
David C. Wyld et al. (Eds): AIAP, IT, MoWiN, CCSEIT, CNSA, ICBB - 2022

pp. 105-117, 2022. CS & IT - CSCP 2022 DOI: 10.5121/csit.2022.120409

IOLLVM: ENHANCED VERSION OF OLLVM

Chengyang Li Tianbo Huang, Xiarun Chen,

Chenglin Xie and Weiping Wen

School of Software and Microelectronics, Peking University, Beijing, China

ABSTRACT

Code obfuscation increases the difficulty of understanding programs, improves software

security, and, in particular, OLLVM offers the possibility of cross-platform code obfuscation.

For OLLVM, we provide enhanced solutions for control flow obfuscation and identifier
obfuscation. First, we propose the nested switch obfuscation scheme and the in-degree

obfuscation for bogus blocks in the control flow obfuscation. Secondly, the identifier

obfuscation scheme is presented in the LLVM layer to fill the gap of OLLVM at this level.

Finally, we experimentally verify the enhancement effect of the control flow method and the

identifier obfuscation effect and prove that the program's security can be further improved with

less overhead, providing higher software security.

KEYWORDS

Software Protection, Code Obfuscation, Control Flow Obfuscation, Identifier Obfuscation,

LLVM.

1. INTRODUCTION

Software protection [1-3] has become more attention-grabbing with the increased awareness of

privacy and copyright, especially when the physical and virtual economies are becoming more

and more integrated. According to the medium of intervention, existing software protection can
be divided into hardware-level [4-6] and software-level [7-9] protection. The former can

theoretically provide more robust protection because it can provide a relatively controlled

environment. The latter has advantages in cost and applicability compared to the former.

Especially with the development of IoT, the security level needed in different scenarios, and the
availability of limited computing resources, software-level protection is unavoidable. Considering

the broad applicability and objective security obtained for low cost, we focus on software-level

protection. Software-level protection can be divided into protection before being damaged and
forensics after being damaged, such as protecting core technologies through code obfuscation

[10, 11], encryption and decryption [12, 13], software watermarking [7, 14], or software

birthmark [15, 16] for effective tracking of software copyright.

Moreover, from the attacker's perspective, it can be divided into anti-static debugging and anti-

dynamic debugging. Code obfuscation is effective against static analysis, and virtual machine

protection [17, 18] is effective against dynamic analysis. However, virtual machine protection's
huge overhead in time and space does not allow for a wide range of landing in the actual

production environment. Furthermore, the low overhead of code obfuscation provides

considerable security, making code obfuscation continue to occupy an essential role among the
many software protection techniques available today. As for code obfuscation, it can be further

divided from the hierarchy of roles into source code level [19], intermediate code [20], and binary

file [21] obfuscation. Because the intermediate representation is easier to adapt to new front and

http://airccse.org/cscp.html
http://airccse.org/csit/V12N04.html
https://doi.org/10.5121/csit.2022.120409

106 Computer Science & Information Technology (CS & IT)

back ends and easier to carry out optimization work, we propose the code obfuscation scheme on
LLVM intermediate representation (LLVM IR).

OLLVM (Obfuscator-LLVM) [20] has implemented a mature and effective obfuscation system

on LLVM IR, but currently, OLLVM has some problems as follows. First, OLLVM is based on
LLVM 4.0, and as of January 2022, LLVM has released LLVM13. Coupled with the large API

gap between different versions of LLVM, OLLVM cannot use some new API features. The

adaptation to the newly emerging front-end and back-end may also be problematic. Although
different open-source communities [22, 23] have implemented OLLVM migration to new LLVM

versions, it is inescapable that existing OLLVM obfuscation techniques are developed based on

previous LLVM versions. Furthermore, OLLVM, as a mature obfuscation framework, has had
different anti-obfuscation methods implemented for it, and the security that OLLVM itself can

provide is questionable. Finally, the existing OLLVM provides obfuscation features including,

bogus control flow and flattening at the control flow level and instruction substitution at the

instruction level, but does not provide identifier [24] related obfuscation methods. Therefore, this
paper implements the iOLLVM system to provide new obfuscation methods at the control flow

and identifier levels to address the issues mentioned here.

