
David C. Wyld et al. (Eds): FCST, CMIT, SE, SIPM, SAIM, SNLP - 2022

pp. 111-129, 2022. CS & IT - CSCP 2022 DOI: 10.5121/csit.2022.120809

TRAC: AN APPROACH TO TEACHING

SECURITY-AWARE PROGRAMMING
IN UNDERGRADUATE COMPUTER

SCIENCE COURSES

Rochelle Elva

Department of Mathematics and Computer Science,

Rollins College, Florida, USA

ABSTRACT

The unfortunate list of software failures, attacks, and other software disasters has made it

apparent that software engineers need to produce reliable code. The Department of Homeland

Security reports that 90% of software exploits are due to vulnerabilities resulting from defects

in code. These defects are easy to exploit. They are potentially dangerous as they create

software vulnerabilities that allow hackers to attack software, preventing it from working or

compromising sensitive data. Thus, these defects need to be addressed as part of any effort to

secure software. An effective strategy for addressing security-related code defects is to use
defensive programming methods like security-aware programming. This paper presents TRAC,

an approach to teaching security-aware programming. The acronym stands for Teach, Revisit,

Apply and Challenge. It also describes the implementation of the approach and the results of a

small case study (n = 21), in a senior-level elective course.

KEYWORDS

Security-Aware Programming, Secure Coding, Software Security, Teaching Secure Coding.

1. INTRODUCTION

In our modern world, every facet of our lives from the most mundane activities in our homes to

the more complex activities like medical care, all rely to some extent on software. These systems
utilize software to manage a wide range of applications and services. They handle sensitive data

including personal and financial information and control processes that are at times life-

threatening. As a result of this strong dependency on software, even a minor security breach can

have a ripple effect resulting in tremendous damage that cannot be contained or localized. The
unfortunate list of software failures, attacks, and other software disasters has made it very

apparent that as software engineers, we need to produce reliable code- that is secure code.

The Department of Homeland Security reports that 90% of software exploits are due to

vulnerabilities that result from defects in code [1]. These defects are easy to locate and exploit.

They are potentially dangerous as they create software vulnerabilities allowing hackers to attack
software, rendering it non-operational and/or compromising sensitive data [2]. Thus, any effort to

secure software must include the management of these code defects.

http://airccse.org/cscp.html
http://airccse.org/csit/V12N08.html
https://doi.org/10.5121/csit.2022.120809

112 Computer Science & Information Technology (CS & IT)

An effective strategy for addressing security-related code defects is to use defensive
programming methods [3], such as security-aware programming. These programming methods

are designed to build reliable systems. They achieve their objective by incorporating security

considerations into the code design process so that the software produced is free from flaws that

will make it vulnerable to attack. Such systems can be trusted to perform reliably, even under
unexpected conditions. From a coding standpoint, software developed defensively will be free of

security-related defects such as buffer overflow errors, null pointer deference, and improper input

and output validation errors.

Incorporating secure coding instruction in the undergraduate curriculum would provide our

students with the ability to code securely. This is a necessary skill to prepare them for their
careers [4]. Currently, there is often a knowledge gap between the coding demands of the

industry and the ability of graduating students to write robust code. To bridge this gap, many

high-tech companies must provide security training for new hires [5]. Security awareness training

discussed by Banerjee and Panday in [6], is just one approach that some companies use. The use
of security-aware coding instruction - like TRAC, in our university programs, would fill this

knowledge gap and provide graduates with skills that will make them immediately marketable.

This paper presents TRAC, an approach to teaching security-aware programming. The acronym

stands for Teach, Revisit, Apply and Challenge. It is a four-step approach devised to facilitate the

development of mastery in writing secure code. Our approach is implemented as a module across
multiple existing, core and elective courses in the computer science curriculum. This paper

describes the implementation of our approach to security-aware programming and presents the

results of a small case study, used as a pilot test.

2. BACKGROUND AND REVIEW OF LITERATURE

In this section, we will define the terms that will be used in this paper, explain our rationale for

teaching security-aware programming, and provide a review of related work in software security
- particularly software security education. We will also discuss some of the obstacles that

contribute to the lack of security-aware programming instruction in the undergraduate computer

science curriculum.

2.1. What is Security-Aware Programming?

To define security-aware programming, we first must define two fundamental concepts: code
defects and security-related software vulnerabilities. Code defects refer to errors in code. We will

focus on logical errors, not syntax errors. We assume that the target student group is capable of

writing basic code that compiles. Security-related software vulnerabilities are weaknesses in
software, that stem from code defects that can be exploited. Their presence in code, therefore,

makes it less secure. For the purposes of this paper, security-aware programming is defined

simply as coding securely. This is the skilled practice of designing and writing code so that the
final product is free of defects, that could lead to security-related vulnerabilities. As a result, the

code (and software produced) is robust and reliable. Like any other skill, security-aware

programming is developed and refined through repeated practice. We use the contextual approach

to learning presented in [7]. This involves learning to identify the code defects to be avoided and
engaging in the application of the relevant strategies to prevent them in a variety of situations.

Thus security-aware programming involves content from the cross-cutting bodies of knowledge

including software engineering and the fundamentals of software and program development [3,
8]. The actual implementation of security-aware programming would incorporate all the skills

required to build robust code. These skills would include identifying test cases that provide full

Computer Science & Information Technology (CS & IT) 113

coverage of the code and testing code throughout the development process including code
review. In related work, the concept of security-aware programming is referred to as defensive

programming [3, 4, 9], robust programming, secure programming [3, 4], having a security

mindset [10], and coding using risk management [11].

