. Furthermore, in order to dynamically
integrate different functional and context-aware rules, we have taken benefits of the reflection of
rewrite logic and its implementation so-called strategies in the Maude language.

To further consolidate and validate this service-oriented architectural approach we are working
on more case studies. Among the most interesting and practical fields that we are working on is
the healthcare, where context-ware beds, specific heart-devices and other context-intensive
medical tools are becoming nowadays more that ubiquitous [5, 27]. We are also implementing
the different phases of the approach. One of our main goals is to develop a deeper understanding
and classification of business rules so that semi-automatic derivation of functionalities and
context-aware architectural ECA-driven connectors can be ultimately achieved.

REFERENCES

[1] R.Allen and D.Garlan, "A Formal Basis for Architectural Connectors”, ACM TOSEM, 6(3), 1997,
213-249.

[2] N.Aoumeur, J.Fiadeiro and C.Oliveira, “Distribution concerns in service-oriented modelling” Int. J.
Internet Protocol Technology, Vol. 1, No. 3, 2006.

[3] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C.L: Talcott. All About
Maude - A High-Performance Logical Framework, How to Specify, Program and Verify Systems in
Rewriting Logic. Lecture Notes in Computer Science (springer), 4350, 2007.

130
[4]

[5]

[6]

[7]
8]
[9]

[10]
[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

Computer Science & Information Technology (CS & IT)

P.Cong Vinh, N.Tat Thanh and H.Chi Minh (eds.), “Context-aware Systems and Applications, and
Nature of Composition and Communication”, 7th EAI International Conference, iccasa 2018 and 4th
EAI International Conference, ICTCC 2018 Proceedings, Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering, Springer

P.Cipresso, s.serino and D.Villani (Eds). “Computing Paradigms for Mental Health.”, 9th
International Conference, MindCare 2019, Buenos Aires, Argentina, April 23-24, 2019 Proceedings,
Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering, 2019.

P.C Dockhorn, P.A. Almeida, L.F. Pires, and M. van Sinderen. “Situation Specification and
Realization in Rule-Based Context-Aware Applications.” In Proc. of the Int. Conference DAIS’07,
page 3247. LNCS, Volume 4531, 2007.

C.Dobre and F.Xhafa. “Pervasive Computing Next Generation Platforms for Intelligent Data
Collection.” Academic Press is an imprint of Elsevier. Elsevier, 2016.

F. Duran, S. Eker, S. Escobar, N. Marti-Oliet, J. Meseguer, R. Rubio, C. L. Talcott: Programming and
symbolic computation in Maude. J. Log. Algebraic Methods Program. 110, 2020.

Aluan Fuente, , B. Lopez Pérez, G. Infante Hernandez and L.J.Cases Fernandez, “Using rules to
adapt applications for business models with high evolutionary rates.”, International Journal of
Artificial Intelligence and Interactive Multimedia, Vol. 2, N° 2, 2013.

Business Rules Group. Defining Business Rules - What Are They Really? |In
www.businessrulesgroup.org, 2005.

P.Kardasis and P.Loucopoulos, “Expressing and Organising Business Rules”, Information and
Software Technology, 2006.

J. Meseguer. Conditional rewriting logic as a unified model for concurrency. Theoretical Computer
Science, 96:73-155, 1992.

J.Magee and J.Kramer, "Dynamic Structure in Software Architectures”, 4th Symp. on Foundations of
Software Engineering, ACM Press 1996, 3-14.

E.Marius Oprea, M.Alexandru Moisescu and S.Caramihai, “Context Awareness in Enterprise
Systems Design, May 2021.” In 23rd International Conference on Control Systems and Computer
Science (CSCS), 2021, DOI: 10.1109/CSCS52396.2021.00053.

L.Mutanu and G.Kotonya, “State of runtime adaptation in service-oriented systems: what, where,
when, how and right.”, Special Issue: Adaptive and Reconfigurable Service-Oriented, Cloud and
Virtualised Architectures, IET Software, Vol. 13 Iss. 1, pp. 14-24.

G.J. Nalepa and S.Bobek “Rule-Based Solution for Context-Aware Reasoning on Mobile Devices.”,
Computer Science and Information Systems 11(1):171-193, 2013.

