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ABSTRACT 
 
Network traffic protocols and service classification are the foundations of network quality of 

service (QoS) and security technologies, which have attracted increasing attention in recent 

years. At present, encryption technologies, such as SSL/TLS, are widely used in network 

transmission, so traditional traffic classification technologies cannot analyze encrypted packet 

payload. This paper first proposes a two-level application layer protocol classification model 

that combines packets and sessions information to address this problem. The first level extracts 

packet features, such as entropy and randomness of ciphertext, and then classifies the protocol. 

The second level regards the session as a unit and determines the final classification results by 

voting on the results of the first level. Many application layer protocols only correspond to one 

specific service, but HTTPS is used for many services. For the HTTPS service classification 

problem, we combine session features and packet features and establish a service identification 
model based on CNN-LSTM. We construct a dataset in a laboratory environment. The 

experimental results show that the proposed method achieves 99.679% and 96.27% accuracy in 

SSL/TLS application layer protocol classification and HTTPS service classification, 

respectively. Thus, the service classification model performs better than other existing methods. 
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1. INTRODUCTION 
 

SSL/TLS encryption technology has the advantages of high security and low cost and is widely 

used for secure communication of network applications. The protocol and service classification 
of encrypted network traffic are the basis of network service quality and network security 

technologies, which have received increasing attention. Since most of the content of the packets 

transmitted is encrypted, traditional traffic classification technology, such as deep packet 

inspection (DPI), has difficulty detecting SSL/TLS traffic[1]. To solve the above problems, some 
researchers have focused on machine learning based methods. Because different applications and 

protocols have different functions, the statistical features of the generated traffic data are also 

different. Machine learning methods can find these differences and classify the traffic. Even 
though traffic is encrypted, its statistical features are still not affected, so the method can identify 

it. 

 
In recent years, deep learning has made great achievements in computer vision and natural 

language processing. In the field of computer networks, technology has also attracted attention. 

Compared with traditional machine learning methods, this method does not require cumbersome 
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feature engineering. Instead, network traffic packets are directly inputted into the neural network, 
and the convolutional layers extract features to complete the classification task. 

 

At present, research on application layer protocol classification of SSL/TLS encrypted traffic is 

still lacking. For service classification, traditional machine learning methods usually only extract 
features from the time and length of the network flow, while these methods do not make full use 

of the semantics of the packet content; the existing deep learning-based methods only use the first 

few packets of the SSL/TLS flow. The content is not portrayed from the global level of the flow. 
This paper comprehensively analyzes the characteristics of SSL/TLS single packet and session 

data and proposes a two-level application layer protocol classification model combining single 

packet and session. This model extracts features, such as entropy and randomness, from the 
ciphertext in a single packet and then classifies the protocol. According to the labels of packets in 

the same session, we build a voting model to determine the traffic protocol. For the problem of 

HTTPS service classification, we propose a method fusing the global session features and time 

sequence features, which fully utilizes the encrypted network flow information and improves the 
task’s accuracy. The contributions of this paper mainly include the following:  

 

1) We propose an SSL/TLS application layer protocol classification method combining 
ciphertext features and a voting mechanism. The method first extracts ciphertext features and 

uses a machine learning model to complete single-packet protocol determination. Then we use a 

voting scheme to realize the application layer protocol classification of SSL/TLS sessions. 
2) We propose an HTTPS service classification method based on feature engineering and 

deep learning. This method establishes a CNN-LSTM model to extract the time-series features of 

the packets in the SSL session and merges them with the global features of the session. 

3) In a laboratory environment, we construct the dataset from many sources, including 
Chrome, Foxmail, FileZilla, etc. We apply the two methods mentioned above to the dataset. The 

accuracy of the application layer protocol classification method achieves 99.679% and the 

accuracy of the HTTPS service classification method reaches 96.27%, which is better than the 
existing machine learning and deep learning methods. 

