
David C. Wyld et al. (Eds): AIAP, IT, MoWiN, CCSEIT, CNSA, ICBB - 2022

pp. 49-58, 2022. CS & IT - CSCP 2022 DOI: 10.5121/csit.2022.120404

AN INTELLIGENT SYSTEM TO ASSIST THE

DRAWING COMPLETION AND COLORING

SUGGESTION USING AI AND IMAGE
PROCESSING TECHNIQUES

Jichuan Wang1 and Yu Sun2

1Northwood High School, 4515 Portola PKWY, USA
2California State Polytechnic University,

Pomona, CA, 91768, Irvine, CA 92620, USA

ABSTRACT

Many times when we create any design or drawing on a digital platform, we face the problem

that lines we created couldn’t close up the shape correctly [1]. When we use the paint bucket
tool, it fills the whole screen up with one click, and we need to re-look through the whole design

again to find where it wasn't closed up correctly, not only taking up much of our time, but it’s

also very annoying. By determining a rule for whether or not a shape is completely closed or

open, this application checks whether the shapes we created were closed by going through each

pixel and detecting if there are holes around it [2]. The application could be provided for

anyone creating 2d designs on a computer whether for hobby or job, to save the time looking

through the whole design again and find the errors with much time are really tiny.

KEYWORDS

Shapes, checker, fixer, pixel extraction.

1. INTRODUCTION

As using any designing app that includes a tool to select or fill an area, the tool such as paint
buckets often would take account of any tiny holes on the outline. This, in return, messes up the

whole design by filling up or selecting not only the area wanted, but also the whole opening area

connected to that tiny opening. When this occurs, you need to adjust it by hand, whether through
erasing or finding and closing up the opening yourself, as it’s more annoying to fill in the area

using a pen tool which may draw on top or over the outlined shape [3]. And because of this, you

often have to look through everything in the image to find the location of the problem, a process

that could be even more difficult when the complexity of the design increases [4]. This is
opposed when people have to look through the whole canvas and in the end find the opening at

the smallest tip over, for example, the character’s hair. Maybe over time people could get better

at making designs to make no holes on the outline, but it’s a common problem for most people
who weren’t trained for years, and they often thought they have completed their design, only to

find that when filling in the desired color, the whole page is filled up with the color, and possibly

covering other work they have already done. This can speed up the process of creating designs by
letting people not put too much of their mind on finding problems in the closure of their design,

and allow for more advanced novice design [5].

Some of the techniques and systems that have been proposed until now repeat and draw out
existing shapes that allow the user to input their drawing into the program and draw the shape

http://airccse.org/cscp.html
http://airccse.org/csit/V12N04.html
https://doi.org/10.5121/csit.2022.120404

50 Computer Science & Information Technology (CS & IT)

out, providing a canvas that allows the user to edit [7]. However, this implementation was limited
as the user could only see the shape they drew. Furthermore, various other software applications

only assist the process further by giving the user the tools to manually fix the problems with the

image. This doesn’t actually help the user with the original problem they had of wanting to fix

their shape, but instead just draws what the user gives and asks the user to fix and find the
problems themselves [8]. Tools such as Onshape and Goodnotes provide these useful tools, but

do not provide fixtures to incomplete shapes. They only support fully closed shapes.

In this paper, we follow the same idea that helps the user make their shape more complete for
further steps in creating their art. In this case, we have decided to utilize pixel art, or art that is

drawn using single pixels that connect to form a complete image, for the drawings that are

checked in the program. Instead of providing tools for users to manually do the drawing
themselves, we first check their image for pixels in the shape that do not connect to other pixels,

forming an incomplete shape. We implement a steady algorithm to check eight different

directions that adjacent pixels can be from any given pixel in the image. Second, we tell the user
where the problems are located in their image. In other words, we describe which pixels are not

connected to other pixels in the image that cause our shape to be incomplete. Third, we help them

fix their problem by filling in any gaps that they missed in their pixel drawing. We implement a

similar algorithm to the one that determines completeness or incompleteness of a shape; however,
we use this algorithm to now determine a start point and an end point to which a line will connect

the two incomplete pixels from.

We used the graphing calculator to plot out all the coordinates that our program went through that
determined the shape’s pixels in a given image. With this graph, we saw what pixels were

analyzed and how they were interpreted, and how closely it was to our predicted result. In terms

of how the pixels were interpreted, we were using the graph to see if the program could extract all
the colored pixels that we were supposed to analyze (this could be easily proven to be correct

with closed images, since any gaps would prove an incorrect analysis and/or extraction in the

program). If the plots on the graphing calculator are the same shape from the original picture (i.e.

the coordinates on the graphing calculator match given coordinates extracted from the image in
the program), we have proven that we can determine whether the shapes were closed or opened.