B.Orrinsi, J.Yang, and M.Papazoglou, “A Framework for Business Rule Driven Web Service
Composition”, in Proc. of Conceptual Modeling for Novel Application Domains, LNCS 2814
Springer 2003, 52-64.

J.Oukharijane, I.Ben Said, M.Chadbane, R.Bouaziz, Rafik and E.Andonoff, Eric.. “A Survey of Self-
Adaptive Business Processes”, In 32nd International Business Information Management Association
Conference (IBIMA).”, Seville, Spain, Feb 2019.

M.Papazoglou and D.Georgakopoulos (guest editors), Special Issue on Service-Oriented Computing,
Communications of the ACM 46(10), 2003.

D.Rosca and C.Wild, “Towards a Flexible Deployment of Business Rules”, Expert Systems with
Applications 23:385--394, 2002.

M.P. Papazoglou. Web Service: Principles and Technology. Prentice-Hall, Englewood Cliffs,2007.

[22] RuleML: “The Rule Markup Initiative.” http://wiki.ruleml.org /index.php /RuleML_Home. 2021

[23]
[24]
[25]

[26]

[27]

O.Vasilecas, D.Kalibatiene and D.Lavbi¢, “Rule- and context-based dynamic business process
modelling and simulation”, Journal of Systems and Softwarem 122, 2016.

W.Wan-Kadir and P.Loucopoulos, “Relating Evolving Business Rules to Software Design”, Journal
of Systems Architecture, 2003.

T.Elr, “Service-Oriented Architecture: Analysis and Design for Services and Microservices.”,
Printice-Hall, 2016.

O.Vasilecas, D.Kalibatiene and D.Lavbi¢, “Rule- and context-based dynamic business process
modelling and simulation”, Journal of Systems and Software, Volume 122, December 2016, Pages 1-
15.

J.Symonds, “ Ubiquitous and Pervasive Computing: Concepts, Methodologies, Tools, and
Applications”, Copyright © 2010 by IGI Global, 2010.

https://doi.org/10.1016/j.jlamp.2019.100497
https://doi.org/10.1016/j.jlamp.2019.100497
https://www.researchgate.net/scientific-contributions/Eugen-Marius-Oprea-2198721021?_sg%5B0%5D=JiQq0D7Kg-uFpIMMHDZtlGxkrsW9PxWdQnNmXpuLJC0MdxjN3j17UCiHVyHtUkz03nD8ayk.l1ccVQ9lieLGHcXhbn_p8J8pLF7kjFvqPeT5gCCJMm01FMxFReAo3p4gqN6CTMvTlfzmyTzxJpsuYamjH2YqLQ&_sg%5B1%5D=p9CIgfXrxl7JXoGBPkTON24ysWI9yAjbsqPaKoKM8KvTb6ABgbrFVLKAUR0Pdnl3sekRgxE.Px7fGYMkwrRW0zGr6TAHWP7vuPMVkIV4XVb_Rs4hpK4sM-KOcMrpj2kAOunvrDMSEGxN3hXvEGQZtqy0GJ7udA
https://www.researchgate.net/scientific-contributions/Mihnea-Alexandru-Moisescu-2183573152?_sg%5B0%5D=JiQq0D7Kg-uFpIMMHDZtlGxkrsW9PxWdQnNmXpuLJC0MdxjN3j17UCiHVyHtUkz03nD8ayk.l1ccVQ9lieLGHcXhbn_p8J8pLF7kjFvqPeT5gCCJMm01FMxFReAo3p4gqN6CTMvTlfzmyTzxJpsuYamjH2YqLQ&_sg%5B1%5D=p9CIgfXrxl7JXoGBPkTON24ysWI9yAjbsqPaKoKM8KvTb6ABgbrFVLKAUR0Pdnl3sekRgxE.Px7fGYMkwrRW0zGr6TAHWP7vuPMVkIV4XVb_Rs4hpK4sM-KOcMrpj2kAOunvrDMSEGxN3hXvEGQZtqy0GJ7udA
http://dx.doi.org/10.1109/CSCS52396.2021.00053
http://wiki.ruleml.org/
https://www.sciencedirect.com/science/journal/01641212
https://www.sciencedirect.com/science/journal/01641212/122/supp/C

Computer Science & Information Technology (CS & IT) 131

[28] M.Guo, J.Zhou, F.Tang, and Y.Shen, “Pervasive computing : concepts, technologies and
applications”, Taylor & Francis Group, LLC, 2017.