According to the report of the 2008 Secure Coding Workshop, while coding security features in

code is the job of only a few security specialists, security-aware programming is the

responsibility of every programmer. They continue with the claim that security-aware
programming is a requisite for meeting the security requirements of code [4].

2.2. The Rationale for Teaching Security-Aware Programming

Gary McGraw states that external approaches to securing software are nowhere as effective as

designing software that is secure in the first place [12]. The Department of Homeland Security
cites The Software Engineering Institute as reporting that 90% of software exploits are due to

vulnerabilities that result from defects in code [1]. The presence of these defects needs to be

addressed since they are easy to identify and exploit during attacks such as DOS (denial of
service) [2]. The failure to practise defensive or secure coding has been identified as the cause of

many of the defects in software [3, 13]. As a result, there has been some discussion and research

on the value of teaching security-aware programming and how this skill can be incorporated into

the undergraduate computer science curriculum. At the 2008 Secure Coding Workshop, industry
representatives lamented the time and other resources needed to train new employees in the skills

required to write secure code. They also advised that students should enter the job market already

skilled in secure software development [4]. In 2010, the Summit on Education in Secure Software
was convened to identify the specifics of the security content that students need to learn and to

suggest effective teaching strategies [14]. Then the 2013 Computer Science Curricula added

Security as part of the Computer Science Body of Knowledge in undergraduate Computer
Science programs. Nine core hours were allocated for the security knowledge areas. This

included fundamental concepts in security, design principles, and defensive programming [9]. It

is evident from all of these efforts, that at all levels, stakeholders agree that security should be an

integral part of every Computer Science program. However, for many of the reasons stated in
Section 2.3 security-aware programming is totally absent, left to chance, or taught in a very

limited way in many of our undergraduate Computer Science programs [15].

Our review of literature strongly supports the idea that security-aware programming should be an

essential component of computer science education [2– 4, 6, 8, 9, 12, 16–18]. This is because

security is a functional requirement for all software in our modern social environment. Most

times students discover how to make their code robust through a process of trial and error, but the
topic is hardly ever discussed in undergraduate courses, particularly at the introductory level. The

TRAC approach to security-aware programming being proposed in this paper is designed

specifically to provide multiple opportunities for students to develop the skill of writing robust
code. A primary difference between the proposed approach and current practice is that the

learning of secure coding skills is facilitated by actual curriculum design, instead of just being

left to chance, as is often the case currently.

Another benefit of teaching security-aware programming is the positive impact on students’

careers. Learning good secure coding habits includes understanding the value of test coverage to

evaluate the efficacy of code. This is important since a large proportion of the coding aspects of
the technical interview evaluate just that. Unfortunately, even students who are good

programmers, often fail this aspect of the interview because they lack the skill of writing code

that is fully robust. The security-aware code development paradigm will provide opportunities to
develop the requisite skills, thus making students more marketable [4].

114 Computer Science & Information Technology (CS & IT)

The vast amount of software failures and disasters has made it very apparent that the production
of reliable code is a fundamental requirement and ethical responsibility of every software

engineer. By its very definition, secure code is reliable code. Therefore, it is our responsibility as

educators to teach security as part of software development. In addition, students who learn to

code securely from the onset are more likely to continue this practice in their careers as this
would have become second nature to them after years of repeated practice. It is also easier to

teach individuals to master a skill by teaching the correct technique the first time, rather than

attempting to correct deficiencies from years of bad practice [4].

The teaching of security-aware programming has taken one of three forms [8]:

 single concentrated course [19, 20]

 threading or integration in courses already existing in the curriculum [10,
21–25]

 concentration/track in a degree program [26]

Deciding on which approach to use is important. There are arguments for each approach [23]. For

example, having a separate security class facilitates focus and depth of learning, and tends to be
very effective since it is taught by faculty who are invested in the topic [3]. The integrated

approach also has its advantages since there are multiple opportunities for concept formation

through repetition. This approach also has high impact value since more students would have the
opportunity to be exposed to the security content with little disruption of the curriculum.

However, it would involve ’buy-in’ from all faculty teaching the classes with software security

content. The third option, teaching security awareness as a concentration/track, has the
disadvantage of needing specially trained faculty and the possibility of low impact, since students

may not select the concentration/track. However, this approach would provide the benefit of

depth of learning for the students who do select the concentration/track.

The TRAC approach to teaching security programming is a threaded approach that provides

several advantages and addresses some of the issues just discussed. This approach allows faculty

who appreciate the value of security education to include the approach across their classes. The
use of TRAC does not alter the course schedules and provides learning opportunities for students

across multiple courses. This will therefore provide impact across the curriculum even if only one

faculty member ‘buys in’.

2.3. Obstacles to Teaching Security-Aware Programming

Although the Computer Science Curricula 2013 has recommended that security be infused into

the computer science curriculum at all levels [9], almost 10 years later, this recommendation has

not been implemented in several programs. This can be attributed to two primary reasons:

perceived lack of resources and failure to believe in the merit of teaching security-aware coding.
We will now discuss some barriers to the teaching of security-aware programming that we have

identified through our research.

