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ABSTRACT 
 
The generation task from text to image generates cross modal data with consistent content by 

mining the semantic consistency contained in two different modal information of text and image. 

Due to the differences between the two modes, the task of text to image generation faces many 

difficulties and challenges. In this paper, we propose to boost the text-to-image synthesis through 

an adaptive learning and generating generative adversarial networks (ALG-GANs). First, we 

propose an adaptive forgetting mechanism in the generator to reduce the error accumulation 

and learn knowledge flexibly in the cascade structure. Besides, to evade the mode collapse 

caused by a strong biased surveillance, we propose a multi-task discriminator using weak-

supervision information to guide the generator more comprehensively and maintain the semantic 

consistency in the cascade generation process. To avoid the refine difficulty aroused by the bad 
initialization, we judge the quality of initialization before further processing. The generator will 

re-sample the noise and re-initialize the bad initializations to obtain good ones. All the above 

contributions have been integrated in a unified framework, which is an adaptive forgetting, 

drafting and comprehensive guiding based text-to-image synthesis method with hierarchical 

generative adversarial networks. The model is evaluated on the Caltech-UCSD Birds 200 (CUB) 

dataset and the Oxford 102 Category Flowers (Oxford) dataset with standard metrics. The 

results on Inception Score (IS) and Fréchet Inception Distance (FID) show that our model 

outperforms the previous methods. 
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1. INTRODUCTION 
 
In the past few years, generative adversarial networks (GANs) [1] have boomed in the deep 

learning tasks. Various kinds of GANs [2], [3], [4] have brought amazing results on generating 

natural images through random noise. In order to generate images met the desire of users, 

conditional generative adversarial network (CGAN) [5] sets a condition as the target for the 
generator. deep convolutional generative adversarial network (DCGAN) [6] combines GANs 

with convolutional neural network (CNN) to improve the quality of generated images. To 

incorporate more accurate surveillance, auxiliary classifier generative adversarial network 
(ACGAN) [7] requires the discriminator to output both probability and fine-grained category.  

 

http://airccse.org/cscp.html
http://airccse.org/csit/V12N06.html
https://doi.org/10.5121/csit.2022.120623


274       Computer Science & Information Technology (CS & IT) 

Although significant progress has been made in generating visually realistic images, generating 
images that match the given text descriptions is still challenging. The conditional align Deep 

Recurrent Attention Writer (alignDRAW) [8], which is the first text-to-image generation model 

extending DRAW [9] to generate images from texts. However, the synthesized images are 

blurred with a low-resolution of 36x36. Then, Reed et al. [10] introduce GAN to text-to-image 
task, which follows DCGAN and CGAN to generate images from texts. As the training process is 

not stable, GAN-INT-CLS only generates plausible images for birds and flowers. To reduce the 

unstable of the training process, the popular text-to-image generation methods [11], [12], [13] 
mainly apply a multi-stage generator to supplement more restrictions. However, there are still 

three issues in the multi-stage structure. First, the cascade structure accumulates the incorrect and 

redundant information during the generation process. Second, the output of discriminators is the 
probability of reality which cannot guide the generator comprehensively. Finally, bad 

initialization of images has unclear parts which make the refine difficulty. 

 

To address these issues, we propose a new text-to-image synthesis model called ALG-GAN. In 
the process of cognition, we ignore the redundant and incorrect information to learn and 

summarize knowledge more efficiently. Inspired by this, we incorporate a pair of down-sampling 

and up-sampling convolutional layers to the up-block to bring in the forgetting process. Thus, the 
model has opportunity to throw the useless and improper information away, which is called 

forgetting mechanism (FM). For the second problem, we design a multi-task discriminator 

(MTD) to fully utilize the additional weak-supervision information in the training process, which 
can help the discriminator to guide the generator in detail. For the last problem, multi-stage 

generators start from the initial images to synthesize larger images, regardless the quality of 

initial images. However, people do not perform in this way. Good painting usually starts from a 

satisfied draft. Thus, we propose to supervise the generation process of small image to guarantee 
its quality. It is called drafting mechanism (DM). 

 

The main contributions of this paper are summarized as follows: 
 

 Forgetting mechanism: we propose a down-up sampling dual structure, which allows the 

network to forget information during the generation process. 

 Comprehensive guiding discriminator: it guarantees the comprehensive guidance by 

additional weak-supervision. 

 Drafting mechanism: we supervise the generation process through discriminator to 

guarantee the quality of initialization. 
 

