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ABSTRACT 
 

Code obfuscation increases the difficulty of understanding programs, improves software 

security, and, in particular, OLLVM offers the possibility of cross-platform code obfuscation. 

For OLLVM, we provide enhanced solutions for control flow obfuscation and identifier 
obfuscation. First, we propose the nested switch obfuscation scheme and the in-degree 

obfuscation for bogus blocks in the control flow obfuscation. Secondly, the identifier 

obfuscation scheme is presented in the LLVM layer to fill the gap of OLLVM at this level. 

Finally, we experimentally verify the enhancement effect of the control flow method and the 

identifier obfuscation effect and prove that the program's security can be further improved with 

less overhead, providing higher software security. 
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1. INTRODUCTION 
 

Software protection [1-3] has become more attention-grabbing with the increased awareness of 

privacy and copyright, especially when the physical and virtual economies are becoming more 

and more integrated. According to the medium of intervention, existing software protection can 
be divided into hardware-level [4-6] and software-level [7-9] protection. The former can 

theoretically provide more robust protection because it can provide a relatively controlled 

environment. The latter has advantages in cost and applicability compared to the former. 

Especially with the development of IoT, the security level needed in different scenarios, and the 
availability of limited computing resources, software-level protection is unavoidable. Considering 

the broad applicability and objective security obtained for low cost, we focus on software-level 

protection. Software-level protection can be divided into protection before being damaged and 
forensics after being damaged, such as protecting core technologies through code obfuscation 

[10, 11], encryption and decryption [12, 13], software watermarking [7, 14], or software 

birthmark [15, 16] for effective tracking of software copyright. 
 

Moreover, from the attacker's perspective, it can be divided into anti-static debugging and anti-

dynamic debugging. Code obfuscation is effective against static analysis, and virtual machine 

protection [17, 18] is effective against dynamic analysis. However, virtual machine protection's 
huge overhead in time and space does not allow for a wide range of landing in the actual 

production environment. Furthermore, the low overhead of code obfuscation provides 

considerable security, making code obfuscation continue to occupy an essential role among the 
many software protection techniques available today. As for code obfuscation, it can be further 

divided from the hierarchy of roles into source code level [19], intermediate code [20], and binary 

file [21] obfuscation. Because the intermediate representation is easier to adapt to new front and 
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back ends and easier to carry out optimization work, we propose the code obfuscation scheme on 
LLVM intermediate representation (LLVM IR). 

 

OLLVM (Obfuscator-LLVM) [20] has implemented a mature and effective obfuscation system 

on LLVM IR, but currently, OLLVM has some problems as follows. First, OLLVM is based on 
LLVM 4.0, and as of January 2022, LLVM has released LLVM13. Coupled with the large API 

gap between different versions of LLVM, OLLVM cannot use some new API features. The 

adaptation to the newly emerging front-end and back-end may also be problematic. Although 
different open-source communities [22, 23] have implemented OLLVM migration to new LLVM 

versions, it is inescapable that existing OLLVM obfuscation techniques are developed based on 

previous LLVM versions. Furthermore, OLLVM, as a mature obfuscation framework, has had 
different anti-obfuscation methods implemented for it, and the security that OLLVM itself can 

provide is questionable. Finally, the existing OLLVM provides obfuscation features including, 

bogus control flow and flattening at the control flow level and instruction substitution at the 

instruction level, but does not provide identifier [24] related obfuscation methods. Therefore, this 
paper implements the iOLLVM system to provide new obfuscation methods at the control flow 

and identifier levels to address the issues mentioned here. 

 
Following are the main contributions of this paper: 

1. The paper proposes enhanced flattening processing and adds in-degree obfuscation for 

OLLVM control flow obfuscation to resistance to existing scripting attacks;  
2. The paper also proposes four algorithms in identifier obfuscation to compensate for the lack of 

OLLVM. 

 

The rest of the paper is organized as follows: Section 2 introduces the overview of the iOLLVM. 
Section 3 describes the details of identifier algorithms, and the experiment results are presented in 

section 4. Finally, in section 5, we end up with a conclusion and a description of future work. 
 

2. THE COMPONENTS OF IOLLVM 
 

Considering the stability of the new version of LLVM API, the prototype iOLLVM obfuscation 
system was implemented on LLVM 10, giving effect enhancements at the control flow 

obfuscation level and the identifier obfuscation level, respectively. The general framework 

diagram is shown in Figure 1. 
 