The rest of the paper is organized as follows: Section 2 gives the details on the challenges that we

met during the experiment and implementing solid tests that check for the overall correctness of
our project; Section 3 focuses on the details of our solutions corresponding to the challenges that

we mentioned in Section 2; Section 4 presents the relevant details about the experiment we did,

following by presenting the related work in Section 5. Finally, Section 6 gives the conclusion
remarks, as well as pointing out the future work of this project.

2. CHALLENGES

In order to build the tracking system, a few challenges have been identified as follows.

2.1. Avoid Confusion

When implementing file-opening components in a program, we want to make sure that the file
we open is the one we desire to check its shape for. To omit this confusion, we name our files

specifically beforehand, naming them “complete”/open or “incomplete”/closed [6]. In real-world

terms, the user will not know whether or not their shape is open or closed, and they are going to

want the confidence of knowing that it is their shape that is being checked (not some other file);
that is why they will use our application to check their shape. However, we use the os Python

Computer Science & Information Technology (CS & IT) 51

library, which guarantees file safety measures to ensure 100% accuracy regarding opening the
correct file.

2.2. Identify the Pixel

For the Pixel Fixer design we made to close the opened shapes, we wanted to make sure that

there are no pixels in the shape that do not meet the adjacency requirements (2 pixels adjacent).

To identify a pixel to be an open pixel, the program checks for an adjacent pixel in eight different

directions; if the number of adjacent pixels is less than two, the pixel was identified as an
incomplete (or open) pixel. To make sure the pixels that were connecting are the incomplete

pixels, we initialize an empty list and append each pixel that is identified as incomplete pixels

into this list. When the user clicks to complete the image, the turtle object is placed at the first
pixel in the list within the GUI and the program will go to the closest pixel. Once the turtle pen

finishes its job of drawing, the program indicates a complete drawing in the GUI (there are no

gaps in coordinates, and this is where incomplete images are most prominently indicated).

2.3. Make Sure the Image is Complete

In the program, we must make sure that an image that was identified as complete is actually a
complete shape. The program will scan and record the coordinates of each pixel into an empty list

that has a color that isn’t white (this is supposed to be the color of the canvas). The program will

go through every pixel in the list and check for the eight adjacent directions and see if these

pixels are in the list of colored pixels. The pixel could only be identified as a closed pixel if two
or more pixels adjacent were colored, and a shape will only be identified as closed if all pixels

were identified as closed [9]. And when the shape was identified as closed, the program will then

go on and display that the shape is a closed shape.

3. SOLUTION

Pixel Checker is an application that utilizes python libraries including turtle and tkinter. The Pixel

retrieving component includes implementation of the PIL library, which is an image-based library

used for photo-related data retrieval. The program, after retrieving the file in jpg format, goes
through each pixel in the image using a for loop, and if a pixel’s color isn’t equal to white, or

0,0,0,0, the program will append the coordinate x and y of the pixel into a list for other parts of

the program to use (this means that every coordinate in the list is represented as a tuple). Once all

pixels have been retrieved, the program goes through a pixel checking process, which goes
through each pixel to see if there are two pixels that are adjacent to the current pixel in the list. If

a pixel has less than two colored pixels adjacent to it, it will be identified as an open pixel, and

will be handled accordingly to fix the shape. The program only indicates a shape to be closed if
and only if all of it’s pixels are closed pixels; otherwise, the program indicates that the shape is

open. The shape drawing component implements the turtle library, where the turtle will draw out

lines when it’s commanded to put it’s pen down, it is implemented so that it puts its pen down as
the first pixel of the list of colored pixels, and goes through all the pixels that were colored. Each

pixel that was drawn was appended into another separate list to ensure the turtle didn't go on to

redraw any pixel that was drawn. The shape fixer is similar to the shape drawer, in the sense that

it goes through a list of pixels to move the turtle to its indicated location. Only in this component,
however, the program goes through the list of opened pixels and draws it to the closest colored

pixel to close up the shape. While there is a small portion of information being displayed onto the

Console after drawing the image, the visual parts of the program that displays the drawing were
put together with the GUI using the tkinter library (from a turtle screen).The GUI utilizes the

screen with buttons for the user to interact with. The user can upload and select an image from a

drop down menu. When the user clicks on the check image, the check image and draw image

52 Computer Science & Information Technology (CS & IT)

functions will be enacted to check the image for its closeness, and send an error message when
there wasn’t an image chosen. The program will draw out the image first, and if the shape is not

closed, a pop up window will appear to tell the user that the shape isn’t closed, and the user can

click on the fix image button to fix and redraw a complete shape. Once the shape was identified

as completed, a button will appear and show how the program goes through and check all the
pixels of the image. After this, the program resets, the user can select another image to check.