We conduct experiments to evaluate the proposed ALG-GAN model on the Caltech-UCSD Birds 

200 (CUB) dataset [14] and the Oxford 102 Category Flowers (Oxford) dataset [15]. The quality 
of generated images is measured using the inception score (IS) [16] and the Fréchet inception 

distance (FID) [17]. The experimental results indicate that our ALG-GAN model performs better 

than the state-of-the-art text-to-image synthesis methods. On CUB, we improve IS from 4.36 to 
4.62. FID decreases from 16.899 to 16.500. On Oxford, the result of IS is 4.10. FID achieves 

44.307. It proves that our model generates more realistic images. 

 

The remainder of this article is organized as follows. In Section II, the related works of image 
generation are introduced from two aspects: multi-stage generator and multi-task discriminator. 

In Section III, we introduce AttnGAN as the baseline of our model. Section IV, the text-to image 

generation model ALG-GAN we proposed is introduced in detail. ALG-GAN mainly includes 
three parts: an adaptive forgetting and drafting generator and a comprehensive guiding 

discriminator. In Section V, compared with the state-of-the-art methods on the public dataset, it 

shows that this method has superior performance. The effectiveness of ALG-GAN is proved by a 
large number of ablation experiments. The conclusions and future work are shown in Section VI. 
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2. RELATED WORKS 
 
Our work mainly refers to the hierarchical structure of generator and the auxiliary task of 

discriminator. I will introduce the related work from the following two aspects. 

 

2.1. Multi-Stage Generator 
 

In the text-to-image task, Reed et al. [10] propose a structure called GAN-INT-CLS based on 
CGAN and DCGAN, which uses sentence embedding as the condition to generate images. Since 

it is difficult to control the generation process, generated images are small with 64×64 resolution 

which lack details and easily suffer from mode collapse. To address the size limitation, Zhang et 

al. [11], [12] extend single-stage to multi-stage in their StackGAN and StackGAN++. The 
stacking structure makes the generation process more controllable to synthesize large images. 

Considering that the word level information can guide the local information generation, Xu et al. 

[13] introduce AttnGAN with deep attentional multimodal similarity model (DAMSM) to refine 
images which takes into account of both local and global information. However, the multi-stage 

structure has pros and cons. On the one hand, stacking structure addresses the size limitation by 

means of bit by bit surveillance. We also incorporate drafting mechanism in the stack structure to 
guarantee a better initialization. On the other hand, multi-stage incorporates restrictions in each 

stage. However, the biased surveillance from the discriminator at each stage will be accumulated. 

We propose a forgetting mechanism to promote the model learn adaptively. Meanwhile, the 

model is prone to collapse when it is supervised by a biased strong surveillance. Thus, building a 
comprehensive surveillance is also crucial for the model to be success. 

 

2.2. Multi-Task Discriminator 
 

The original discriminator only judges the reality of input images. To guide the generator better, 

August us et al. [7] propose ACGAN by adding an auxiliary classifier to the discriminator of 
GAN, which achieves the start-of-the-art results. It confirms that additional classification task in 

the discriminators can guide a better generator. Following ACGAN, Ayushman et al. [18] 

propose TAC-GAN where the auxiliary classifier classifies the category of birds. It obtains good 
results. Following TAC-GAN, Cha et al. [19] propose Text-SeGAN adding a semantic classifier 

to guarantee the semantic consistency. Following TAC-GAN, we assume that not only category 

label, but also some other fine-grained weak-supervision information like attributes also meet this 

end. 
 

3. THE PRELIMINARY: ATTENTION BASED HIERARCHICAL GENERATIVE 

ADVERSARIAL NETWORK 
 

The text-to-image model AttnGAN [13] consists of an attention based hierarchical generator G 

and a discriminator D. G has two main components: The initialization and DAMSM based up-

block. In the initialization, firstly, the input text description is transformed by a text encoder into 
the word-level representations   and a global feature, which is used as the sentence condition. 

Then, G predicts the rough sketch of image I0according to a random noise vector   with the 

sentence condition after conditioning augmentation (CA). The noise vector is normally 
distributed. After initialization, more fine-grained visual contents are supplemented to the initial 

image by up-block, which makes it more photo-realistic. D distinguishes not only the real data 

from synthesized images, but also the matched sentence conditions from mismatched conditions. 
During training, G and D are following the two-player min-max game with value function : 

( , )V G D : 
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where E means the expectation. ( )D I  and ˆ( )D I  compute the probability of reality, while 

ˆ( , )D I e  and ( , )D I e  compute the probability of matching between text and image. CAL  

represents the K-L divergence between the standard Gaussian distribution. DAMSML  measures the 

correlation between images and corresponding text descriptions. Both CAL  and DAMSML are only 

related to G. 
 