Based on the existing OLLVM, iOLLVM proposes an enhanced obfuscation implementation at 

the control flow level and complements the obfuscation method at the identifier level. The overall 

flow of the obfuscation system is as follows: first, the source code is transformed into LLVM IR 
code by the front-end tools provided by LLVM, such as clang, flang, denoted as xclang in Figure 

1. Then, the LLVM IR code is obfuscated by the new modules provided by iOLLVM: the control 

flow module and the identifier module. They can be called and used separately or nested. Finally, 
the obfuscated IR files generate platform or environment-ready executables by specific back-end 

programs. 
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Figure 1. iOLLVM general framework diagram 

 

2.1. Control Flow Obfuscation 
 
According to Collberg's classification of code obfuscation [10], control flow obfuscation intends 

to effectively hide the program's control flow and make the attacker's path analysis more difficult. 

OLLVM provides control flow obfuscation, including bogus control flow and flattening 
processing [20]. However, using some IDA Python script files [25] to target the features of 

OLLVM obfuscation processing can effectively remove the added flattened obfuscated code. In 

the meantime, if a cracker can infer that control flow obfuscation has been performed based on 

the control flow graph processed by the automated tool, this itself is also valuable information for 
further analysis of the program. Moreover, at the same time, the bogus control flow design 

currently provided does not take into account the attack of the degree of entry analysis. 

Therefore, this paper proposes a counter-common sense nested switch flattening process and an 
in-degree obfuscation to prevent incidence analysis. 

 

2.1.1. Nested Switch 
 

The original purpose of flattening was to disrupt the program's execution flow. In LLVM IR, the 

basic blocks that initially had an upper and lower hierarchy are transformed into the same 

hierarchical relationship. Considered the convenience and the cross-platform nature of the 
program, the general implementation uses the dispatcher architecture of the switch, and the 

processed program has a prominent feature while bringing security, namely the presence of the 

loop structure. The switch structure distributes the basic blocks. From the point of view of hiding 
the flattened processing and resisting script analysis, the switch structure is created again in the 

flattened generated switch structure, and a new switch is created in each basic block 

corresponding to the case. 
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Figure 2. Nested switch structure 

 
As shown in Figure 2, the part in the imaginary coil is noted as procedure F: the general 

flattening operation. The new switch structure is created inside the basic block, noted as 

procedure N. The procedure for adding boolean or numerical operations against variable v is 

noted as T. The steps of the nested switch are as follows. 
 

Step 1: Perform procedure F on input program (or LLVM IR file) P0 to realize the flattening 

operation; the obfuscated program is noted as P1. 
Step 2: Iterate through the basic blocks in P1 at the same level, and record them as the setBlocks, 

and for each basic block inside, process N to achieve the nesting of switch structure, and the 

obfuscated program is recorded as P2. 

Step 3: For the switch generated at the P1 level, the jumping variable is recorded as the case-
outer; for the switch generated at the P2 level, the jumping variable is recorded as the case-inner. 

The procedure T is added to the basic block corresponding to the case-inner, but only one block 

is left unprocessed to ensure normal program execution. The obfuscated program is denoted as 
P3. 

 

P3 is the program after nested switch processing. The process of creating the nested switch 
structure requires attention to the creation of the basic block (or called the bogus block) and the 

setting of the jumping variables (case-outer, case-inner) used by the internal and external 

switches for distribution. 

 
1. Because it involves the construction of a new switch structure, corresponding to the creation 

of new basic blocks, to enhance the similarity with the native program, drawing on the idea 

of bogus control flow, based on the program's native basic blocks to transform. Further, the 
number of bogus blocks is created because different space overhead scenarios are expected 

to be different. The default value is the number of cases of the outer switch while providing 

external parameters specified at the time of use. 
2. Because the internal and external switch structure is involved, to strengthen the confusion of 

the internal switch structure and ensure the semantics of the program, the external case 

values are processed in the internal switch structure. However, there will always be a basic 

block in the internal randomly generated case that is not processed for the external case. All 
other basic blocks corresponding to the same level of cases add random boolean or 

arithmetic operations. This results in a combination of obfuscation processing on data 

dependencies. 
 