Figure 1. Overview of the system

Figure 2. Code of class GUI

Figure 3. Code of draw shape

Computer Science & Information Technology (CS & IT) 53

Figure 4. Code of enumerate

Figure 5. Code of pixels that make up shape

4. EXPERIMENT

4.1. Experiment 1

We check for every pixel in the picture that was colored (a pixel with a different RGB color value
than the background’s RGB color value). The program will go through each one of the shape

pixels, and for the current pixel that we are checking, we check for the adjacent pixels around it

(8 different directions). If there are two adjacent pixels to the current pixel that are in the shape

pixels list (and thus meet the RGB value specification), we continue to check the next pixel in the
list of shape pixels. If there is a pixel in the list of shape pixels that does not have two adjacent

pixels to the current pixel that are in the shape pixels list, we end the function and the shape is not

complete. If all of the pixels in the list of shape pixels meet the specified requirements, we can
indicate that the shape is complete.

Using a professional graphing website: Desmos, we can specify all of the coordinates from the

shape pixel (after projecting the coordinates in the program) to prove that there are two adjacent
pixels in the direction. In the graph, the distance from each adjacent pixel should be no greater

than 1 coordinate point away from each other.

That is, for a pixel, pixel1 that is adjacent to the pixel, pixel2, we expect that the distance

equation below should follow for all of the pixels in the list of shape pixels:

54 Computer Science & Information Technology (CS & IT)

Distancei ≤ 1, or:
|pixel1(x) - pixel2(x)| ≤ 1 or |pixel1(y) - pixel2(y)| ≤ 1

Coordinates from square_complete.py that are in shape_pixels list:

[(20, 20), (20, 21), (20, 22), (20, 23), (20, 24), (20, 25), (20, 26), (20, 27), (20, 28), (20, 29), (20,

30), (20, 31), (20, 32), (20, 33), (20, 34), (20, 35), (20, 36), (20, 37), (20, 38), (20, 39), (20, 40),
(21, 20), (21, 40), (22, 20), (22, 40), (23, 20), (23, 40), (24, 20), (24, 40), (25, 20), (25, 40), (26,

20), (26, 40), (27, 20), (27, 40), (28, 20), (28, 40), (29, 20), (29, 40), (30, 20), (30, 40), (31, 20),

(31, 40), (32, 20), (32, 40), (33, 20), (33, 40), (34, 20), (34, 40), (35, 20), (35, 40), (36, 20), (36,
40), (37, 20), (37, 40), (38, 20), (38, 40), (39, 20), (39, 40), (40, 20), (40, 40), (41, 20), (41, 21),

(41, 22), (41, 23), (41, 24), (41, 25), (41, 26), (41, 27), (41, 28), (41, 29), (41, 30), (41, 31), (41,

32), (41, 33), (41, 34), (41, 35), (41, 36), (41, 37), (41, 38), (41, 39), (41, 40)]

Figure 6. Square

For every pixel in the graph, there are two pixels in an adjacent direction with a distance (based

on the formula above) of exactly 1; and thus, we have proven that the shape is complete [10].

4.2. Experiment 2

If the shape was identified as incomplete, (in other words, there is one pixel that did not have two

adjacent pixels that were in the shape), a method in the shape checker known as draw_pixel is

called. In this method, we start by storing all of the incomplete pixels to a separate list (this step
is very similar to the is_complete_shape method; except now we are taking into consideration the

incomplete pixels rather than the complete pixels). Using the GUI, the method will go to the

specified coordinate of the first pixel in the list. Using a turtle, the turtle object goes to this
coordinate. Next, the method moves onto the second pixel (the last pixel that is incomplete in the

image), along with the turtle object moving forward to the specified coordinate in the GUI (it’s

important to note that the pen is down (turtle.pendown(), so there is a line being drawn from the
first pixel in the list of incomplete pixels to the second pixel in the list of incomplete pixels).

Once this line connects the two pixels together, we can then identify the shape as being complete.

We know this to be true because for every x-y coordinate in the path of the line that was drawn,

we assume there to be a coordinate in place so long as there are no gaps in the GUI within the
shape’s figure at this point.