[29] D.Lupiana, “Architectural Solutions for Context-Aware Applications: KoDA Prototype”,
International Journal for Information Security Research (IJISR), Volume 9, Issue 1, March 2019

APPENDIX-A

ACNT_CMP_GNR.maude |

1. mod ACNT_CMP is

2 protecting INT .

3 inc CMP_GNR .

4. sorts CRDT DBT CHGL TRS His HisL AcntCf Acntld .
g: subsorts CRDT DBT TRS < ohs_Msg .

6 subsaort CHGL < loc_Msqg .

7 subsorts His < HisL < loc_Msg .

8. subsort AcntCf < ConfCMP .

9. subsort Acntld < CMPId .

10. op Crd(_, _): Acntld Int-» CRDT [ctar] .

11. opDb{_, _): Acntlid Int-> DBT [ctor] .

12. op ChgL(_,) : Acntld Int-» CHGL [ctar] .
13, op Trs(_, _, _): Acntld Acntld Int-> TRS .
14. ophal _: Int-> obs_Prop [ctor gather (&)] .
18, oplimt _:Int-= loc_Prop [ctor gather (&)] .
16. op[]:->His.

17, op [, _]: Int Nat->His .

18. op_. _ . His HisL -> HisL .

19. wvars AA1 Acntld .

200 wvarsBB1LL1: Int.

21, wvarM: Nat.

22, rifcredit]: Crd (A,M)<A|balB>=><A|bal B+M> .

23. rl[debit]: Dh (A, M) <A|bal B>=><A|balB-M=>.

24, rl[chgl]: ChgL (A, L1) <A|limE L>=><A|limt L1 > .

25, rl[transfer]: Trs(A, A1, M) <A|bal B > <Al |bal B1 =

26. =>Db (A M)<A|balB>Crd (A1, M)<Al|hal Bl >.
27. endm

Figure A-1. The Implementation of the Withdrawal Rules using the Windows Maude Workstation

132 Computer Science & Information Technology (CS & IT)

',;EN-T_STR.maudve— '

mod ACNT_STR is

inc ACNT_CONF .

pratecting META-LEVEL .

vars withdraw? deposit? transfer? : [Result4 Tuple] .
var T Term .

op Compute : Term -> Term .

ceq Compute(T)
= (if{deposit? ;: Resultd Tuple)
then Compute(getTerm(deposit?))
else ifitransfer? :: Resultd Tuple)
then Compute(getTerm(transfer?))
else iffwithdraw? :: Resultd Tuple)
then Compute(getTerm{withdraw?))
else T
fi fifi)

if withdraw? ;= metaxapply(upModule(' ACNT_CONF false),
T 'withdraw none,0,unbounded,0)
A deposit? (= metaxapply(upModule{'’ACNT_CONF false),
T,'deposit,none,0,unbounded,0)
Atransfer? (= metaxapply(upModule('ACNT_CONF false),
T 'transfer,none,0,unbounded,0) .

eq Compute(T) =T [owise] .
endm

Figure A-2. A Strategy-based Implementation of The Withdrawal Rules using the Strategy-Module of the
Windows Maude Workstation

© 2022 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

http://airccse.org/

	Abstract
	Keywords
	Context-awareness, ECA-Driven Rules, Architectural Connectors, Service-orientation, Adaptability, Maude Validation.

	2. Related Work: Context-Awareness, Adaptability and Rule-Centricity
	3. Multi-concern Agile Service-oriented BPs: Approach Milestones
	4. Composite Service functionalities as Rule-centric interactions
	5. Context-Aware Concerns as Tailored ECA-Driven Rules
	6. Integration of Concerns: Activities and Process Modelling References
	7. Formal Validation using Maude and Rewriting Logic
	8. Conclusions
	References