Following are the main contributions of this paper:

1. The paper proposes enhanced flattening processing and adds in-degree obfuscation for

OLLVM control flow obfuscation to resistance to existing scripting attacks;
2. The paper also proposes four algorithms in identifier obfuscation to compensate for the lack of

OLLVM.

The rest of the paper is organized as follows: Section 2 introduces the overview of the iOLLVM.
Section 3 describes the details of identifier algorithms, and the experiment results are presented in

section 4. Finally, in section 5, we end up with a conclusion and a description of future work.

2. THE COMPONENTS OF IOLLVM

Considering the stability of the new version of LLVM API, the prototype iOLLVM obfuscation
system was implemented on LLVM 10, giving effect enhancements at the control flow

obfuscation level and the identifier obfuscation level, respectively. The general framework

diagram is shown in Figure 1.

Based on the existing OLLVM, iOLLVM proposes an enhanced obfuscation implementation at

the control flow level and complements the obfuscation method at the identifier level. The overall

flow of the obfuscation system is as follows: first, the source code is transformed into LLVM IR
code by the front-end tools provided by LLVM, such as clang, flang, denoted as xclang in Figure

1. Then, the LLVM IR code is obfuscated by the new modules provided by iOLLVM: the control

flow module and the identifier module. They can be called and used separately or nested. Finally,
the obfuscated IR files generate platform or environment-ready executables by specific back-end

programs.

Computer Science & Information Technology (CS & IT) 107

Figure 1. iOLLVM general framework diagram

2.1. Control Flow Obfuscation

According to Collberg's classification of code obfuscation [10], control flow obfuscation intends

to effectively hide the program's control flow and make the attacker's path analysis more difficult.

OLLVM provides control flow obfuscation, including bogus control flow and flattening
processing [20]. However, using some IDA Python script files [25] to target the features of

OLLVM obfuscation processing can effectively remove the added flattened obfuscated code. In

the meantime, if a cracker can infer that control flow obfuscation has been performed based on

the control flow graph processed by the automated tool, this itself is also valuable information for
further analysis of the program. Moreover, at the same time, the bogus control flow design

currently provided does not take into account the attack of the degree of entry analysis.

Therefore, this paper proposes a counter-common sense nested switch flattening process and an
in-degree obfuscation to prevent incidence analysis.

2.1.1. Nested Switch

The original purpose of flattening was to disrupt the program's execution flow. In LLVM IR, the

basic blocks that initially had an upper and lower hierarchy are transformed into the same

hierarchical relationship. Considered the convenience and the cross-platform nature of the
program, the general implementation uses the dispatcher architecture of the switch, and the

processed program has a prominent feature while bringing security, namely the presence of the

loop structure. The switch structure distributes the basic blocks. From the point of view of hiding
the flattened processing and resisting script analysis, the switch structure is created again in the

flattened generated switch structure, and a new switch is created in each basic block

corresponding to the case.

Source code

switch in-degree

random

Control flow module

Identifier module

directory illegal overload

iOLLVM

LLVM IR

code

xlang

Executable

file
back-end

108 Computer Science & Information Technology (CS & IT)

Figure 2. Nested switch structure

As shown in Figure 2, the part in the imaginary coil is noted as procedure F: the general

flattening operation. The new switch structure is created inside the basic block, noted as

procedure N. The procedure for adding boolean or numerical operations against variable v is

noted as T. The steps of the nested switch are as follows.

Step 1: Perform procedure F on input program (or LLVM IR file) P0 to realize the flattening

operation; the obfuscated program is noted as P1.
Step 2: Iterate through the basic blocks in P1 at the same level, and record them as the setBlocks,

and for each basic block inside, process N to achieve the nesting of switch structure, and the

obfuscated program is recorded as P2.

Step 3: For the switch generated at the P1 level, the jumping variable is recorded as the case-
outer; for the switch generated at the P2 level, the jumping variable is recorded as the case-inner.

The procedure T is added to the basic block corresponding to the case-inner, but only one block

is left unprocessed to ensure normal program execution. The obfuscated program is denoted as
P3.

P3 is the program after nested switch processing. The process of creating the nested switch
structure requires attention to the creation of the basic block (or called the bogus block) and the

setting of the jumping variables (case-outer, case-inner) used by the internal and external

switches for distribution.