Using a professional graphing website: Desmos, we can specify all of the coordinates from the

shape pixel (after projecting the coordinates in the program) to prove that we have properly
identified the two pixels that are open (incomplete). Open pixels are specified by the following

requirement:

For every open pixel i in graph G:
∑(adjacent pixelsi)≤ 1,

(Distancei from any non adjacent pixel) > 1

Computer Science & Information Technology (CS & IT) 55

[(34, 25), (34, 26), (34, 27), (34, 28), (34, 29), (34, 30), (34, 31), (34, 32), (34, 33), (34, 34), (35,
34), (36, 34), (37, 34), (38, 34), (39, 34), (40, 34), (41, 34), (42, 25), (42, 34), (43, 25), (43, 34),

(44, 25), (44, 26), (44, 27), (44, 28), (44, 29), (44, 30), (44, 31), (44, 32), (44, 33), (44, 34)] ;

coordinates for the line: (34, 25), (42, 25)

Figure 7. Desmos graph (screenshot after the line is drawn)

Figure 8. Desmos graph 2

We wanted to prove for the pixels that met the adjacency requirement, and based on the graphs
for the image, that you can see these pixels have two other pixels adjacent with a distance on the

graph next to each other equivalent to 1. For the pixels that did not meet the adjacency

requirement, we can see that they have only one adjacent pixel with a distance of 1. The program

identifies the two incomplete pixels, and it will draw a line between them (in the GUI we draw a
connecting line between them). We have proven the summations of adjacent pixels for open and

closed pixels, the distances for adjacent pixels for open and closed pixels (and how they

determine a closed shape overall).

Through the experiment, we have proven that the program succeeds in determining whether the

shape is closed or open, and how it could identify which pixels need to be connected with a line

to close up the shape. The program will identify whether two of the pixels adjacent with a
distance of 1 were colored to determine the pixel to be closed.

For example, the completed square could be identified correctly when every pixel in the shape
has two adjacent pixels with a distance of 1; this requirement means that all of its pixels were

complete.

56 Computer Science & Information Technology (CS & IT)

In the incomplete square the program can identify the incomplete pixels (i.e. with only one pixel

adjacent to it with distance of 1), and can draw a line from both pixels to connect them. The line

drawn has no gaps (because a line is simply one solid shape that connects to the shape). And

because a shape connects to another shape to close any gaps (and thus create another adjacent
pixel with a distance of 1), our shape is complete after the line is drawn.

5. RELATED WORK

Utilizes previously written data to fill in image gaps [11]. As stated in the article, “Based on the

assumption that the same-class neighboring pixels around the un-scanned pixels have similar

spectral characteristics, and that these neighboring and un-scanned pixels exhibit similar patterns
of spectral differences between dates, we developed a simple and effective method to interpolate

the values of the pixels within the gaps”. They are attempting to fill in image gaps by selecting

certain pixels. Given that they are searching for a similar pattern to fill in image gaps (scanned
and unscanned pixels), we are searching for a similar pattern to fill in image gaps (pixels that

meet a specific adjacency requirement to be determined as closed or open pixels). They are using

a different form of technology to retrieve the pixels (they use Landsat ETM+, while we used a

method of pixel extraction). And the images that they are testing are quite different as well (they
use SLC-off ETM+ images, while we use .jpeg images created from a individualized pixel-focus

drawing platform: pixlart). We can assume that they possibly used thousands of pixels, while our

implementations, while they can handle this quantity of pixels, only used a few dozen.

The research tests how open and closed shapes affect the trend of judgement regarding the

processing of shapes [12]. This research determines open and closed shapes for parts of their
experiment. Rather than judging on whether the shape is open or closed, this tests how the open

or closed shape affects the running time of finding a target that is a particular open or closed

shape.

A method in Java attempting to extract edge end pixels for further image analyzing to link two

edges together [13]. The research extracts pixels from images through methods focused on

direction sensitives, as well as linking edges together from 2-d images (the edge segmentation on
theirs, the line drawn on ours). The research was based on Java, while ours is based in python.

This research focuses on analyzing the directions that the two edges are facing from each other,

while our research gathers the information regarding the two edges without further analysis

(simply draws a connecting line between the two).