 

 

A B C

while

End while

A B C

while

switch switch switch

End while
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2.1.2. In-Degree obfuscation 
 

For the native bogus control flow, it is possible to protect the program by copying and 

transforming the native basic blocks to construct new bogus blocks embedded in the program 

through opaque predicates [26]. Generally, in practice, to reduce the space overhead, the 
obfuscation algorithm only protects against the critical code in the program. So if the attacker can 

recognize that the bogus control flow protects the program, there is a risk of identifying the bogus 

blocks. Plus, to hide the difference between the real block and the bogus block, a path to the real 
block can generally be constructed in the bogus block, so there will be: in general, the real block 

in-degree will be greater than that of the bogus block. Moreover, this can play a more significant 

role in excluding bogus blocks. Therefore, to resist the attacker's degree of entry analysis, the 
degree of entry of the bogus block is obfuscated. 

  

 
 

Figure 3. In-degree obfuscation 

 

Figure 3(a) shows the sample program with a direct jumping relationship between the basic 

blocks A, B1, and C. Figure 3(b) shows the schematic diagram after adding the bogus control 
flow processing. Figure 3(c) shows the schematic diagram after adding the in-degree obfuscation 

processing, noting that B1 points to the edge of B2. 

 

The fundamental point of entry analysis is to make bogus blocks have more entries than the real 
block by opaque predicates, i.e., adding opaque predicates to the real block to realize the addition 

of false jump relations. However, suppose there are already jump relations in the original real 

block without splitting the real block. In that case, the logic can be combined with the idea of 
flattening, transforming different branches into switch-case jump forms, and adding opaque 

predicates to the internal cases. 

 

2.2. Identifier Obfuscation 
 

During the reverse analysis of the program, the strings and identifiers exposed by the program 
will play a significant role in guiding the attacker to the specific location in the program based on 

the strings. They may even expose some core algorithm design and other information about the 

program. Therefore, it is necessary to hide the string and identifier information in the program 
effectively. Although OLLVM does not provide obfuscation protection for strings, both 

Armariris [27] and Hikari [28] give specific open-source schemes to protect certain programs. 

However, no explicit protection method is given for identifiers. Although the identifier 

information in the program can be partially removed using strip against the program, it is 
beneficial but not harmful to provide the obfuscation of identifiers in terms of the completeness 

of security and the uncertainty of the usage scenario. Therefore, this paper adds to this aspect by 
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providing four obfuscation algorithms for identifiers in LLVM IR: Random, Directory, Illegal, 
and Overload. 
 

3. ALGORITHMS FOR IDENTIFIER OBFUSCATION 
 

This paper proposed four algorithms to provide software security, namely, Random, Directory, 

Illegal, and Overload. The first three belong to the general category of substitution algorithms, 
while the fourth is a separate algorithm category. 

 

Algorithm 1 Substitution algorithm 

1: init parameters that algorithm needs  

2: Read LLVM IR file 

3: get all custom identifiers noted as setNames 

4: select a algorithm from Set(Random, Directory, Illegal) 

5: for item in setNames: 

6:     change item in global 

7: end 

 

Among them, the replacement data sources for Directory and Illegal need to be initialized 

beforehand, and the replacement data sources for Random can be generated beforehand or 

dynamically at runtime. 
 

Algorithm 2 Overload algorithm 

1: Read LLVM IR file  

2: get all custom identifiers noted as setNames 

3: for item in setNames: 

4:     generate a new function name item with random parameters, noted as newname 

5:     if(newname is legal) 

6:         added it to LLVM module 

7: end 

 

The critical point of the overload algorithm is that some languages support the overloading 
feature internally. When designing, we need to judge whether the overloading feature is satisfied 

based on the name mangling of the parameter list setting information. Next, the algorithm details 

are explained as follows. 
 

Random algorithm: First, obtain the identifiers in the program. Randomly generate 11 identifiers 

containing letters, numbers, and special symbols and conform to the naming convention. Then, 

perform the global replacement for each identifier. 
 

Directory algorithm: Unlike the idea of randomly generating identifiers for replacement, the 

purpose of the obfuscation dictionary is to use standard identifiers to replace identifiers in the 
program. Standard identifiers can play a preemptive role in obfuscation, unlike meaningless 

random characters. 

 

Illegal algorithm: There will be reserved words in the program design, and it is not possible to 
use reserved words to name the identifiers, but since all characters are coded at the code set, 

characters of different codes set may be highly similar in appearance, so the Greek letters are 

used to replace the English letters thus playing the role of replacement confusion. 
 

Overload algorithm: To further enhance the obfuscation of the program, the program is processed 

using the overload idea. Also, to avoid the name-mangling mechanism of the program itself, the 
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parameter list information is kept when obtaining the identifier information. Then the overloaded 
identifier of the virtual parameter list is constructed. 