1. Because it involves the construction of a new switch structure, corresponding to the creation

of new basic blocks, to enhance the similarity with the native program, drawing on the idea

of bogus control flow, based on the program's native basic blocks to transform. Further, the
number of bogus blocks is created because different space overhead scenarios are expected

to be different. The default value is the number of cases of the outer switch while providing

external parameters specified at the time of use.
2. Because the internal and external switch structure is involved, to strengthen the confusion of

the internal switch structure and ensure the semantics of the program, the external case

values are processed in the internal switch structure. However, there will always be a basic

block in the internal randomly generated case that is not processed for the external case. All
other basic blocks corresponding to the same level of cases add random boolean or

arithmetic operations. This results in a combination of obfuscation processing on data

dependencies.

A B C

while

End while

A B C

while

switch switch switch

End while

Computer Science & Information Technology (CS & IT) 109

2.1.2. In-Degree obfuscation

For the native bogus control flow, it is possible to protect the program by copying and

transforming the native basic blocks to construct new bogus blocks embedded in the program

through opaque predicates [26]. Generally, in practice, to reduce the space overhead, the
obfuscation algorithm only protects against the critical code in the program. So if the attacker can

recognize that the bogus control flow protects the program, there is a risk of identifying the bogus

blocks. Plus, to hide the difference between the real block and the bogus block, a path to the real
block can generally be constructed in the bogus block, so there will be: in general, the real block

in-degree will be greater than that of the bogus block. Moreover, this can play a more significant

role in excluding bogus blocks. Therefore, to resist the attacker's degree of entry analysis, the
degree of entry of the bogus block is obfuscated.

Figure 3. In-degree obfuscation

Figure 3(a) shows the sample program with a direct jumping relationship between the basic

blocks A, B1, and C. Figure 3(b) shows the schematic diagram after adding the bogus control
flow processing. Figure 3(c) shows the schematic diagram after adding the in-degree obfuscation

processing, noting that B1 points to the edge of B2.

The fundamental point of entry analysis is to make bogus blocks have more entries than the real
block by opaque predicates, i.e., adding opaque predicates to the real block to realize the addition

of false jump relations. However, suppose there are already jump relations in the original real

block without splitting the real block. In that case, the logic can be combined with the idea of
flattening, transforming different branches into switch-case jump forms, and adding opaque

predicates to the internal cases.

2.2. Identifier Obfuscation

During the reverse analysis of the program, the strings and identifiers exposed by the program
will play a significant role in guiding the attacker to the specific location in the program based on

the strings. They may even expose some core algorithm design and other information about the

program. Therefore, it is necessary to hide the string and identifier information in the program
effectively. Although OLLVM does not provide obfuscation protection for strings, both

Armariris [27] and Hikari [28] give specific open-source schemes to protect certain programs.

However, no explicit protection method is given for identifiers. Although the identifier

information in the program can be partially removed using strip against the program, it is
beneficial but not harmful to provide the obfuscation of identifiers in terms of the completeness

of security and the uncertainty of the usage scenario. Therefore, this paper adds to this aspect by

A

B1

C

A

B1

C

B2

(a)original cfg (b)bogus control flow cfg

A

B1

C

B2

(b)in-degree obfuscation cfg

110 Computer Science & Information Technology (CS & IT)

providing four obfuscation algorithms for identifiers in LLVM IR: Random, Directory, Illegal,
and Overload.

3. ALGORITHMS FOR IDENTIFIER OBFUSCATION

This paper proposed four algorithms to provide software security, namely, Random, Directory,

Illegal, and Overload. The first three belong to the general category of substitution algorithms,
while the fourth is a separate algorithm category.

Algorithm 1 Substitution algorithm

1: init parameters that algorithm needs

2: Read LLVM IR file

3: get all custom identifiers noted as setNames

4: select a algorithm from Set(Random, Directory, Illegal)

5: for item in setNames:

6: change item in global

7: end

Among them, the replacement data sources for Directory and Illegal need to be initialized

beforehand, and the replacement data sources for Random can be generated beforehand or

dynamically at runtime.