6. CONCLUSIONS

The pixel checker utilizes a method to extract all colored pixels in a shape, and then holds on to
certain pixels (the ones that make up the shape we are checking for) based on their RGB value

[14]. The program will append all pixels into a list, and check through each of them. If each pixel

has two pixels adjacent to it in any of the eight different directions horizontally, vertically, or

diagonally (up, down, left, right, up-left, upright, down-left, or downright). If all the pixels in the
shape meet this requirement, it will be identified as a closed pixel; otherwise, the pixel will be

identified as open. The program will tell the user whether the shape is closed or not (using the

specified method), and close the shape when it isn’t. The program will close an open shape by
appending all the open pixels into a separate list (in our experiments, there is a total of 2 pixels in

the simple pixel-art based images). Then, we use a turtle.pen object to draw through all open

pixels in the shape by going from the first pixel to the second pixel, which results in a line being
drawn. Once the line is drawn, we have no pixels without two adjacent pixels in our shape, and

Computer Science & Information Technology (CS & IT) 57

thus we can conclude that we have closed an open image. Using images drawn on pixlart, we
used the shape’s pixels and plotted them on a graphing calculator. If the adjacency rules specified

above in the experiments are met in the plotted points on the graph and in the coordinates in the

program, we expected the results for both to determine closed shapes (our program would

indicate this, while we would investigate every coordinate manually on the graphing calculator).
For open shapes, we wanted to compare the two edge points (the two points that did not meet the

adjacency requirement). If these two points did not meet the adjacency requirement manually by

checking the graphing calculator and in the program, we can determine that our program
correctly checks for both open and closed shapes.

For now, our program only draws lines through the pixels that are open, and cannot go back to
check if the shape could be completed correctly. Our current program can only run simple pixel

art images (our pixel checker’s adjacency requirements allow us only to check for images with

shapes that have two pixels adjacent to them without the possibility for more than this amount

with complete accuracy). The current fixing method only closes up the shape by drawing a line
that connects the two points together that are open. In terms of optimizing our program, we

currently use brute-force to check for all of the given coordinates in our list of shape pixels. We

have not implemented a dynamic-programming related concept nor a recursive algorithm to work
our way through all of the pixels in the shape [15]. Doing so would drastically reduce the overall

running time of the algorithm for the shape checker.

In the future, we could implement machine learning into the program to allow more advanced

techniques to draw the pixels in our image and allow for more optimized solutions to fix open

shapes. This will allow our program to handle more complex images, and to further our

adjacency requirement for a higher accuracy rate on more complicated images (and hence we
could possibly run this program on images that are not just single-pixels).

REFERENCES

[1] Geliskhanov, Islam Zelimkhanovich, and Tamara Nikolaevna Yudina. "DIGITAL PLATFORM: A

NEW ECONOMIC INSTITUTION." Quality-Access to Success 19 (2018).

[2] Fisher, Peter. "The pixel: a snare and a delusion." International Journal of Remote Sensing 18.3

(1997): 679-685.

[3] Simader, Christian G. "Outline." On Dirichlet's Boundary Value Problem. Springer, Berlin,

Heidelberg, 1972. 1-12.

[4] Gell-Mann, Murray. "What is complexity?." Complexity and industrial clusters. Physica-Verlag HD,

2002. 13-24.
[5] Hawthorne, John. "The case for closure." Contemporary debates in epistemology (2005): 26-43.

[6] D’MELLO, SIDNEY K., and Arthur C. Graesser. "Confusion." International handbook of emotions

in education. Routledge, 2014. 299-320.

[7] Kendall, David George, et al. Shape and shape theory. Vol. 500. John Wiley & Sons, 2009.

[8] Osada, Robert, et al. "Shape distributions." ACM Transactions on Graphics (TOG) 21.4 (2002): 807-

832.

[9] Sloan, Peter-Pike J., Charles F. Rose III, and Michael F. Cohen. "Shape by example." Proceedings of

the 2001 symposium on Interactive 3D graphics. 2001.

[10] Hengl, Tomislav. "Finding the right pixel size." Computers & geosciences 32.9 (2006): 1283-1298.

[11] Chen, Jin, et al. "A simple and effective method for filling gaps in Landsat ETM+ SLC-off images."

Remote sensing of environment 115.4 (2011): 1053-1064.
[12] Burlinson, David, Kalpathi Subramanian, and Paula Goolkasian. "Open vs. closed shapes: New

perceptual categories?." IEEE transactions on visualization and computer graphics 24.1 (2017): 574-

583.

[13] Pathegama, Mahinda, and Özdemir Göl. "Edge-end pixel extraction for edge-based image

segmentation." ICSP, 2004.

58 Computer Science & Information Technology (CS & IT)

[14] Süsstrunk, Sabine, Robert Buckley, and Steve Swen. "Standard RGB color spaces." Color and

Imaging Conference. Vol. 1999. No. 1. Society for Imaging Science and Technology, 1999.

[15] Bellman, Richard. "Dynamic programming." Science 153.3731 (1966): 34-37.

© 2022 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://airccse.org/

	Keywords