 

Because the idea of the first three is the idea of substitution, the fourth is the idea of addition. 

Therefore, in the user use, provide the default way, from the first three randomly choose one, and 
then with the fourth to reuse the previous confusing characters as much as possible. 

 

4. EXPERIMENTS 
 
We carry out three experiments: a) control flows obfuscation versus OLLVM; b) identifier 

obfuscation effects; c) time and space overhead. 

 

Experiment environment: Ubuntu18.04; Inter(R) Core(TM) i5-4210U; 4G Memory; LLVM10. 
 

Experimental data is selected from the algorithm library [29] implemented in c language on 

GitHub. In order to facilitate the automatic execution of the script, the part of the algorithm that 
involves input is converted from user input to fixed-value input. Finally, only 123 source files are 

kept. 

 

4.1. Experiment 1- Control Flows Obfuscation Versus OLLVM 
 

Function kthSmallest in kth_smallest.cpp in the test set is used to illustrate the effect of 
obfuscation. First, use clang to process the source program to get the corresponding LLVM 

intermediate code bc file; then use the so file generated by the obfuscation system to obfuscate 

the specified file. Here we can further specify the function to be obfuscated. The sample below 
specifies the function kthSmallest for processing. Because C++ has a name mangling mechanism 

compiled into intermediate code, so the function name seen in the intermediate code layer is 

_Z11kthSmallestP8TreeNodei. But the user only needs to provide the function's name in the 

source code when specifying it. Finally, Graphviz is used to generate the graph summary as 
follows. 

 

4.1.1. Nested Switch 
 

The control flow diagram of the function before obfuscation is shown in Figure 4, the control 

flow diagram after flattening with OLLVM is shown in Figure 5, and the control flow diagram 
after nest switch processing is shown in Figure 6. For ease of display, only show the logical 

relationships of the basic blocks while the instructions in Figure 5 and Figure 6 are removed. 
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Figure 4. KthSmalles: origin cfg 

 

As shown in Figure 5, the original basic block relationship between the upper and lower levels is 

transformed into the same hierarchy level, with efficient scheduling through the switch. The 
attacker can infer flattened processing based on the current control flow graph and then use the 

existing attack script to approximate the program. 

 

 
 

Figure 5. KthSmalles: ollvm flattening cfg 

CFG for '_Z11kthSmallestP8TreeNodei' function

%2:
%3 = alloca i32, align 4
%4 = alloca %struct.TreeNode*, align 8
%5 = alloca i32, align 4
%6 = alloca i32, align 4
store %struct.TreeNode* %0, %struct.TreeNode** %4, align 8
store i32 %1, i32* %5, align 4
%7 = load %struct.TreeNode*, %struct.TreeNode** %4, align 8
%8 = getelementptr inbounds %struct.TreeNode, %struct.TreeNode* %7, i32 0,
... i32 1
%9 = load %struct.TreeNode*, %struct.TreeNode** %8, align 8
%10 = call i32 @_Z10countNodesP8TreeNode(%struct.TreeNode* %9)
store i32 %10, i32* %6, align 4
%11 = load i32, i32* %5, align 4
%12 = load i32, i32* %6, align 4
%13 = icmp sle i32 %11, %12
br i1 %13, label %14, label %25

T F

%14:
14:
%15 = load %struct.TreeNode*, %struct.TreeNode** %4, align 8
%16 = getelementptr inbounds %struct.TreeNode, %struct.TreeNode* %15, i32 0,
... i32 1
%17 = load %struct.TreeNode*, %struct.TreeNode** %16, align 8
%18 = icmp ne %struct.TreeNode* %17, null
br i1 %18, label %19, label %25

T F

%25:
25:
%26 = load i32, i32* %5, align 4
%27 = load i32, i32* %6, align 4
%28 = add nsw i32 %27, 1
%29 = icmp sgt i32 %26, %28
br i1 %29, label %30, label %44

T F

%19:
19:
%20 = load %struct.TreeNode*, %struct.TreeNode** %4, align 8
%21 = getelementptr inbounds %struct.TreeNode, %struct.TreeNode* %20, i32 0,
... i32 1
%22 = load %struct.TreeNode*, %struct.TreeNode** %21, align 8
%23 = load i32, i32* %5, align 4
%24 = call i32 @_Z11kthSmallestP8TreeNodei(%struct.TreeNode* %22, i32 %23)
store i32 %24, i32* %3, align 4
br label %49