Algorithm 2 Overload algorithm

1: Read LLVM IR file

2: get all custom identifiers noted as setNames

3: for item in setNames:

4: generate a new function name item with random parameters, noted as newname

5: if(newname is legal)

6: added it to LLVM module

7: end

The critical point of the overload algorithm is that some languages support the overloading
feature internally. When designing, we need to judge whether the overloading feature is satisfied

based on the name mangling of the parameter list setting information. Next, the algorithm details

are explained as follows.

Random algorithm: First, obtain the identifiers in the program. Randomly generate 11 identifiers

containing letters, numbers, and special symbols and conform to the naming convention. Then,

perform the global replacement for each identifier.

Directory algorithm: Unlike the idea of randomly generating identifiers for replacement, the

purpose of the obfuscation dictionary is to use standard identifiers to replace identifiers in the
program. Standard identifiers can play a preemptive role in obfuscation, unlike meaningless

random characters.

Illegal algorithm: There will be reserved words in the program design, and it is not possible to
use reserved words to name the identifiers, but since all characters are coded at the code set,

characters of different codes set may be highly similar in appearance, so the Greek letters are

used to replace the English letters thus playing the role of replacement confusion.

Overload algorithm: To further enhance the obfuscation of the program, the program is processed

using the overload idea. Also, to avoid the name-mangling mechanism of the program itself, the

Computer Science & Information Technology (CS & IT) 111

parameter list information is kept when obtaining the identifier information. Then the overloaded
identifier of the virtual parameter list is constructed.

Because the idea of the first three is the idea of substitution, the fourth is the idea of addition.

Therefore, in the user use, provide the default way, from the first three randomly choose one, and
then with the fourth to reuse the previous confusing characters as much as possible.

4. EXPERIMENTS

We carry out three experiments: a) control flows obfuscation versus OLLVM; b) identifier

obfuscation effects; c) time and space overhead.

Experiment environment: Ubuntu18.04; Inter(R) Core(TM) i5-4210U; 4G Memory; LLVM10.

Experimental data is selected from the algorithm library [29] implemented in c language on

GitHub. In order to facilitate the automatic execution of the script, the part of the algorithm that
involves input is converted from user input to fixed-value input. Finally, only 123 source files are

kept.

4.1. Experiment 1- Control Flows Obfuscation Versus OLLVM

Function kthSmallest in kth_smallest.cpp in the test set is used to illustrate the effect of
obfuscation. First, use clang to process the source program to get the corresponding LLVM

intermediate code bc file; then use the so file generated by the obfuscation system to obfuscate

the specified file. Here we can further specify the function to be obfuscated. The sample below
specifies the function kthSmallest for processing. Because C++ has a name mangling mechanism

compiled into intermediate code, so the function name seen in the intermediate code layer is

_Z11kthSmallestP8TreeNodei. But the user only needs to provide the function's name in the

source code when specifying it. Finally, Graphviz is used to generate the graph summary as
follows.

4.1.1. Nested Switch

The control flow diagram of the function before obfuscation is shown in Figure 4, the control

flow diagram after flattening with OLLVM is shown in Figure 5, and the control flow diagram
after nest switch processing is shown in Figure 6. For ease of display, only show the logical

relationships of the basic blocks while the instructions in Figure 5 and Figure 6 are removed.

112 Computer Science & Information Technology (CS & IT)

Figure 4. KthSmalles: origin cfg

As shown in Figure 5, the original basic block relationship between the upper and lower levels is

transformed into the same hierarchy level, with efficient scheduling through the switch. The
attacker can infer flattened processing based on the current control flow graph and then use the

existing attack script to approximate the program.

Figure 5. KthSmalles: ollvm flattening cfg

CFG for '_Z11kthSmallestP8TreeNodei' function

%2:
%3 = alloca i32, align 4
%4 = alloca %struct.TreeNode*, align 8
%5 = alloca i32, align 4
%6 = alloca i32, align 4
store %struct.TreeNode* %0, %struct.TreeNode** %4, align 8
store i32 %1, i32* %5, align 4
%7 = load %struct.TreeNode*, %struct.TreeNode** %4, align 8
%8 = getelementptr inbounds %struct.TreeNode, %struct.TreeNode* %7, i32 0,
... i32 1
%9 = load %struct.TreeNode*, %struct.TreeNode** %8, align 8
%10 = call i32 @_Z10countNodesP8TreeNode(%struct.TreeNode* %9)
store i32 %10, i32* %6, align 4
%11 = load i32, i32* %5, align 4
%12 = load i32, i32* %6, align 4
%13 = icmp sle i32 %11, %12
br i1 %13, label %14, label %25