 

The rest of this paper is organized as follows. Section 2 describes related work. Section 3 

introduces the details of our proposed methods. Section 4 presents experimental results. Finally, 
the paper is concluded in Section 5. 

 

2. RELATED WORK 
 
In the early Internet, every application/protocol used a fixed port number assigned by the Internet 

Assigned Numbers Authority (IANA)[2]. Therefore, according to the port field in the TCP/UDP 

header, the application types and protocol types of flow can be classified. For example, HTTPS 

uses port 443, and SMTPS uses port 456. In recent years, port-based methods have not been more 
effective they as previously were, because dynamic ports are widely used and new applications 

have emerged continuously. DPI classifies traffic through pattern matching on the payload in the 

packet, but it is still difficult to adapt to the encrypted network environment. 
 

At present, research on the application layer protocol classification of network encrypted traffic is 

still lacking. Some network encryption traffic service classification methods have emerged, 
mainly including traditional machine learning-based and deep learning-based methods. 

 

Traditional Machine Learning Methods: Because the statistical features of the traffic generated 

by different applications or services have certain differences in the spatial and temporal 
dimensions, machine learning methods can utilize the features to classify traffic. Such methods 

usually include two steps: feature extraction and model training. Features are mainly composed 
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of packet length features, packet ordering features, and packet timing features, which include the 
number of packet bytes, the packets’ time interval, and the flow duration, etc. The models mainly 

include KNN, SVM and random forest, etc. These models work well on small datasets and do not 

rely on hardware. However, feature engineering requires much time and professional knowledge 

to support. 
 

Lashkari et al.[3] regarded unidirectional and bidirectional encrypted traffic flow as the units and 

extracted timing-related features such as flow duration and packet time interval to train KNN and 
C4.5 models, which classify different services of encrypted traffic. Dominik et al.[4] used SVM to 

distinguish whether HTTPS traffic is a mail service. They extracted features, including the 

duration of the session, the different patterns of daily/weekly traffic usage, and the inherent 
periodicity. 

 

Deep Learning Methods: This kind of method can automatically learn features and classify 

encrypted traffic. It does not rely on complex and high-cost feature engineering. The methods can 
directly deal with packet data and achieve good classification performance. 

 

Wei et al.[5] applied the end-to-end method to classify encrypted traffic for the first time. They 
proposed a one-dimensional CNN method. Lotfollah et al.[6] first removed the ethernet header 

and conducted normalization of the packet. Then, they designed SAE and one-dimensional CNN 

models to classify the service type of traffic. Mingze et al.[7] proposed a text-based convolutional 
neural network (Text-CNN). He et al.[8] proposed an image-based convolutional neural network 

(Image-based CNN). They are also better than traditional machine learning methods in service 

classification. 

 
In addition, RNNs and their variant models have also achieved satisfactory results in service 

classification. Zhuang et al.[9] combined a CNN with a LSTM and extracted the packet features 

and the sequence features to classify the encrypted traffic service. Haipeng et al.[10] proposed two 
models, an attention-based LSTM and a hierarchical attention network (HAN) to model 

sequential traffic. Liu et al.[11] proposed attention-based bidirectional GRU networks to solve the 

problem of HTTPS traffic classification. The bidirectional GRU layer is used to extract the 

forward and backward features of the byte sequence in the session, and the attention layer assigns 
weights according to the contribution of features to the classification. 

 

3. METHODOLOGY 
 
There are still relatively few achievements in the current encryption traffic classification studies 

for application layer protocol identification. In addition, service classification methods cannot 

comprehensively describe the characteristics of network flows. Therefore, we propose a two-level 

traffic classification framework to solve these problems. For the application layer protocol 
classification task, we consider the characteristics of ciphertext and propose a classification 

method combining single packet features and session features; for the service classification task, 

we extract the global features and time sequence features of the flow, and propose a CNN and 
LSTM-based classification model, which describes the flow from a comprehensive perspective. 