4. THE PROPOSED ALG-GAN 
 

Our text-to image generation model ALG-GAN is demonstrated in Figure 1, which consists of an 
adaptive forgetting and drafting generator and a comprehensive guiding discriminator. 

 

4.1. Adaptive Forgetting and Drafting Generator 
 

To address the cons of hierarchical structure, we incorporate two new mechanism in our 

generator. 
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Figure 1: The architecture of the proposed ALG-GAN 

 

Forgetting Mechanism To handle the redundant and incorrect information during the generation 
process, we propose a novel up-block module, which utilizes a down-up sampling dual structure 

(DU) to learn information adaptively. 

 
Redundant information arises in the feature map after we first refining images with DAMSM 

1att

iF  in the up-block. So, we utilize the down-sampling operation to forget some information. To 

keep the size, we combine the down-sampling operation with an up-sampling operation. Then, 

we utilize the second DAMSM 2att

iF
 
to enhance the learnt knowledge. The new image features 

are obtained by: 
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where hi is image feature, ( )DUF   represents down-up sampling operation,    is implemented 

as a residual module with 1×1 convolution to adjust the number of channels. 

 

Drafting Mechanism In view of the painting process of human being, generator just likes a 

painter, guided by the discriminator. Actually, even professional painters still make drafts. They 
will judge their draft before they draw further. Such a judgment is also necessary in our 

generation process. However, it is difficult for the generator to judge the quality of the initialized 

image. We use the discriminator to conduct this task. In our DM, when the initialization of the 
image does not reach the judgment, the model will re-sample the noise and re-initialize the image 

until the requirements are met. Compared with current works, we are the first one who supervises 

the generation process. 
 

See Figure 2, our generation process is defined as follows: 
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where 
CAF means CA operation.  re   donates re-sampling the noise and re-initializing the 

image. When the cross entropy ( )CE  between the output of final epoch discriminator 0 0
ˆ( , )feD I e

and real label is larger than , the model will re-initialize the image. 
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4.2. Comprehensive Guiding Discriminator 
 

 
 

Figure 2: The generation process of ALG-GAN. We apply the final epoch discriminator to conduct the re-

drafting judgment. 

 

As mentioned in Preliminaries, the traditional text-to-image discriminators only compute the 
probability of reality and matching, which cannot guide the generator comprehensively. To 

address this, we propose a comprehensive guiding discriminator to guarantee the semantic 

consistency on the generated image during the generation process through the additional weak-

supervisions such as category label, the fine-grained attribute label etc. The comprehensive 
guiding discriminator is shown in Figure 1. It has an auxiliary task of predicting the weak-

supervision information on the synthesized and real data. Thus, discriminators give 

comprehensive surveillance rather than a biased one on the generator. The outputs of 
discriminators are defined as 
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where D is implemented as a discriminator.  up means predicting the image whether it is real or 

synthesized.  cp measures the matching of image and sentence.  wsp discriminates the additional 

weak-supervision information on images.  

 

4.3. Objective Function 
 

We define our objective function as following. 
 

 1 2 3

GAN ws

i CA DAMSM iL L L L L        (5) 
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In Eq.(5), GAN

iL is an adversarial loss. It is related to GAN [1]. λ are the corresponding weights of 

CA loss CAL , DAMSM loss LDAMSM and weak-supervision loss wsL .The definition of CAL

follows StackGAN++ [12]. The definition of DAMSML follows AttnGAN [13].
wsL  is defined as 

Eq.(6), which guarantees the comprehensive surveillance of discriminator. 

 

  ,ws r

ws

i epCE lL   (6) 

 

In Eq.(6),
rel  is real label of weak-supervision information. CE() is implemented as cross entropy. 

The discriminators minimize the training objective function DL , which is defined as follows. The 

subscript denotes the index of the discriminator. Table 1 shows the inputs to the discriminators. 
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The first row of 
i

GAN

DL means the unconditional loss, which distinguishes the real images from 

synthetic images. Another row is the conditional loss, which measures whether the text and 

image are matching. Notice that discriminators should minimize the matching probability of real 
image with mismatching text pair. 

 
Table 1. The meaning of inputs for the discriminators. 

 

Input Meaning 

I  Real image 

Î  Generated image 

( , )I e  Real image with matching text 

ˆ( , )I e  Generated image with corresponding text 

( ˆ, )I e  Real image with mismatching text 

 
When we optimize the generators, there are no real or mismatched images for discriminators to 

be fed as input. The generators should minimize the unconditional loss and conditional loss 
i

GAN

GL  
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to synthesize the real and matching images. The subscript denotes the index of the generator. The 

training objective GL is defined as follows. 
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5. EXPERIMENTS 
 
We conduct extensive experiments to validate ALG-GAN. First, we compare our ALG-GAN 

with the state-of-the-art GAN models [10], [11], [12], [13], [18], [20], [21]. Then, we validate the 

effectiveness of each new module proposed by our method, including FM, DM and MTD. 
 