T F

%14:
14:
%15 = load %struct.TreeNode*, %struct.TreeNode** %4, align 8
%16 = getelementptr inbounds %struct.TreeNode, %struct.TreeNode* %15, i32 0,
... i32 1
%17 = load %struct.TreeNode*, %struct.TreeNode** %16, align 8
%18 = icmp ne %struct.TreeNode* %17, null
br i1 %18, label %19, label %25

T F

%25:
25:
%26 = load i32, i32* %5, align 4
%27 = load i32, i32* %6, align 4
%28 = add nsw i32 %27, 1
%29 = icmp sgt i32 %26, %28
br i1 %29, label %30, label %44

T F

%19:
19:
%20 = load %struct.TreeNode*, %struct.TreeNode** %4, align 8
%21 = getelementptr inbounds %struct.TreeNode, %struct.TreeNode* %20, i32 0,
... i32 1
%22 = load %struct.TreeNode*, %struct.TreeNode** %21, align 8
%23 = load i32, i32* %5, align 4
%24 = call i32 @_Z11kthSmallestP8TreeNodei(%struct.TreeNode* %22, i32 %23)
store i32 %24, i32* %3, align 4
br label %49

%30:
30:
%31 = load %struct.TreeNode*, %struct.TreeNode** %4, align 8
%32 = getelementptr inbounds %struct.TreeNode, %struct.TreeNode* %31, i32 0,
... i32 2
%33 = load %struct.TreeNode*, %struct.TreeNode** %32, align 8
%34 = icmp ne %struct.TreeNode* %33, null
br i1 %34, label %35, label %44

T F

%44:
44:
br label %45

%49:
49:
%50 = load i32, i32* %3, align 4
ret i32 %50

%35:
35:
%36 = load %struct.TreeNode*, %struct.TreeNode** %4, align 8
%37 = getelementptr inbounds %struct.TreeNode, %struct.TreeNode* %36, i32 0,
... i32 2
%38 = load %struct.TreeNode*, %struct.TreeNode** %37, align 8
%39 = load i32, i32* %5, align 4
%40 = load i32, i32* %6, align 4
%41 = sub nsw i32 %39, %40
%42 = sub nsw i32 %41, 1
%43 = call i32 @_Z11kthSmallestP8TreeNodei(%struct.TreeNode* %38, i32 %42)
store i32 %43, i32* %3, align 4
br label %49

%45:
45:
%46 = load %struct.TreeNode*, %struct.TreeNode** %4, align 8
%47 = getelementptr inbounds %struct.TreeNode, %struct.TreeNode* %46, i32 0,
... i32 0
%48 = load i32, i32* %47, align 8
store i32 %48, i32* %3, align 4
br label %49

CFG for ' _Z11kthSmal lestP8TreeNodei ' func tion

%2:

loopEntry :

def -1901072919 -1110461734 469931048 599132553 -643894429 1454655130 947339329 1938189623 1858629060

sw itc hDefaul t:
br labe l %loopEnd

fi rst:

%15:
%21:

%27:
%33:

%39:

%48:

%49:

%53:

loopEnd:
br label %loopEntry

Computer Science & Information Technology (CS & IT) 113

Figure 6. KthSmalles: nested switch flattening cfg

As shown in Figures 4, 5, and 6, nested switches can make an order of magnitude increase in

complexity. The nested structure is different from the existing flattening processing. Even if an

attacker uses an existing attack script for processing, it can effectively resist the existing attack
script because the characteristics of the obfuscation algorithm are different. In addition, for

control flow obfuscation, the similarity of basic blocks (BB), jump instructions(JI), and

functions(F) after obfuscation and the similarity of programs(P) before and after obfuscation can
be used as indicators to measure the effectiveness of obfuscation. Therefore, BinDiff [30] counts

the above four indicators in the test set. Table 1 shows the statistics of the metrics after OLLVM

obfuscation, and Table 2 shows the statistics of the metrics after obfuscation using nested

switches and in degrees.