 

3.1. Framework 
 

The SSL/TLS protocol consists of two layers (as shown in Table 1). The bottom layer is the 

SSL/TLS record protocol, which is responsible for encrypting packets with a symmetric key. The 
upper layer is the SSL/TLS handshake protocol, which is divided into four subprotocols: 
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Handshake Protocol, Change Cipher Spec Message Protocol, Alert Message Protocol and 
Application Data Protocol. 

 
Table 1. Structure of SSL/TLS protocol 

 

Record Layer 

Content Type Version Length 
 

Handshake Protocol (Content Type= 0x16) 
Change Cipher Spec Message (Content Type = 0x14) 

Application Data (Content Type = 0x17) 

Alert Message (Content Type = 0x15) 

 

The SSL/TLS record protocol consists of content type, version and length fields. The content 

type field represents the subtype of the recording protocol. The version field represents the 

version of the SSL/TLS protocol. Content type and length fields represent the type and length of 
the remaining packet content, respectively. For instance, if Content Type=0x16, the rest content 

is the content of the handshake protocol; if Content Type=0x17, the rest is the encrypted data in 

the transmission phase. 
 

Figure 1 shows the framework of the two-layer classification model proposed in this paper. We 

regard SSL/TLS sessions as the detection units. For application layer protocol classification, we 
trained the protocol classification model for the five most widely used encrypted protocols in the 

current network environment: HTTPS, FTPS, SMTPS, IMAPS, and POPS. For service 

classification, FTPS, SMTPS, IMAPS and POPS only carry a single service (FTPS is used for 

file transfer, and the other three protocols are used for mail). Therefore, these protocols can be 
directly output as service types. Only the HTTPS protocol carries multiple services(browser, 

streaming, etc.), so we focus on HTTPS service classification. Therefore, we propose a 

convolutional and recurrent neural network-based model combining global and sequential 
features (CRNN-CGSF) to realize HTTPS service classification. 
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Figure 1. Framework of application protocols and services classification architecture 
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As shown in Figure 1, our method is divided into a training phase and a testing phase. In the 
training phase, the dataset is divided into an application layer protocol training dataset and an 

HTTPS service training dataset. The protocol classification model and the HTTPS service 

classification model (CRNN-CGSF) are independently trained. In the testing phase, the protocol 

classification model is used to identify the application layer protocol, and then the sessions 
classified as HTTPS are further used to classify the service using the CRNN-CGSF model. 

Finally, the services of all sessions are output. 

 
Our detection unit is the session. Therefore, the raw flow first needs to be restored to a session 

before detection. We define the session based on a four-tuple <source IP, source port, destination 

IP, destination port> (because the protocols are all TCP, so there is no need to express the 
protocol) bidirectional flow. 

 

According to the protocol specification, handshake phase packets and application data protocol 

packets should be in a complete session. The standard handshake phase should conform to 
<client_hello, server_hello, server_hello_done, client_key_exchange, change_cipher_spec> 

mode or <client_hello, server_hello, change_cipher_spec> mode. Incomplete SSL sessions 

usually do not have complete handshake phase information or data transmission due to being 
truncated or from network delays. In addition, we discard this type of flow. 

 

3.2. Application Layer Protocol Classification 
 

In this paper, the application layer protocols include HTTPS, FTPS, SMTPS, IMAPS, and POPS, 

and their plaintext protocols (HTTP, FTP, SMTP, IMAP, and POP) have different format 
specifications according to the RFC. Thus, we believe that the data will have different 

distributions in randomness and entropy after encryption to distinguish different application layer 

protocols. 
 

The application layer protocol detection framework for SSL/TLS encrypted traffic is shown in 

Figure 2. The input of the framework is a preprocessed SSL session. Detection is mainly divided 

into three steps: feature extraction, single-packet classification, and voting: 
 

(1) Feature extraction. We extract all application data protocol packets in every session because 

these packets contain SSL/TLS header information and are the first packets of a single 
forward or backward flow in the encrypted data transmission phase. Therefore, the encrypted 

data of these packets provide the most sufficient format information of the corresponding 

plaintext protocol. Second, we extract the packets’ application data field (i.e. encrypted data) 

and perform feature extraction on each encrypted data. 
 