The issue of lack of resources has two main components: faculty, and curriculum bandwidth.

Several institutions state that they do not have faculty with software security training [27]. Some

faculty also complain about the absence of teaching resources [5]. Yet, several resources have
been developed with materials that they can use. These include course modules and e-learning

materials such as the Seed Project, OWASP WebGoat, and SWEEP project [8]. faculty are either

unaware of their existence or they are not convinced of the value of the required time investment.

Another problem is that many of the resources are more advanced and complex than what would
be needed by faculty who are not security specialists. These resources tend to focus on Web-

Computer Science & Information Technology (CS & IT) 115

based projects and cybersecurity frameworks and are therefore inappropriate for introductory-
level courses. The second resource issue is a lack of both time and space in an already packed

curriculum. Creating new security courses or adding content to already existing courses is

considered an unnecessary burden, causing an increased workload for both faculty and students

[4, 5]. In addition, some faculty believe that introductory classes should focus solely on code
algorithms and syntax. The insertion of new content is considered disruptive [3].

The other issue is the perceived merit of teaching secure programming. Many faculty do not
value security-aware programming as a necessary addition to the curriculum. Some believe that

they are already teaching these concepts - although student feedback suggests the contrary (see

Section 4.2.3). Also, while many companies would like new hires to be skilled in secure
programming, they do not explicitly include this as a requirement in posted job descriptions.

Consequently, some faculty and even students do not prioritize secure programming skills in the

undergraduate computer science programs [4]. According to Bishop in [27], some faculty also

believe that it is a myth that the security of software will be improved by teaching students to
code securely. Their rationale is that this ignores the impact of other contributors to security. It is

true that one cannot overlook the value of the other facets of software security, such as security

infrastructure. However, as more companies begin to accept the value of security, investment in
secure infrastructures will become standard and the need for secure code will remain a standard.

Teaching students to code securely, will not solve every software security problem, however, it

will contribute to the solution.

2.4. Related Work

Table 1 summarizes the approaches to teaching software security that we identified in our review

of the literature. In the 12 articles identified, the majority used the approach of integrating

security modules into already existing courses. However, only two of these spoke specifically
about threading these modules across multiple courses at different levels in the undergraduate

program [18, 23]. In two of the articles, a single specialized course was used to introduce an in-

depth coverage of software security [19, 20]. While all the articles suggested ways to incorporate

the learning of software security principles into the undergraduate curriculum, their approach and
focus were different. Some approached the teaching of software security as secure software

design, while others used defensive coding. Numbers 1-4 and 9 in Table 1, used the secure

software design approach, adding a level of security to system development life cycle (SSDLC).
Numbers 5-7 and 12 in Table 1, used the defensive coding approach. In four of the articles, the

focus was on teaching security as soon as possible, so the target group was the introductory

computer science classes. These are represented by numbers 5-8 in Table 1. Two articles focused

on specific software security issues: secure mobile computing [28] and digital forensics [29]. In
two of the articles, the focus was to educate faculty. This served both to train the faculty and to

provide resources that they could reuse in their courses [5, 23].

116 Computer Science & Information Technology (CS & IT)

Table 1. Summary of the approaches to teaching software security that

we identified in our review of literature

Teaching Format # Approach Focus Source

Single Course

1 Software Design Secure Software Design [19]

2 Secure Software Design

SSDLC

Senior-level security

course

[20]

Integration in existing

course/s

3 Software Design Data Structures

Software Design

[21]

4 Software Design (SS-

DLC)

Intro to Java Software

Engineering

[22]

5 Defensive coding Introductory Classes [10]

6 Defensive coding Introductory Computer

Science classes

[16]

7 Defensive coding Introductory Computer

Science classes

[24]

8 General Security Topics

- digital forensics

Introductory course [29]

9 Secure Software Design for
Mobile Apps

Courses in Mobile app
development

[28]

10 Resources & Tools Faculty training

workshop

[5]

Integration in existing

course/s and Threaded
throughout the

curriculum

11 Secure Software Design

SSDLC using software case

studies

Faculty training

workshop

[23]

12 Secure Software Design and
defensive programming

6 courses (including
introductory core

courses) throughout the

curriculum

[18]

3. TRAC APPROACH TO TEACHING SECURITY-AWARE PROGRAMMING

In this section, we present a detailed description of the TRAC approach to developing the skill of

security-aware programming. We also identify the set of software defects that will be the focus of
our instruction.

TRAC is an acronym for Teach, Revisit, Apply and Challenge.

Our approach is intended for use as a module in any code-based computer science course. To

overcome some of the obstacles to teaching secure coding (discussed in Section 2.3), our

approach works with existing courses. The techniques used can be implemented by faculty
without specific training in software security. It can also be used across multiple courses, to

facilitate incremental skill development through repeated practice in a variety of contexts. This is

supported by Ambrose et al. in their book on how to learn. They claim that it takes at least 21
repetitions of the correct way to perform a skill before it becomes a habit.

Computer Science & Information Technology (CS & IT) 117

3.1. Implementation of TRAC

Figure 1. The TRAC Approach to Teaching Security-Aware Programming

Figure 1 illustrates our thinking on how mastery of security-aware programming skills can be

developed using the TRAC approach. Learning will occur in repeated phases of
teaching/learning, revisiting written code to evaluate its level of security, applying the knowledge

of security-related code defects to adjust code to improve security, and challenging each other

during code review. The ultimate challenge is the self-challenge - to be able to write code

needing little or no security improvements.