5.1. Experimental Setup 
 
Dataset  We use CUB [14] and Oxford [15] datasets to verify the text description based image 

generation. We preprocess and split the images into two disjoint sets following the same pipeline 

as GAN-INT-CLS [10]. CUB contains 11,788 bird images belonging to 200 categories, where 

150 categories with 8,855 images are employed for training while the remaining 50 categories 
with 2,933 images are used for testing. Besides, CUB contains category and fine-grained attribute 

annotations. We choose them as the weak-supervision information and figure out the 

effectiveness for each of them. Oxford contains 8,189 images of flowers from 102 different 
categories, where 82 categories with 7,034 images are employed for training while the remaining 

20 categories with 1,155 images for testing. Oxford only has category annotation, which is 

employed as the weak-supervision information. Each image in both CUB and Oxford has 10 text 
descriptions. 

 

Parameter and model setting In our experiments, same as the setting [13], we define λ1 as 1.0 

and λ2 as 5.0 following. We define λ3 as 1.0 empirically. For text embedding, we employ a 
pretrained text encoder on CUB. For Oxford, we train the text encoder. During training, we fix 

the parameters of encoder to get the word features and sentence features. Then, we train  

AttnGAN [13] for Oxford as the baseline. 
 

Evaluation metric We use IS [16] and FID [17] as the quantitative evaluation measures. IS 

measures both quality and diversity of generated images. It computes KL-divergence between the 
generated class distribution and the real class distribution, which uses the pre-trained Inception 

v3 network. A higher score means a better performance. FID computes the Fréchet distance 

between generated images and real images using the extracted features from a pre-trained 

network. A lower FID means a closer distribution between generated images and real ones. 
 

5.2. Comparative Results 
 

We compare our results with the state-of-the-art text-to-image methods on CUB [14] and Oxford 

[15] datasets. We report the results of IS in Table 2. ALG-GAN outperforms other methods with 

a higher IS. It indicates that ALG-GAN generates images with better quality and diversity. 
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Table 2. The comparison of IS by our ALG-GAN and the state-of-the-art GAN models on CUB and 

Oxford datasets 

 

Methods CUB Oxford 

GAN-INT-CLS 2.88±0.04 2.66±0.03 

TAC-GAN - 3.45±0.05 

StackGAN 3.70±0.04 3.20±0.01 
StackGAN++ 4.04±0.06 - 

AttnGAN 4.36±0.03 3.74±0.09 

HDGAN 4.15±0.05 3.45±0.07 

MirrorGAN 4.56±0.05 - 

Our (ALG-GAN) 4.62±0.07 4.10±0.08 

 

 
 

 

 

 
 

 

Table 3 compares the performance between AttnGAN and ALG-GAN with respect to FID on 
CUB and Oxford. We measure FID by the officially pre-trained model. After resizing the real test 

images and the synthesized images in the same size, we compute FID between them. Compared 

with AttnGAN, our ALG-GAN decreases FID from 16.898 to 16.500 on CUB and from 46.459 
to 44.307 on Oxford, which demonstrate that ALG-GAN can learn a better data distribution on 

objects. Representative examples generated from text descriptions by different methods are 

shown in Figure 3. 

 

 
 

Figure 3. Qualitative examples of the proposed ALG-GAN comparing with HDGAN [20] and 

AttnGAN [13] on CUB and Oxford dataset. 
 

5.3. Ablation study and discussion 
 

To further demonstrate the effectiveness of each component, we perform some ablation 
experiments. Table 4 shows the results. These results demonstrate that each component in ALG-

GAN is indispensable.  

 
 

 

Table 3. FID between AttnGAN and ours, lower is better 

 

Methods CUB Oxford 

Baseline (AttnGAN) 16.898 46.459 

Our (ALG-GAN) 16.500 44.307 
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Table 4. IS produced by combining different components of ALG-GAN. 