(2) Single packet classification. The features extracted from each packet are input into the 

classifier. The classifier will output the application layer protocol label corresponding to 
each application data protocol packet in the session. 

 

(3) Voting. Since only one application layer protocol is used in the same session, we vote on 
the prediction result of a single packet and select the application layer protocol with the 

highest frequency as the application layer protocol used in the session. 
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Figure 2. Framework of the application protocol detection 

 

3.2.1. Feature Design 

 

We refer to the randomness detection scheme defined in the National Institute of Standards and 
Technology (NIST) standards[12] and the ciphertext entropy theory mentioned in the literature 

[13] and design the features including randomness measurement, entropy, length and 

bidirectional flow. 
 

Randomness measurement is an important indicator for evaluating the randomness of ciphertext. 

When the plaintext content of different packet formats is encrypted, the distribution of these 
characteristic values is still different. Entropy can be used to indicate the uniformity of the 

ciphertext’s byte distribution. The more uniform the byte distribution is, the higher the entropy 

is[14]. We also use the length feature because different protocols have different length 

distributions. For example, the lengths of FTPS-Data packets and HTTPS packets are usually 
hundreds of bytes or even reach the MTU. The lengths of other protocol packets are relatively 

short. The bidirectional flow features are mainly for FTPS-Data packets, which are all 

unidirectional in the SSL/TLS encrypted transmission stage, while other protocols are usually 
bidirectional. The details of these features are shown in Table 2: 

 
Table 2. List of features of the SSL/TLS application package 

 

Feature Type Feature Description 

Randomness 

Measurement 

Frequency To detect the proportion of zeroes and ones 

for the entire sequence. 

Frequency within a 

Block 

To detect the proportion of ones within M-bit 

blocks. 

Runs To detect the total number of runs in the 

sequence, where a run is an uninterrupted 

sequence of identical bits. 

Discrete Fourier 

Transform 

To detect the peak heights in the Discrete 

Fourier Transform of the sequence. 

Non-overlapping 

Template Matching 

To detect the number of occurrences of pre-

specified target strings. 
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Overlapping Template 
Matching 

To detect the number of occurrences of pre-
specified target strings. 

Linear Complexity To detect the length of a linear feedback shift 

register (LFSR) 

Serial To detect the frequency of all possible 
overlapping m-bit patterns across the entire 

sequence. 

Approximate Entropy To detect the frequency of all possible 

overlapping m-bit patterns across the entire 
sequence. 

Cumulative Sums To detect the maximal excursion (from zero) 

of the random walk defined by the 

cumulative sum of adjusted (-1, +1) digits in 
the sequence. 

Random Excursions To detect the number of cycles having 

exactly K visits in a cumulative sum random 
walk. 

Longest Run of Ones 

in a Block 

To detect the longest run of ones within M-

bit blocks. 

Entropy Byte entropy of inter-
packet 

To measure the randomness of the byte 
frequency between ciphertext binary packets. 

Length Packet Length The length of the current packet. 

SSL packet length The Content-Type field of SSL handshake 

packet’s header. 

Bidirectional Bidirectional Indicates if the encrypted data transmission is 
bidirectional or not. 

 

3.2.2. Packet Classification Model 

 

In the selection of classification models, we consider the currently popular machine learning 

algorithms, which are mainly divided into three categories: 

 
(1) Traditional machine learning algorithm: We use C4.5[17], KNN[18], LR and SVM[19]. 

These algorithms have the advantages of fitting for nonlinear classification, supporting for 

numerical and discrete data, and preventing overfitting, and are widely used. 
 

(2) Integrated learning algorithm: We use Random Forest[20], Vote, Adaboost, GBDT and 

XGBoost. Multiple weaker learners integrate these algorithms. Compared with single 
learners, they usually reach higher accuracy. Moreover, the robustness and generalization 

ability of these models have also been improved. 