We selected a spiral and not a cycle to represent our learning process because while the phases

are repeated, the starting point for repetitions is not the same. Each experience improves the level
of skill development, thus moving the learner further along the learning continuum, and closer to

mastery.

3.1.1. Teaching

During the teaching stage, students will be instructed using the content described in Section 3.2.1.

As a result of these experiences, students should be able to name the defects described in Table 2.
They should also be able to identify these code defects in new code examples. Students will also

use traditional code design tools like activity diagrams and class diagrams to identify code

interface points and the data traveling across those interface points. They will learn to use these to
determine potential data security issues.

3.1.2. Revisiting Stage

Once students have developed proficiency in the identification of security flaws, they will be

invited to examine their previous coding assignments to find the unchecked security-related code

defects that made their programs vulnerable. They will then select examples that they feel
comfortable sharing with the class. The class will then discuss the presentations, identifying the

most common defects found and any others that might have been missed by the presenters.

118 Computer Science & Information Technology (CS & IT)

3.1.3. Application Stage

At the beginning of the module, the application stage will involve two types of activities. The

first will be to apply the knowledge of security-aware programming to correct the security flaws

identified in a previous assignment submission. The second will be to use the skills learned, in a
completely new assignment to write code that is even more secure than their previous work. As

students master the skill of security-aware programming, they will automatically use the

strategies for the avoidance of code defects, to produce secure code that is error free. Through
practice, writing secure code will become more natural and second nature.

3.1.4. Challenge Stage

During the challenge stage, students are given coding problems that they will solve in groups. As

they work on their solutions, they will make a list of the security checks that they have

considered. All team members will contribute to the final deliverable. Teams will then challenge
each other to break the code created. As students progress through this process, the challenge

stage will evolve into formal code reviews. This will prepare students for the code review process

that is a common practice in the industry. Through the activities of this stage, students will learn
how to prepare their code for review and how to critically review code prepared by their peers.

3.2. The Learning Goals of TRAC

The TRAC approach is designed to create opportunities for students to acquire the skill of writing

robust code through awareness of security concerns associated with software. This goal of the
approach is expressed in the following two learning outcomes: as a result of using the TRAC

approach, students should:

• acquire code security knowledge

• develop mastery in the skill of security-aware programming

3.2.1. Acquisition of Knowledge

We believe that code security knowledge involves both the learning of software security content

and an understanding of the contextual relevance of coding securely. Thus, facilitating the
acquisition of code security knowledge instruction in TRAC begins with building a rationale for

secure programming. Teaching security-aware programming using TRAC, fits into the

Information Assurance and Security knowledge areas, added to the computer science curriculum

in 2013 [9]. This knowledge area has the following five learning outcomes:

1. Analysis of the trade-offs of balancing security properties

2. A description of risks, threats, and vulnerabilities and how these relate to security attacks
3. Understanding the concepts of trust and trustworthiness in terms of software

4. OS SEcurity and Network Security

5. HCI

The TRAC approach addresses the first three of these learning outcomes. This is expressed in our

teaching/learning objectives that students should be able to:

 explain the rationale for security-aware programming

 list and identify common code defects that are security risks

 apply design and coding principles of defensive programming to mitigate security-related
code defects.

Computer Science & Information Technology (CS & IT) 119

Table 2. Common Code Weaknesses Adapted From The Common Code Weakness Enumeration

CWE

ID

Weak-

ness

Highest

Position

Description Likelihood of

Exploit:

Negative effects Mitigation

Strategies

787
Out of
Bounds

Write

1

Code writing data

to a position
before or after the

memory location

of a given

buffer

high
Code crash, DOS,
modifying

memory

input validation
of write

parameters

125

Out of

Bounds

Read

3

Code reading

data from a

position before or

after the memory

location of a

given

buffer

high

Code crash, DOS,

modifying

memory

input validation

including

calculations

producing

length parameters

20

Improp

er Input

Validati

on

3

Code receives
and uses data

without setting in

place checks and

balances that the

values received

are legitimate

high

Code crash, DOS,

entire system

hijacked by

ransomware

Adopt a non-trust

policy treat all
input as

untrustworthy

analyze code and

design for

possible areas of

insecure input

and validate input

190

Integer

Overflo
w

8

the results of a

calculation that

produces a value

larger than an

integer; code
attempts to store

that value as an

integer

high

Buffer overflow,

Code crash or
infinite loop

input validation

and validation of

the result of

integer
calculations;

using unsigned

integers

129

Improp

er

Validati

on of

Array

Index

14

Code either fails

to validate array

index values

leading to code

errors including

out-of-bounds

reads and writes

high

Code crash, DOS,

unexpected code

behavior, memory

corruption, out-of-

bounds read, out-

of-bounds write

Adopt a no-trust

policy, data

validation

including input

validation for all

data used as array

index

476

Null
Pointer

Deferen

ce

14

Code accesses or

tries to use null
value as if it were

an actual object

reference

medium
Code crash,
unexpected code

behavior

Validation of all

object data
including input

validation for all

data

754

Improp

er

check

for

unusual

orexcep

-tional

conditio
ns

15

Code fails to

check for edge

cases and

exceptional

conditions in the

code

medium

Code crash, DOS,

unexpected code

behavior

Develop test

cases that provide

full coverage of

code, handle

exceptions locally

instead of

throwing them to

other parts of

code, anticipate
error conditions

120 Computer Science & Information Technology (CS & IT)

and program code

to exit elegantly

835
Infinite

Loop
26

Code gets into a

loop and does not

have a condition

to get out

no known

attack pattern

Code crash due to

consumption of

memory, DOS

Check that all

loop terminating

conditions can be

reached; input

validation for

loops managed

by input

data

532

Insertio

n

of

sensitiv

e

data in

log file

33

As part of error

handling, code

unwittingly
writes security-

sensitive data

such as code

structure, file

names and format

to log file.