%30:
30:
%31 = load %struct.TreeNode*, %struct.TreeNode** %4, align 8
%32 = getelementptr inbounds %struct.TreeNode, %struct.TreeNode* %31, i32 0,
... i32 2
%33 = load %struct.TreeNode*, %struct.TreeNode** %32, align 8
%34 = icmp ne %struct.TreeNode* %33, null
br i1 %34, label %35, label %44

T F

%44:
44:
br label %45

%49:
49:
%50 = load i32, i32* %3, align 4
ret i32 %50

%35:
35:
%36 = load %struct.TreeNode*, %struct.TreeNode** %4, align 8
%37 = getelementptr inbounds %struct.TreeNode, %struct.TreeNode* %36, i32 0,
... i32 2
%38 = load %struct.TreeNode*, %struct.TreeNode** %37, align 8
%39 = load i32, i32* %5, align 4
%40 = load i32, i32* %6, align 4
%41 = sub nsw i32 %39, %40
%42 = sub nsw i32 %41, 1
%43 = call i32 @_Z11kthSmallestP8TreeNodei(%struct.TreeNode* %38, i32 %42)
store i32 %43, i32* %3, align 4
br label %49

%45:
45:
%46 = load %struct.TreeNode*, %struct.TreeNode** %4, align 8
%47 = getelementptr inbounds %struct.TreeNode, %struct.TreeNode* %46, i32 0,
... i32 0
%48 = load i32, i32* %47, align 8
store i32 %48, i32* %3, align 4
br label %49

CFG for ' _Z11kthSmal lestP8TreeNodei '  func tion

%2:

loopEntry :

def -1901072919 -1110461734 469931048 599132553 -643894429 1454655130 947339329 1938189623 1858629060

sw itc hDefaul t:
br labe l  %loopEnd

fi rst:

%15:
%21:

%27:
%33:

%39:

%48:

%49:

%53:

loopEnd:
br label  %loopEntry
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Figure 6. KthSmalles: nested switch flattening cfg 
 

As shown in Figures 4, 5, and 6, nested switches can make an order of magnitude increase in 

complexity. The nested structure is different from the existing flattening processing. Even if an 

attacker uses an existing attack script for processing, it can effectively resist the existing attack 
script because the characteristics of the obfuscation algorithm are different. In addition, for 

control flow obfuscation, the similarity of basic blocks (BB), jump instructions(JI), and 

functions(F) after obfuscation and the similarity of programs(P) before and after obfuscation can 
be used as indicators to measure the effectiveness of obfuscation. Therefore, BinDiff [30] counts 

the above four indicators in the test set. Table 1 shows the statistics of the metrics after OLLVM 

obfuscation, and Table 2 shows the statistics of the metrics after obfuscation using nested 

switches and in degrees. 
 

Table 1. Similarity of OLLVM obfuscated files to source files 
 

OLLVM flatten Average value Minimum value Maximum value Standard deviation 

similarity of BB 68.33 40.2 100 12.93 

similarity of JI 36.55 10.9 100 21.4 

similarity of F 76.72 55 92.6 8.79 

similarity of P 0.74 0.56 0.99 0.1 
 

Table 2. Similarity of nested switch, in-degree obfuscation files to source files 
 

Nested switch, 
in-degree 

Average value Minimum value Maximum value Standard deviation 

similarity of BB 29.09 6.7 100 21.01 

similarity of JI 14.19 1.6 100 21 

similarity of F 76.67 55 92.6 8.79 

similarity of P 0.5 0.34 0.99 0.15 

 

In terms of jump instructions, methods in this paper are on average 61% lower than OLLVM and 

57% lower in terms of similarity of basic blocks. The reason is twofold: firstly, this method 
constructs more basic blocks and jump instructions, which significantly reduces the similarity 

with the native program and increases the confusion; secondly, the jump instructions in some of 

the original basic blocks are changed, so the decrease in the similarity of jump instructions is 
more prominent. 