 

(3) Neural network algorithm: MLP and DNN are used in this paper. MLP is an artificial 
neural network with a forward structure. It overcomes the weakness that a single-layer 

perceptron cannot recognize linear inseparable data. DNN is an improvement over MLP, 

and overcomes the problem of gradient disappearance caused by the increase of the number 
of network layers in the multilayer perceptron. In addition, it has more types of activation 

functions. 
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3.3. Service Classification 
 

Among the existing service classification methods, machine learning methods only use the time 

and length features of the network flow. Deep learning methods only focus on the content of the 
first few packets of the session. Both of them lack a macro description of the entire network flow. 

Therefore, we propose the CRNN-CGSF model that integrates the global features of the session 

with the packet time sequence information in the session to solve HTTPS service classification. 
The model architecture is shown in Figure 3: 
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Figure 3. Framework of HTTPS service detection 

 

We first conduct preprocessing and then perform feature extraction and regularization of HTTPS 

sessions. As shown in Figure 3, the left branch extracts the global features of the session, and the 
right branch preprocesses the packets in the session. 

 

(1) Global feature extraction. We refer to [3] to extract time-related features, including the 
duration of the flow (duration), forward interarrival time (fiat), backward interarrival time 

(biat), flow interarrival time (flowiat), active time (active) , idle time (idle), flow bytes per 

second (fb_psec) and flow packets per second (fp_psec), totaling 23 dimensions. 
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(2) Packet preprocessing. The packet’s data link layer (Ethernet frame) contains the MAC 
address and the IP version. The MAC address is the host identifier and is useless for the task 

of network traffic classification, although it may affect the classification results; we only 

pay attention to the ipv4 version of the network traffic, so the IP protocol version is also 

useless. Thus, we discard the Ethernet frame. The source IP and destination IP in the 
network layer are unnecessary information, so we replace these fields of the IP header with 

zeroes. To reduce the input dimension of the model, we convert the bits in the data packet 

into bytes. Then we conduct normalization, that is, we divide all byte values by 255 and map 
them to the [0,1] interval; the purpose of this is to obtain a better computing performance. 

(3) Service classification model. We input the extracted global features of the session and the 

preprocessed packets into the classification model. The model outputs the predicted HTTPS 
service label. The model structure is shown in Figure 4: 
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Figure 4. Architecture of the CRNN-CGSF model 

 

In Figure 4, the left branch of the model processes the global features of the session, whose input 
dimensionality is 23*1. First, the input is flattened to 23 dimensions. Then through two FC 

layers, the output is 128-dimensions vector. The multiple branches on the right extract the time 

sequence features from packets. The input is the first M byte stream of the first N packets of the 

session. The first N packets are selected because the first few packets of the session are in the 
handshake phase and contain certain semantic information. When the encrypted communication 
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is turned on, the semantics will be greatly weakened. We use CNN to extract the features of each 
packet byte stream. The CNN layer includes three concatenated Conv1D, Maxpooling, and 

Dropout. After that, the features of these sequential packets are concatenated and input into 

LSTM to extract the time sequence features. Then, 100-dimensional time sequence features and 

128-dimensional global feature vectors are integrated and input to three FC layers. Finally, the 
classification result is output through Softmax. 

 

4. EXPERIMENTS 
 

4.1. Dataset 
 

At present, most of the encrypted traffic classification datasets are used for widened meaning 
protocol classification (SSL, SSH, Tor, etc.). Our task is to subdivide the traffic of SSL/TLS, so 

we collect the corresponding network traffic as a dataset in a laboratory environment. We use 

Wireshark to capture the traffic, and the captured packets are stored in pcap. 
 