high

Attackers gaining

access of log file
have access to

sensitive data and

an unprotected

path to security

data

Careful selection

of messages sent

to log files;

Sensitive error
log messages

used during code

development and

testing should be

erased when no

longer

needed

We subscribe to the opinion cited in [3, 30] that acquiring the relevant knowledge will affect

what the students observe and how they use these observations to solve new problems. For this

reason, in the teaching component of our approach, we provide content that will help students to
understand why they should care about code security. To establish this context, we review

notorious major software failures and discuss and analyze reports from multiple sources

including the Department of Homeland Security (DHS), Software Engineering Institute (SEI),

and reputable new reports on current events explaining the impact of code defects.

To study code defects, we selected from an established list of verified software code weaknesses.

Our source was the Top 25 Common Errors Enumeration from CWE/SANS [2]. This source
ranks software defects based on their prevalence, and impact on code security. The most common

and harmful defects are found at the top of the list. We examined lists from 2010 to 2021.

Several of the 25 top code weaknesses listed were not relevant to our target audience. For
example, many of those listed focused on web-based software applications. We, therefore,

filtered the list, keeping application-independent flaws that would be contextually relevant to

most students in the computer science undergraduate program. Our final selection was the set of
nine code defects shown in Table 2.

For each defect in the Table, we provide a description of the defect, an explanation of the
negative impact that it can have on code, and the likelihood that this flaw would be exploited. We

also mapped each defect to a list of strategies that can be used to mitigate its occurrence in code.

To create a discussion-point on the relative significance of the defects selected, the highest

position, held in the top 25, is presented in the Table. This highest position refers to the highest-
ranking that each specific defect, ever occupied in the list of top 25 common errors, during the

time period that we examined (2010 - 2021). The first eight defects in Table 2 were listed among

the top 25 weaknesses at some time during our research time period. The ninth defect in our list
(insertion of sensitive data in log files), was never in the top 25, it was listed in the top 35 in

2019. However, we decided to include this error handling defect for the following three reasons:

there was a high likelihood that the defect would be exploited; it was a good teaching tool, and it
would be relatable to students.

Computer Science & Information Technology (CS & IT) 121

3.2.2. Skill Development

Our primary objective is to take learners from the novice level of security-aware programming to

the level of proficiency - as experts. Borrowing from the developmental learning approach in

[30], we evaluate mastery by focusing on two dimensions of learning - consciousness, and
competence. Consciousness is the achievement of a goal through deliberate choice and focused

action. Competence is the ability to perform a task with a high level of mastery or expertise.

Figure 2. Progression from Novice to Expert Secure Programmer using TRAC

It is our belief that the use of TRAC will facilitate learners’ maturity from being unconsciously
incompetent security-aware programmers to becoming unconsciously competent security-aware

programmers. The stages of transitional skill development are depicted in Figure 2.

In the first stage, the learner is unconscious of security concerns and is also incompetent at

coding securely (thus unconsciously incompetent). This corresponds with the beginning of the

Teaching stage of TRAC. The learner transitions to the second phase, after being schooled in the
identification of security-related code defects, and their impact on the vulnerability of software.

This second phase is called the consciously incompetent stage because while the learner is aware

of the security concerns that need to be addressed, they have limited knowledge and ability to

correct them. At this point, the learner is at the stage corresponding with the Revisiting stage of
TRAC. Through practice and more learning, the learner will become both more conscious of the

security concerns, and competent in the strategies used to reduce and/or avoid code defects. The

learner consciously and skilfully applies their learning to produce more secure code. At this
point, the learner transitions to the next phase called consciously competent. This will occur

during the Application stage of TRAC. With much practice and experience, the learner will

effortlessly transition to the next stage. This constitutes mastery. At this point, the practice of

secure coding will be second nature. The programmer codes securely on autopilot as it were. This
mastery stage is described as the unconsciously competent stage. This stage corresponds with the

Challenge stage of TRAC, but it is not a static stage. The learner continues through the stages of

TRAC but each time gets further along the learning continuum, and closer to mastery.

4. CASE STUDY

The TRAC approach was tested in an upper-level, elective course, on Secure Software

Engineering. Security-aware programming was taught as a course module, over a period of three
weeks. The Security-Aware Programming module was taught as a component of the Secure

System Development Life Cycle. There were 21 students enrolled in the course: seven graduating

seniors, ten juniors, and four sophomores. All students had already completed at least three
computer science courses.