 

There is essentially no difference in the number of functions considering the effect of errors 

generated by BinDiff decompilation. The similarity between the obfuscated program and the 
original program, the method in this paper decreases by 32% compared to OLVM. Meanwhile, 

the maximum values of the four metrics, OLLVM, and this paper's method agree, i.e., for some 

particular files, the effect of the control flow obfuscation method proposed in this paper is 
consistent with OLLVM. However, the minimum values and standard deviations show that this 

paper's method performs better than OLLVM on the applicable files. It should be added that the 

similarity is one of the indicators of the obfuscation effect. However, suppose we only increase 
the number of basic blocks and jump instructions. In that case, such processing will not play a 

corresponding resistance to the substantial reverse cracking. However, this paper combines the 
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construction of basic blocks and jump instructions with the control flow and data flow of the 
original program itself, so the obfuscation effect is guaranteed to a certain extent. 

 

4.1.2. Indirect Jump 

 
The control flow diagram of the function before obfuscation is shown in Figure 4, and the 

function after obfuscation using the proposed obfuscation process for in-degree analysis is shown 

in the following figure, Figure 7. The image has been simplified for easy display. 
  

 
 

Figure 7. In-degree obfuscation effect 

 

The grey blocks in Figure 7 are newly bogus, while white blocks are original blocks in the origin 

program. It can be seen that by introducing opaque predicates, the degree of entry of the bogus 

block is significantly higher than that of the actual block while ensuring the original semantics of 
the program, thus avoiding the threat of entry analysis. Limited to the constructional 

characteristics of the algorithm itself, it will have higher security when used simultaneously with 

other control flow methods. 
 

4.2. Experiment 2- Identifier Obfuscation Effects 
 
After using the identifier obfuscation algorithm for the 123 files in the test set, the function 

identifier replacement rate is 65.2% (4875/7515). In order to ensure the standard semantics of the 

program and avoid modifications to third-party library functions, only user-defined function 

names are selected here. It should be noted that for large projects in terms of identifier 
replacement, we can consider using wllvm [31] to link the project code into a single bc file and 

then obfuscate the identifiers for the bc file to avoid errors caused by symbolic links. 

 
 

 

 
 

CFG for '_Z11 kthSm allestP8TreeN odei' function

T F

%15:

T F

%2:

%26:

T F

%20: %31:

T F

%45:

T F

%66:

%36:

%68:

T F

%79:

%54:

T F

%84:
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4.3. Experiment 3-File Size and Performance Penalty of Protected Program 
 

Table 3. Time and space overhead of obfuscation methods 

 

Obfuscation Method Time overhead Space overhead 

OLLVM Flattening 1.01 1.05 

Identifier obfuscation 0.98 1.00 

Nested switch, in-degree 1.02 1.59 

 

The space overhead is measured by comparing the increase of the file size after obfuscation with 
the increase in file size before obfuscation. As for time overhead, we use a script to count the 

time of multiple file executions before and after obfuscation. Furthermore, taking the average 

value as a benchmark for comparison. From Table 3, we can see that the control flow 

enhancement scheme proposed in this paper has a slight increase in time and space compared to 
OLLVM. In particular, considering that the program may run slightly differently in time under 

different execution states, the existing test sets are all small volume algorithm files, so they are 

more sensitive to execution time. Therefore, it can be considered that the identifier obfuscation 
has almost no overhead impact in terms of time and space. 

 

It should also be noted that in large projects, as the volume of the protected code increases, the 
corresponding time and space overhead also increases, and the two should be linear. When using, 

different parameter values should be set in conjunction with specific usage scenarios to meet the 

security and performance requirements of the scenario. 

 

5. CONCLUSIONS 
 

This paper addresses the lack of strength of OLLVM obfuscation in control flow protection and 

the gap in identifier obfuscation by proposing two broad categories of enhancements. In control 
flow obfuscation, first, adding nested switches at the control flow level and adding the switch 

structure again in the flattened code, thus increasing the complexity of the code while resisting 

existing scripting attacks; second, proposing an in-degree treatment for bogus blocks to increase 

the confusion of bogus blocks further. Further, at the level of identifier obfuscation, four 
algorithms are proposed and bridge the gap of OLLVM in identifier obfuscation. By comparing 

with OLLVM, this paper can significantly improve the original control flow complexity in 

obfuscation effect; replace 65.2% of custom identifiers while guaranteeing program functionality. 
Furthermore, the time overhead from obfuscation is almost negligible. The space overhead is at 

1.5 times. 

 
In future work, we will pay attention to generating more secure opaque predicates and are not 

limited to the number-theoretic model. Meanwhile, the practical effectiveness of existing 

obfuscation algorithms in large projects remains tested. Therefore, we will focus on how to 

provide more accessible use of the obfuscation framework model in large projects. 
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