We browse a large number of web pages with Chrome and Firefox to collect HTTPS traffic. For 

FTPS traffic, we use two personal computers, using one as an FTP server (encrypted by SSL) and 

the other as an FTP client. We use FileZilla on the client and remote access the FTP server for 
file upload and download operations. We enable SMTP/POP and SMTP/IMAP services in a 

personal QQ mailbox and a 163 mailbox and then use Foxmail to send, receive, and delete mails 

to collect SMTPS, POPS and IMAPS traffic. 
 

We collect browser service traffic through Chrome and Firefox, but not all the traffic generated 

by the browser belongs to the browser service. For example, if we use NetEase Cloud Music, the 
traffic generated, by the browser, that transmits multimedia content belongs to the streaming 

service traffic. For other services, we use specific applications to collect the traffic data. 

 

The total size of the dataset is 4.7GB and it contains 51 pcap files. The specific content of the 
dataset is shown in Table 3: 

 
Table 3. List of captured protocols and applications 

 
Service Protocol Content Session Number 

Browser HTTPS Chrome、Firefox 5908 

Streaming HTTPS QQ Music、NetEase CloudMusic、
Tencent Video 

1596 

Chat HTTPS Weibo Chat、Skype 1280 

Mail HTTPS buaamail、Tom Mail 1070 

SMTPS Foxmail 581 

POPS Foxmail 961 

IMAPS Foxmail 708 

File Transfer HTTPS Skype、Baidu Netdisk、115 Pan 1068 

FTPS FileZilla 378(FTPS-Control) 

2088(FTPS-Data) 

 
We split the dataset into two subdatasets according to two types of tasks: dataset-protocol and 

dataset-service. The former is used for the SSL/TLS application layer protocol classification task, 

and the latter is used for the HTTPS service classification task. The traffic of these two datasets is 

marked with application layer protocol labels and service labels in sessions. 
In the upper application layer classification task, we divide FTPS into FTPS-Control and FTPS-

Data. The reason is that the plaintext protocol formats of these two FTPS packets are completely 
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different, so there is a great difference in indicators such as entropy and randomness metrics. We 
can regard it as two subprotocols of FTPS. 

 

4.2. Indicators and Experimental Settings 
 

To evaluate the classification effects of different models, we use the accuracy rate (Acc) to 

evaluate the overall effect of multiclassification, using precision (Pr), recall (Rc) and F1 scores 
(F1) that comprehensively consider accuracy and recall to evaluate the effect of a certain type of 

classification in multiclassification. 

 

We set up 4 groups of experiments: 
 

 Experiment 1: We compare the classification effects of different machine learning 

algorithms on the SSL application layer protocol. As mentioned in Section 4.1, FTPS traffic 
can be divided into FTPS-Control and FTPS-Data. Therefore, according to FTPS as one 

class, or divided into two classes, we designed two schemes of five classes and six classes. 

 Experiment 2: We compare our proposed CRNN-CGSF model with the existing service 
classification methods, and verify that our method has a higher accuracy. 

 Experiment 3: We explore the impact of the input dimensions of the CRNN-CGSF model 

on the performance of HTTPS service classification. The input dimension is determined by 

the number of intercepted session packets N and the number of intercepted packet bytes M. 
 Experiment 4: We explore the impact of introducing global features on the classification 

results of the HTTPS service. 

 

4.3. Results and Analyses 
 

4.3.1. Application layer protocol classification (Experiment 1) 
 

Since the dataset is unbalanced in categories (as shown in Table 3), we sampled the dataset to 

train the model better. For the single-packet detection experiment, we select 8000 data from each 
protocol (for the case where the FTPS-DATA samples in the six categories are less than 8000, we 

select 1500 samples). Then, we divide them into a training set and a test set at a ratio of 4:1. We 

select 150 sets of session data from each protocol as the test set for the session detection 

experiment. 
 