122 Computer Science & Information Technology (CS & IT)

The pilot test was evaluated using observation of students’ interactions during class, evaluating
written assignments, and reviewing student feedback. There were 3 written assignments. The

first 2 were identical assignments but were given 2 weeks apart. Students were asked to find a

code sample that they had written and submitted for one of their previous computer science

classes. They were required to analyze the code to see if there were any security-related code
defects. Students were then asked to modify the code sample so that it was more secure. The third

assignment was to code the backend of an automated teller machine (ATM), paying special

attention to security issues. Students were asked to comment their code to indicate security
concerns that they had addressed. These submissions were then presented to the class for an

informal code review in the form of a class discussion. A simple assignment was selected

because the group of students ranged in experience from first semester sophomores to graduating
seniors. The more senior students were given the option to select their own problem and prepare a

secure code solution - using the absence of security-related defects as the measure of code

security.

At the end of the course, students were asked to volunteer anonymous feedback on their

experiences. Data was collected from all students through an anonymous, informal survey, course

evaluations, anecdotal records, informal interviews, and unsolicited conversations. No extra
credit was assigned for student responses. Data collection was conducted surrounding five

feedback questions (FQ). Data was also collected at the end of the semester following the course

(almost four months later) to determine if the course in software security had impacted their
coding habits. The latter is analyzed as FQ 6.

The following 6 feedback questions were used to obtain student feedback.

1. How would you define secure software?

2. Has your perception of software security changed during this semester? If yes how?

3. What would you say was the greatest takeaway from this course?
4. How did the course match the expectations that you had during registration?

5. Is there any area/topic covered in this course that you will use going forward? If yes,

please explain

6. four-month Check-In: Are there any security strategies/checks that we studied last
semester that you find yourself paying more attention to as you write code now?

4.1. Results from Observing Students in Class and Evaluating Assignment

Submissions

From students’ interactions in class, it was clear that they were engaged and enjoying the content

on software security. All students participated in class discussions. One sign that students were

really engaged with the content (in and out of class), is that on three occasions, different students
sent an email sharing a software security story, that they had heard from current events on the

news. Also, as the semester progressed and students became more confident in their ability to

identify and correct security flaws, they became more willing to critique each other’s work and to

present their own code for critique.

In the submissions for Assignment 1, student examples were almost 100% cases of failure to

validate input. By the time students submitted the second assignment, their growth in knowledge
was evident. They presented more complex code with a variety of different security flaws and

were able to suggest code alternatives that would improve the degree of security of the code.

There was one group that struggled with finding a more complex coding example. However, after
observing code presented by their peers, they were able to resubmit more complex and accurate

code for the assignment. Assignment 3 was very well done. Most students solved the problem

Computer Science & Information Technology (CS & IT) 123

assigned. A few groups took the challenge to develop a more complex system. They implemented
a database query system, an account login validator, and a batch processor for financial

transactions.

From these exercises, it was evident that students were able to identify and correct the set of
security-related code flaws listed in Table 2.

4.2. Results from Students’ Responses to Feedback Questions

In this section, we will discuss students’ responses to each of the six feedback questions from
Section 4

4.2.1. Responses to FQ 1: Student Definition of Secure Software

Figure 3 illustrates the terms used by students to describe their understanding of secure software.

Most students, (between 80% and 100%), defined secure software using the ACID (availability,

confidentiality, isolation, and durability) properties, associated with reliable or robust software.
All students defined secure software, as the product of secure coding. A little over 70% of the

students included strategies used to achieve software security in their definition. They included

both reactive and proactive measures.

Figure 3. Graph of students’ responses to Feedback Question 1

124 Computer Science & Information Technology (CS & IT)

4.2.2. Responses to FQ 2: How Students’ Perception of Software Security Has Evolved

During the Semester

Figure 4. Graph of students’ responses to Feedback Question 2

When describing how the course changed their perception of software security, students’
responses generally surrounded three main themes:

 Definition of Security

 Value of Security-Aware Programming in achieving Software Security

 Their own ability to implement strategies to make their software more secure

Students explained that they had previously viewed software security as cybersecurity. At the end

of the course, that perception had changed to viewing software security as a characteristic of the

software and more than just cybersecurity. All students commented on a new understanding that

software security can be negatively impacted by code defects. Secure coding was therefore
something that they were capable of, by proactively avoiding security-related code defects.

Figure 4 summarizes students’ responses to this feedback question.

Computer Science & Information Technology (CS & IT) 125

4.2.3. Responses to FQ 3: What Students Considered the most Significant Takeaway from

the Course

Figure 5. Graph of students’ responses to Feedback Question 3

All the students considered the skill developed in the identification of software flaws as one of

the greatest takeaways of the course. They all indicated that this was a skill that they were happy
to have acquired as it has improved the quality of their code. Most students indicated that their

code has improved because they test more extensively to ensure that all edge cases were

accounted for.

Three students commented on having adopted a no-trust policy with input data, so they validate

all input before using it. Students also commented on the fact that security-aware programming

was a surprisingly simple, yet useful tool that they would be using for the rest of their careers.
Two students commented that they have been teaching their friends how to code securely when

working on collaborative projects. Two students discussed that achieving secure software may be

costly in terms of time and human resources. However, the return on this investment was worth
it. Another student reported that the primary takeaway was the appreciation that it is the ethical

responsibility of all programmers to develop code that is reliable, and that security-aware

programming is a good tool for realizing this. Figure 5 summarizes these results.

4.2.4. Responses to FQ 4: Students’ Expectations of a Secure Software Engineering

Course

All the students, except one, expected a course involving cybersecurity training. The one

exception reported to never having thought of software security before and therefore had no

expectations for the course. However, 80% of the students commented that developing the skill
of security-aware programming was empowering because using security-aware programming

made the development of secure code an attainable goal.