Table 1. Similarity of OLLVM obfuscated files to source files

OLLVM flatten Average value Minimum value Maximum value Standard deviation

similarity of BB 68.33 40.2 100 12.93

similarity of JI 36.55 10.9 100 21.4

similarity of F 76.72 55 92.6 8.79

similarity of P 0.74 0.56 0.99 0.1

Table 2. Similarity of nested switch, in-degree obfuscation files to source files

Nested switch,
in-degree

Average value Minimum value Maximum value Standard deviation

similarity of BB 29.09 6.7 100 21.01

similarity of JI 14.19 1.6 100 21

similarity of F 76.67 55 92.6 8.79

similarity of P 0.5 0.34 0.99 0.15

In terms of jump instructions, methods in this paper are on average 61% lower than OLLVM and

57% lower in terms of similarity of basic blocks. The reason is twofold: firstly, this method
constructs more basic blocks and jump instructions, which significantly reduces the similarity

with the native program and increases the confusion; secondly, the jump instructions in some of

the original basic blocks are changed, so the decrease in the similarity of jump instructions is
more prominent.

There is essentially no difference in the number of functions considering the effect of errors

generated by BinDiff decompilation. The similarity between the obfuscated program and the
original program, the method in this paper decreases by 32% compared to OLVM. Meanwhile,

the maximum values of the four metrics, OLLVM, and this paper's method agree, i.e., for some

particular files, the effect of the control flow obfuscation method proposed in this paper is
consistent with OLLVM. However, the minimum values and standard deviations show that this

paper's method performs better than OLLVM on the applicable files. It should be added that the

similarity is one of the indicators of the obfuscation effect. However, suppose we only increase
the number of basic blocks and jump instructions. In that case, such processing will not play a

corresponding resistance to the substantial reverse cracking. However, this paper combines the

114 Computer Science & Information Technology (CS & IT)

construction of basic blocks and jump instructions with the control flow and data flow of the
original program itself, so the obfuscation effect is guaranteed to a certain extent.

4.1.2. Indirect Jump

The control flow diagram of the function before obfuscation is shown in Figure 4, and the

function after obfuscation using the proposed obfuscation process for in-degree analysis is shown

in the following figure, Figure 7. The image has been simplified for easy display.

Figure 7. In-degree obfuscation effect

The grey blocks in Figure 7 are newly bogus, while white blocks are original blocks in the origin

program. It can be seen that by introducing opaque predicates, the degree of entry of the bogus

block is significantly higher than that of the actual block while ensuring the original semantics of
the program, thus avoiding the threat of entry analysis. Limited to the constructional

characteristics of the algorithm itself, it will have higher security when used simultaneously with

other control flow methods.

4.2. Experiment 2- Identifier Obfuscation Effects

After using the identifier obfuscation algorithm for the 123 files in the test set, the function

identifier replacement rate is 65.2% (4875/7515). In order to ensure the standard semantics of the

program and avoid modifications to third-party library functions, only user-defined function

names are selected here. It should be noted that for large projects in terms of identifier
replacement, we can consider using wllvm [31] to link the project code into a single bc file and

then obfuscate the identifiers for the bc file to avoid errors caused by symbolic links.

CFG for '_Z11 kthSm allestP8TreeN odei' function

T F

%15:

T F

%2:

%26:

T F

%20: %31:

T F

%45:

T F

%66:

%36:

%68:

T F

%79:

%54:

T F

%84:

Computer Science & Information Technology (CS & IT) 115

4.3. Experiment 3-File Size and Performance Penalty of Protected Program

Table 3. Time and space overhead of obfuscation methods

Obfuscation Method Time overhead Space overhead

OLLVM Flattening 1.01 1.05

Identifier obfuscation 0.98 1.00

Nested switch, in-degree 1.02 1.59

The space overhead is measured by comparing the increase of the file size after obfuscation with
the increase in file size before obfuscation. As for time overhead, we use a script to count the

time of multiple file executions before and after obfuscation. Furthermore, taking the average

value as a benchmark for comparison. From Table 3, we can see that the control flow

enhancement scheme proposed in this paper has a slight increase in time and space compared to
OLLVM. In particular, considering that the program may run slightly differently in time under

different execution states, the existing test sets are all small volume algorithm files, so they are

more sensitive to execution time. Therefore, it can be considered that the identifier obfuscation
has almost no overhead impact in terms of time and space.