We use the machine learning algorithms mentioned in Section 3.2.2 to train the classifiers. The 

test results are shown in Table 4, 5, and 6: 
 

Table 4. Accuracy of different traditional machine learning methods 

 

 
C4.5 KNN LR SVM 

5 classes 
Packet 0.74406 0.73496 0.43156 0.39971 

Session 0.98500 0.90866 0.69054 0.23491 

6 classes 
Packet 0.74496 0.72971 0.44264 0.41071 

Session 0.98772 0.92292 0.66243 0.33378 

 

 
 
 

Table 5. Accuracy of different ensemble learning methods 

 



248       Computer Science & Information Technology (CS & IT) 

 
RF VOTE ADA GBDT XGBoost 

5 classes 
Packet 0.80659 0.81494 0.59589 0.79595  0.81828 

Session 0.99670 0.99679 0.94098 0.99688  0.99679 

6 classes 
Packet 0.80734 0.81518 0.56525 0.79764  0.81871 

Session 0.99554 0.99628 0.78296 0.99576  0.99650  

 
Table 6. Accuracy of different neural network methods 

 

 
MLP DNN 

5 classes 
Packet 0.55717 0.69721 

Session 0.78580 0.90317 

6 classes 
Packet 0.59157 0.70423 

Session 0.84665 0.91438 

 
In traditional machine learning methods, C4.5 performs far better than other methods. In the six-

classification task, the accuracy of single-packet detection and session detection reaches 0.74496 

and 0.98772, respectively. In the ensemble learning methods, RF, VOTE, GBDT and XGBoost 
have similar accuracies in session detection tasks. XGBoost performs best in single-packet 

detection and six-classification session detection; GBDT performed best in five-classification 

session detection, with an accuracy that is 0.009% higher than XGBoost. In neural network 
methods, DNN is better than MLP because DNN has deeper layers and can better fit the data. 

Still, DNN has limited improvement performance and is far inferior to C4.5, KNN and integrated 

learning methods. 

 
From the detection point of view, the accuracy of session detection is much higher than that of 

single-packet detection. Because the accuracy of single-packet detection reaches a certain height, 

the incorrect single-packet classification is corrected after voting. In terms of methods, integrated 
learning algorithms are generally better than traditional machine learning algorithms. Integrated 

learning can combine multiple single learners with a certain strategy, which greatly improves 

generalization performance. Among all the methods, XGBoost is the most comprehensive. The 

XGBoost single-packet detection and session detection results of each type of protocol are shown 
in Table 7, and the confusion matrix of the experimental results is shown in Figure 5: 

 
Table 7. Detailed experimental results of XGBoost (5 classes) 

 

 
Packet Session 

Pr Rc F1 Pr Rc F1 

FTPS 0.86496  0.79813  0.83020 0.99379 1.00000 0.99689 

HTTPS 0.91086  0.89623  0.90349 0.99371 0.98750 0.99060 

IMAPS 0.85053  0.75000  0.79711 1.00000 0.99375 0.99687 

POPS 0.77748  0.89286  0.83118 0.99375 0.99375 0.99375 

SMTPS 0.73533  0.78320  0.75851 0.99379 1.00000 0.99689 
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Figure 5. Confusion matrix of the single packet detection result of XGBoost 

 

Observing the results of Table 7 and Figure 5, it can be seen that XGBoost has the best 
recognition effect on the HTTPS protocol in single-packet detection. The accuracy, recall and F1 

score indicators reach 0.91086, 0.89623 and 0.90349, respectively; for the SMTPS protocol, the 

recognition effect is the worst, but its F1 score also reaches 0.75851. In terms of session 
detection, XGBoost has a very good classification effect for each protocol, and the F1 score can 

be stabilized above 0.99. 