 

Methods CUB Oxford-102 

Baseline 4.36±0.03 3.74±0.09 

Baseline + FM 4.46±0.04 3.86±0.08 

Baseline + FM + MTD(CCT) 4.56±0.04 4.08±0.08 

Our (Baseline + FM + MTD(CCT)+DM) 4.58±0.04 4.10±0.08 

Baseline + FM + MTD(ACT) 4.59±0.05 - 

Our (Baseline + FM + MTD(ACT)+DM) 4.62±0.04 - 

 

FM Baseline + FM improves IS of2.3% over the baseline on CUB. Meanwhile, It results in 

3.2% improvement on Oxford. The results confirm that forgetting the redundancy and incorrect 
information benefits the generation. In addition, in order to prove that the improvement of model 

performance is not caused by the increase in computing power after the introduction of the new 

structure, we set up a comparative experiment to replace the down-up sampling dual structure in 

ALG-GAN with naive Conv3×3. IS is shown in Table 5. It can be seen from the results that the 

introduction of additional convolutional layers will cause the model learn knowledge more 
redundant, resulting in a decrease performance. 

 

CGD Based on FM, we further evaluate the effectiveness of CGD by validate Baseline + FM + 

CGD. When the discriminators conduct the category classification task (CCT), it improves IS 
from 4.46 to 4.56 on CUB and 3.86 to 4.08 on Oxford. When the discriminators conduct the 

attribute classification task(ACT), it improves IS from 4.46 to 4.59 on CUB. Those 

improvements prove that the weak-supervision of discriminator guides generators more 
comprehensively. Moreover, more fine-grained guidance results in better quality of the generated 

images. Because of the lack of attribute annotation in Oxford, we do not verify the validity of 

attribute classification on the flower dataset.  

 

Table 5. The comparison of IS by FM and naive Conv3×3 on CUB and Oxford datasets 

 
DM We discuss the effect of hyper parameter α in DM to IS through Baseline + FM + CGD. 

When α is set as 5.1, the model has best performance on ACT. When the weak-supervision 

information is category label, α =5.6 achieves best results. On Oxford, IS is stable when α are set 

from 5.5 to 5.7.The results of IS are shown in Table 6 and 7, which show that guaranteeing the 
initialization quality through supervision on the generation process benefits the subsequent image 

refinement. However, although DM works well, it is difficult to find one α to apply to all models. 

The reason is that α is influenced by the model initialization and other hyper parameters such as 
learning rate and batch size etc. 

 

 

 
 

 

 
 

 

Method CUB(ACT) Oxford(CCT) 

Baseline 4.36 ± 0.03 3.74 ± 0.09 

Baseline  + FM + CGD 4.59 ± 0.05 4.08 ± 0.03 

Baseline  + Conv3×3 + CGD 4.33 ± 0.05 3.64 ± 0.07 
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Table 6. Results on CUB from different α in DM 

 

Method CUB 

Baseline + FM 4.46±0.04 

Baseline  + FM +MTD(ACT) 4.59±0.05 

Baseline  + FM +MTD(ACT) +DM (α = 4.5) 4.57±0.05 
Baseline  + FM +MTD(ACT) +DM (α = 5.0) 4.60±0.05 

Baseline + FM +MTD(ACT) +DM (α = 5.1) 4.62±0.04 

Baseline + FM +MTD(ACT) +DM (α = 5.2) 4.60±0.06 
Baseline + FM +MTD(ACT) +DM (α = 5.5) 4.59±0.05 

Baseline + FM + MTD(CCT) 4.56±0.04 

Baseline + FM +MTD(CCT) +DM (α = 5.0) 4.57±0.05 

Baseline + FM +MTD(CCT) +DM (α = 5.5) 4.58±0.03 

Baseline + FM +MTD(CCT) +DM (α = 5.6) 4.58±0.04 

Baseline + FM +MTD(CCT) +DM (α = 5.7) 4.58±0.04 

Baseline + FM +MTD(CCT) +DM (α = 6.0) 4.57±0.04 

 
Table 7. Results on Oxford from different α in DMs 

 
Method Oxford 

Baseline +FM 3.86±0.08 

Baseline +FM +MTD(CCT) 4.08±0.08 

Baseline +FM +MTD(CCT) +DM(α=5.5) 4.09±0.07 

Baseline +FM +MTD(CCT) +DM(α=5.6) 4.10±0.08 

Baseline +FM +MTD(CCT) +DM(α=5.7) 4.08±0.09 

Baseline +FM +MTD(CCT) +DM(α=6.0) 4.07±0.09 

 

6. CONCLUSION  
 

In this paper, we propose a novel ALG-GAN method for efficient text-to-image synthesis. 
Compared with previous models, our ALG-GAN performs better in generating consistent and 

high-quality images because the generator learns more adaptively with the forgetting mechanism 

and the drafting mechanism. Besides that, the comprehensive guiding fiscriminators reduces the 

mode collapse. 
 

As future work, using efficient language model to process text description can obtain more 

informative condition vector, and using this vector to generate text to image can obtain higher 
quality images. 
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