It should also be noted that in large projects, as the volume of the protected code increases, the
corresponding time and space overhead also increases, and the two should be linear. When using,

different parameter values should be set in conjunction with specific usage scenarios to meet the

security and performance requirements of the scenario.

5. CONCLUSIONS

This paper addresses the lack of strength of OLLVM obfuscation in control flow protection and

the gap in identifier obfuscation by proposing two broad categories of enhancements. In control
flow obfuscation, first, adding nested switches at the control flow level and adding the switch

structure again in the flattened code, thus increasing the complexity of the code while resisting

existing scripting attacks; second, proposing an in-degree treatment for bogus blocks to increase

the confusion of bogus blocks further. Further, at the level of identifier obfuscation, four
algorithms are proposed and bridge the gap of OLLVM in identifier obfuscation. By comparing

with OLLVM, this paper can significantly improve the original control flow complexity in

obfuscation effect; replace 65.2% of custom identifiers while guaranteeing program functionality.
Furthermore, the time overhead from obfuscation is almost negligible. The space overhead is at

1.5 times.

In future work, we will pay attention to generating more secure opaque predicates and are not

limited to the number-theoretic model. Meanwhile, the practical effectiveness of existing

obfuscation algorithms in large projects remains tested. Therefore, we will focus on how to

provide more accessible use of the obfuscation framework model in large projects.

ACKNOWLEDGEMENTS

Thanks to every author who participated in the paper, it is a joint effort to produce this article.

REFERENCES

[1] C. Iwendi et al., (2020) "KeySplitWatermark: Zero Watermarking Algorithm for Software Protection

Against Cyber-Attacks," vol. 8, pp. 72650-72660.

116 Computer Science & Information Technology (CS & IT)

[2] J. V. d. Broeck, B. Coppens, and B. D. J. A. Sutter, (2020) "Flexible Software Protection," vol.

abs/2012.12603.

[3] B. Abrath, B. Coppens, S. Volckaert, J. Wijnant, B. D. J. P. o. t. t. W. o. S. S. Sutter, Protection,, and

R. Engineering, (2016) "Tightly-coupled self-debugging software protection,".

[4] Q. Ge, Y. Yarom, and G. J. P. o. t. t. A.-P. W. o. S. Heiser, (2018) "No Security Without Time
Protection: We Need a New Hardware-Software Contract,"

[5] G. Nishant and S. J. Shubhnandan, (2013) "Watermark, Hardware Parameters and License Key: An

Integrated Approach of Software Protection,".

[6] L. Davi, P. Koeberl, and A.-R. J. s. A. E. I. D. A. C. Sadeghi, (2014) "Hardware-assisted fine-grained

control-flow integrity: Towards efficient protection of embedded systems against software

exploitation," pp. 1-6.

[7] C. S. Collberg and C. D. Thomborson, (2002) "Watermarking, Tamper-Proofing, and Obfuscation-

Tools for Software Protection," {IEEE} Trans. Software Eng., vol. 28, no. 8, pp. 735-746.

[8] C. S. Collberg, C. D. Thomborson, and D. Low, (1998) "Manufacturing cheap, resilient, and stealthy

opaque constructs," in POPL '98.

[9] C. Linn and S. K. Debray, (2003) "Obfuscation of executable code to improve resistance to static

disassembly," in CCS '03.
[10] C. Collberg, C. Thomborson, and D. Low, (1997) "A taxonomy of obfuscating transformations,"

Department of Computer Science, The University of Auckland, New Zealand1173-3500.

[11] S. Banescu, C. S. Collberg, V. Ganesh, Z. Newsham, and A. J. P. o. t. n. A. C. o. C. S. A. Pretschner,

(2016) "Code obfuscation against symbolic execution attacks,".

[12] R. N. Ismanto and M. Salman, (2017) "Improving security level through obfuscation technique for

source code protection using AES algorithm," pp. 18-22: Association for Computing Machinery.