126 Computer Science & Information Technology (CS & IT)

4.2.5. Responses to FQ 5: Aspect of the course that will be used going forward

Figure 6. Graph of students’ responses to Feedback Question 5

Figure 6 shows students’ responses to feedback question 5. All students identified coding

securely as a skill that they will continue to use. Some suggested that this would focus on

managing code defects while others discussed employing good testing strategies, particularly
considering test cases that provide full coverage.

4.2.6. Responses to FQ 6: Impact of taking the Course - 4 Months Later

Only half of the students (10) from the original case study responded to question 6. The 7 seniors

had graduated, and 4 other students did not submit a response. Of those who did respond, 100%

indicated that they were still using the security-aware programming approach. The strategies
being employed the most were robust testing of code to spot errors, input validation, and

exception handling. Three of the students reported that they were proudly sharing their

knowledge and skill with their peers. One student who is a peer tutor for Computer Science 1,
reported that he uses the approach to help underclassmen, during tutoring sessions. However, the

greatest endorsement was from the student who wrote “...I cannot help myself now. All my code

has to be secure. I cannot code anymore without looking for the security vulnerabilities. I wish

that we had been taught this before! Every student should take this course!”

4.3. Other Feedback from Students

In this section, we report on other student feedback from informal face-to-face conversations and

emails. Generally, students were excited about learning to code securely. Only three students felt

that they had been introduced to the concept of secure coding before. All three of those students

Computer Science & Information Technology (CS & IT) 127

had previously been taught by the researcher. Interestingly, faculty claim that they teach security
measures in their courses. However, somehow this had not translated into student perception.

Two of the more advanced students said that they had learned some version of secure

programming over time, by trial and error. Several students also reported that the content

covered in the course had changed how they were programming in their other computer science
classes being taken in the same semester. One senior who was in the process of interviewing for a

full-time software engineering position said that the security-aware approach to programming

was helping with the technical component of their interviews. All the students suggested that
some of this content should be included in the introductory courses.

5. DISCUSSION AND CONCLUSION

The case study points to the potential for using TRAC to develop security awareness in students.
From student feedback and the observation of student interactions in class, students demonstrated

knowledge of software code defects. They also demonstrated the ability to effectively identify

and purge those defects from code, to make it more secure. From their feedback, it also appears
that students have gained confidence in using the approaches covered in class. They also appear

to feel more competent and confident in their ability to write code that is security-aware. All the

students who responded to FQ 6 have reported that they are continuing to use the security-aware
approach to coding.

One surprise from the case study was that even when faculty think that they are teaching students

to code securely, students do not see it that way. This experience emphasizes the importance of
designing security content in our courses instead of leaving it to chance. It is also important to

present the security content in a contextually relevant way (as is done in the first stage of TRAC).

This will help students to understand the rationale for the approach and the trade-offs for not
using secure coding measures.

It was also evident that teaching security-aware programming even to seniors, did not always
require complex skills like cybersecurity strategies. The basic code defect identification and

avoidance appear to be very effective. Often one of the main arguments for not teaching this

approach is that faculty are not trained in security. This case study shows that any faculty

member who has learned to code can provide opportunities for students to practice and develop
the skill for secure programming.

The case study suggests that the TRAC approach can be beneficial to students. However, the size
of the study group was a limitation. Also, only half of the tested group responded to FQ 6 - the

four-month follow-up. A more complete picture of the impact could be obtained from a larger

number of responses.

The current research was designed as a pilot study. In the future, we plan on using this approach

to security-aware programming in three other courses: Introduction to Java, Data Structures and

Algorithms, and Object-Oriented Programming. This will increase the sample size. We will also
gather independent feedback on students’ progress, by monitoring their activity using a version

control platform. This can be done anonymously, by providing students with random account

credentials.

The researchers are aware that teaching students to develop code with security awareness, is not

the silver bullet to making all software secure. However, we believe that it is an important tool,

that students can use to contribute to the inherent security of their software products.

128 Computer Science & Information Technology (CS & IT)

REFERENCES

[1] Software assurance. [Online]. Available: https://www.cisa.gov/uscert/

sites/default/files/publications/infosheet SoftwareAssurance.pdf

[2] B. Martin, M. Brown, and S. M. Christey, “2010 cwe/sans top 25 most dangerous software errors,”

2010.

[3] M. Dark, I. B. Ngambeki, M. Bishop, and S. Belcher, “Teach the hands, train the mind ... a secure

programming clinic,” 2015.

[4] K. L. Nance, B. N. Hay, and M. Bishop, “Secure coding education: Are we making progress?” 2012.
[5] S. Chung, L. Hansel, Y. Bai, E. Moore, C. Taylor, M. E. Crosby, R. S. Heller, and B. Endicott-

Popovsky, “What approaches work best for teaching secure coding practices,” 2014.

[6] C. Banerjee and S. K. Pandey, “Research on software security awareness: Problems and prospects,”

SIGSOFT Softw. Eng. Notes, vol. 35, no. 5, p.1–5, Oct. 2010. [Online]. Available: https://doi-

org.ezproxy.rollins.edu/10.1145/1838687.1838701

[7] S.-F. Wen and B. Katt, “Learning software security in context: An evaluation in open source software

development environment,” Proceedings of the 14th International Conference on Availability,

Reliability and Security, 2019.