 

4.3.2. Comparative experiment on service classification methods (Experiment 2) 

 

We compared the six methods in the five current papers[3,4,5,13,14] containing the same kind of 

research with our own method. The experimental results are shown in Table 8: 
 

Table 8. Comparative experimental results of HTTPS encrypted traffic service classification 

 

Method Acc 

Our method(CRNN-CGSF) 0.9627 

C4.5[3] 0.8905 

KNN[3] 0.7030 

1D-CNN[5] 0.9410 

SAE[6] 0.9406 

LSTM[15] 0.9080 

nnDPI[16] 0.9401 

 

According to Table 8, the accuracy of deep learning methods (1D-CNN[5], SAE[6], LSTM[15] and 

nnDPI[16]) is better than traditional machine learning methods (C4.5[3] and KNN[3]). Among these 
methods, our model has the best accuracy, reaching 0.9627, which is 0.0217 higher than the 

second-highest 1D-CNN. 

 

4.3.3. CRNN-CGSF model input dimension experiment (Experiment 3) 
 

To obtain better results in the classification of HTTPS services, we explored the influence of N 

(flow size) and M (intercept length) on the model classification effect. N represents the number 
of packets we select in the session. If the value of N is too small, the information in the 

handshake phase will be incomplete; if the value of N is too large, encrypted data will be used, 

which will have a certain negative impact on the model performance. M indicates how many 
bytes we choose from each packet. If the value of M is too small, then the information extraction 
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of each packet will be insufficient; if the value of M is too large, it will have a certain impact on 
the computational performance overhead of the model. 
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Figure 6. Thermodynamic diagram under different flow sizes and intercept lengths 

 
Figure 6 shows that the accuracy of the model increases as the value of M increases. This is 

because the longer the intercepted byte length of a single packet is, the richer the information will 

be. The accuracy of the model first increases with increasing N and then decreases with further 
increasing N. N=6 can be regarded as a turning point because if the stream length is too long, 

then model will use the packets of encrypted data transmission, and accuracy will decrease. 

Because the packet carries ciphertext, it interferes with the model performance. The model 

achieves the maximum value at N=6, M=800 and N=6, M=1000. Considering the calculation 
performance of the model, we choose N=6 and M=800. 

 

4.3.4. Validity experiment of introducing global features (Experiment 4) 
 

To verify that the global features are effective, we performed a comparative experiment on global 

features. The model that does not contain global features is called CRNN-UOSF (convolutional 

and recurrent neural networks using only sequential features). Compared with the CRNN-CGSF, 
CRNN-UOSF eliminates the global feature input layer (Input), the flattened layer (Flatten) and 

the fully connected layer (Dense). The rest of the structure is the same. The experimental results 

are shown in Table 9: 
 

Table 9. Comparison of experimental results between CRNN-CGSF and CRNN-UOSF 

 

Method Acc 

CRNN-CGSF 0.9627 

CRNN-UOSF 0.9504 

 

The model’s accuracy without global features is 0.9504, and the model’s accuracy with global 

features is 1.23% higher than that without global features. Therefore, it can be concluded that the 

introduction of the global features of the session enables the model to better characterize the 
session. 

 

5. CONCLUSIONS 
 
This paper focuses on the application layer protocol classification and service classification of 

SSL/TLS encrypted traffic. We first extract features such as randomness and entropy of 

encrypted data for application layer protocol classification and then use a machine learning model 
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to judge single packets. After that, we utilize voting mechanisms to realize application layer 
protocol classification for SSL/TLS sessions. The experimental results show that XGBoost has 

the best comprehensive detection effect. We propose the CRNN-CGSF model combining session 

global features and packet time sequence features for HTTPS service classification. The model 

uses CNN and LSTM to effectively utilize the packet byte stream information. In addition, we 
improve the accuracy of the model by introducing the global features of the session. The 

experimental results show that the accuracy of our method can reach 96.27%, which is better than 

the existing traditional machine learning and deep learning methods. Our method can provide 
preliminary traffic analysis results in network management and QoS and can provide basic 

support for further analysis procedures. In future work, we will focus on the classification of new 

versions of protocols such as HTTP2 and QUIC. In addition, our experiments are based on the 
dataset collected in the laboratory, which may lead to the limitations of our model. We will pay 

more attention to the traffic in different network environments and further improve the 

generalization capabilities and robustness of our model. 
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