[13] S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot, (2002) "White-Box Cryptography and an

AES Implementation," in Selected Areas in Cryptography, 9th Annual International Workshop,

{SAC} 2002, St. John's, Newfoundland, Canada, August 15-16, 2002. Revised Papers, 2002, vol.

2595, pp. 250-270: Springer.

[14] E. N. d. L. F. Jorge et al., (2015) "SensorWatermark: a scheme of software watermark using code
obfuscation and tamperproofing for WSN," pp. 916-922.

[15] S. Nazir, S. Shahzad, N. J. A. J. f. S. Mukhtar, and Engineering, (2019) "Software Birthmark Design

and Estimation: A Systematic Literature Review," vol. 44, pp. 3905-3927.

[16] K. Guan, S. Nazir, X. Kong, and S. u. J. S. P. Rehman, (2021) "Software Birthmark Usability for

Source Code Transformation Using Machine Learning Algorithms," vol. 2021, pp. 5547766:1-

5547766:7.

[17] Z. Tang et al., (2018) "VMGuards:A Novel Virtual Machine Based Code Protection System with VM

Security as the First Class Design Concern," vol. 8, p. 771.

[18] Y. Shi, K. Casey, M. A. Ertl, and D. J. A. T. A. C. O. Gregg, (2008) "Virtual machine showdown:

Stack versus registers," vol. 4, pp. 2:1-2:36.

[19] S. J. A. Datta, (2019) "DeepObfusCode: Source Code Obfuscation Through Sequence-to-Sequence

Networks," vol. abs/1909.01837.
[20] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, (2015) "Obfuscator-LLVM - Software Protection

for the Masses," (in English), 2015 Ieee/Acm 1st International Workshop on Software Protection

(Spro), pp. 3-9.

[21] M. A. Kinsy, D. Kava, A. Ehret, and M. J. A. Mark, (2018) "Sphinx: A Secure Architecture Based on

Binary Code Diversification and Execution Obfuscation," vol. abs/1802.04259.

[22] (2022, 1/7). isrc-cas/flounder. Available: https://github.com/isrc-cas/flounder

[23] (2018, 1/7). yazhiwang/ollvm-tll: Ollvm+Armariris+LLVM 6.0.0. Available:

https://github.com/yazhiwang/ollvm-tll

[24] V. Arnaoudova, L. M. Eshkevari, M. D. Penta, R. Oliveto, G. Antoniol, and Y.-G. J. I. T. o. S. E.

Guéhéneuc, (2014) "REPENT: Analyzing the Nature of Identifier Renamings," vol. 40, pp. 502-532.

[25] (2019, 1/7). GeT1t/deollvm64: deobfuscator llvm arm64 script. Available:
https://github.com/GeT1t/deollvm64

[26] Z. Liang, W. Li, J. Guo, D. Qi, J. J. I. C. o. P. i. I. Zeng, and Computing, (2017) "A parameterized

flattening control flow based obfuscation algorithm with opaque predicate for reduplicate

obfuscation," pp. 372-378.

[27] (2021, 11/28). GoSSIP-SJTU/Armariris: Available: https://github.com/GoSSIP-SJTU/Armariris

Computer Science & Information Technology (CS & IT) 117

[28] (2020, 11/28). HikariObfuscator/Hikari: LLVM Obfuscator. Available:

https://github.com/HikariObfuscator/Hikari

[29] (2019, 11/28). mandliya/algorithms_and_data_structures. Available:

https://github.com/mandliya/algorithms_and_data_structures

[30] (2021, 11/28). zynamics.com - BinDiff. Available: https://www.zynamics.com/bindiff.html
[31] (2022, 1/8). travitch/whole-program-llvm. Available: https://github.com/travitch/whole-program-llvm

AUTHOR

Chengyang Li, born in 1996, M. S. His research interests include code obfuscation.

HUANG Tianbo, born in 1997, M. S. His research interests include cyberspace

security, malicious code detection and code obfuscation.

Xiarun Chen, born in 1997, M.S. His research interests include system and network security, blockchain

security and malicious code detection.

ChenglinXie, born in 1996, M. S. His research interests include Operating System Security, Intrusion

Detection and Malware Detection.

WEN Weiping, born in 1976, Ph. D. professor. His research interests include system and network security,

big data and cloud security, intelligent computing security.

© 2022 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://airccse.org/

	Keywords