[8] X. Yuan, L. Yang, B. Jones, H. Yu, and B. tseng Chu, “Secure software engineering education:

Knowledge area, curriculum and resources,” 2016.

[9] A. f. C. M. A. Joint Task Force on Computing Curricula and I. C.Society, Computer Science

Curricula 2013: Curriculum Guidelines for Undergraduate Degree Programs in Computer Science.
New York, NY, USA: Association for Computing Machinery, 2013.

[10] V. Pournaghshband, “Incorporating the security mindset into introductory programming courses,”

International journal of advanced computer science, vol. 5, 2015.

[11] K. Frazer, “Building secure software: how to avoid security problems the right way,” ACM

SIGSOFT Softw. Eng. Notes, vol. 27, pp. 71–72, 2002.

[12] G. McGraw, “Building secure software: better than protecting bad software,” IEEE Software, vol. 19,

pp. 57–58, 2002.

[13] J. A. Whittaker, “Why secure applications are difficult to write,” IEEE Secur. Priv., vol. 1, pp. 81–83,

2003.

[14] B. Taylor, M. Bishop, D. L. Burley, S. Cooper, R. C. Dodge, and R. C. Seacord, “Teaching secure

coding: report from summit on education in secure software,” in SIGCSE ’12, 2012.
[15] M. Bishop, “Learning and experience in computer security education (invited paper),” 2013.

[16] H. Yu, N. Jones, G. Bullock, and X. Yuan, “Teaching secure software engineering: Writing secure

code,” 2011 7th Central and Eastern European Software Engineering Conference (CEE-SECR), pp.

1–5, 2011.

[17] S. Chung and B. Endicott-Popovsky, “Software reengineering based security teaching,” 2010.

[18] B. Taylor and S. Azadegan, “Threading secure coding principles and risk analysis into the

undergraduate computer science and information systems curriculum,” in InfoSecCD ’06, 2006.

[19] M. A. Talib, A. Khelifi, and L. Jololian, “Secure software engineering: A new teaching perspective

based on the swebok,” Interdisciplinary Journal of Information, Knowledge, and Management, vol. 5,

pp. 083–099, 2010.

[20] M. L. Stamat and J. W. Humphries, “Training 6= education: putting secure software engineering back

in the classroom,” western canadian conference on computing education, 2009.
[21] N. Jones, Q. Yu, K. Schell, and H. Yu, “Teaching secure program design,” 2019.

[22] H. Kim, N. Meghanathan, and L. Moore, “Enhancement of an undergraduate software engineering

course by infusing security lecture modules,” pp. 265–269, 01 2013.

[23] S. Chung and B. Endicott-Popovsky, “Software reengineering based security teaching,” in

Proceedings of the 7th Annual International Conference on International Conference on Cybernetics

and Information Technologies, Systems and Applications (CITSA 2010). Orlando, FL, 2010.

[24] B. Taylor and S. Kaza, “Security injections@towson: Integrating secure coding into introductory

computer science courses,” ACM Trans. Comput. Educ., vol. 16, pp. 16:1–16:20, 2016.

[25] K. Williams, X. Yuan, H. Yu, and K. S. Bryant, “Teaching secure coding for beginning

programmers,” Journal of Computing Sciences in Colleges, vol. 29, pp. 91–99, 2014.

[26] E. B. Fern´andez, S. Huang, and M. Larrondo-Petrie, “A set of courses for teaching secure software
development,” 19th Conference on Software Engineering Education and Training Workshops

(CSEETW’06), pp. 23–23, 2006.

Computer Science & Information Technology (CS & IT) 129

[27] B. Taylor, M. Bishop, E. Hawthorne, and K. Nance, “Teaching secure coding: the myths and the

realities,” 03 2013, pp. 281–282.

[28] K. Qian, D. C.-T. Lo, R. M. Parizi, F. Wu, E. O. Agu, and B. tseng Chu, “Authentic learning secure

software development (ssd) in computing education,” 2018 IEEE Frontiers in Education Conference

(FIE), pp. 1–9, 2018.
[29] K. L. Nance, “Teach them when they aren’t looking: Introducing security in cs1,” IEEE Security &

Privacy, vol. 7, 2009.

[30] S. A. Ambrose, M. W. Bridges, M. Dipietro, M. C. Lovett, and M. K. Norman, How learning works:

Seven research-based principles for smart teaching. Tantor Audio, 2021.

AUTHOR

Rochelle Elva is an Assistant Professor of Computer Science at Rollins College in

Florida, USA. Her research interests are Software Quality Assurance, Software

Security, Security-Aware Programming, The Personal Software Process, and Computer

Science Education.

© 2022 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

http://airccse.org/

	Abstract
	The unfortunate list of software failures, attacks, and other software disasters has made it apparent that software engineers need to produce reliable code. The Department of Homeland Security reports that 90% of software exploits are due to vulnerabi...
	Keywords
	Security-Aware Programming, Secure Coding, Software Security, Teaching Secure Coding.
	Figure 6 shows students’ responses to feedback question 5. All students identified coding securely as a skill that they will continue to use. Some suggested that this would focus on managing code defects while others discussed employing good testing s...
	4.2.6. Responses to FQ 6: Impact of taking the Course - 4 Months Later

