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ABSTRACT 
 

The application of Generative Pre-trained Transformer (GPT-2) to learn text-archived game 

notation provides a model environment for exploring sparse reward gameplay. The transformer 

architecture proves amenable to training on solved text archives describing mazes, Rubik’s 

Cube, and Sudoku solvers.  The method benefits from fine-tuning the transformer architecture to 

visualize plausible strategies derived outside any guidance from human heuristics or domain 

expertise.  The large search space (>1019) for the games provides a puzzle environment in 

which the solution has few intermediate rewards and a final move that solves the challenge. 
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1. INTRODUCTION 
 

The transformer architecture provides a scalable mechanism for natural language generation 

(NLG) to encode long-range dependencies needed to output plausible text narratives. 

Transformers [1] have rapidly advanced to rival or overtake other deep learning architectures 

such as convolutional neural networks (CNN). Initially developed to handle long-term language 

dependencies, this approach over-weights important relations via the “attention” method rather 

than attempting to localize dependencies (CNN) or grow dense networks for all weights. While 

the resulting sparse network extends available long-term connections needed to relate distant 

parts-of-speech or sentence context, the net effect has grown to massive models now in the 

trillions of connection weights [2].  This approach has since found application in other fields 

unrelated to the original language modeling, such as non-local effects needed for visual context 

problems. Among the early successes, the Generative Pretrained Transformer (GPT-2) from 

Open AI [3] remains one of the most robust architectures for fine-tuning applications. In these 

cases, the original training set gets specialized to diverse domains outside of its initial text data 

[4]. As a result, previous work has applied GPT-2 to play chess [5], Go [6], and other complex 

strategy games without knowing the explicit rules but instead learning the text patterns necessary 

to transfer learning from archival play. Since no move constraints get introduced to the 

transformer (e.g. legal vs. illegal moves), the trained model results in gameplay without human 

knowledge [7].  Because of its origins in natural language modeling, GPT-2 serves as a viable 

mimic of human narratives (sometimes called a “stochastic parrot”), particularly for the 

specialized use case called here as “unnatural language” generation. Figure 1 highlights some 

example applications of learning text archives for puzzles including Rubik’s cube, Sudoku, and 

maze solvers. 
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1.1. Puzzles and Games 
 

                                         
 

                                      
 

The application of AI and machine learning approaches to gameplay offers a rich history ranging 

from Deep Blue in chess (1997) to AlphaZero [7]. One appealing aspect follows from the 

obvious scoring metrics associated with scoring humans vs. machines. In economics and game 

theory, a key distinction among the types of games amenable to AI implicitly favors perfect 

information games, such as chess, checkers, Go, etc. The board state is known equally to the 

human and machine players and gameplay progresses sequentially. The sequential play alternates 

its moves in a way different from simultaneous plays like Rock, Paper, Scissors, which are also 

perfect information but not alternating moves. Recent advances in Monte Carlo tree search [7] 

have conquered human experts even in imperfect information games like poker, in which players 

can bluff while concealing their true game state until forced to reveal winners and losers in the 

final move of turning over cards or folding their hands. A third game category has recently 

attracted AI attention and might be informally classed as open-ended worlds like the video play 

in DOTA and StarCraft 2. Playing these games effectively as a tree search problem requires 

 

Figure 2. Example sparse reward puzzles in text notation 

 

Figure 1. Rubik's Cube String Notation and 

Syntax for Position and Colors 
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enormous computing resources and must handle the wide universe of available strategies (“where 

almost anything goes”). The present research examines a fourth possible category well known to 

the reinforcement learning community as games or puzzles that offer sparse rewards. These 

problems are generally characterized by large state spaces and a relatively small number of states 

which have an associated reward signal. Infrequent rewards often make gradient-based search 

and other methods that depend upon a smooth reward signal impractical. 

 

1.2. Sparse Rewards 
 

One notable example of a sparse rewards task is the Rubik's cube. The Rubik's cube is a puzzle 

with 6 rotating faces, each composed of 9 smaller squares ("cubies") which take one of 6 colors. 

The objective is to rotate the faces until each face contains 9 squares of the same color. The 

Rubik's cube is an extreme example of a sparse rewards task [8-9] it has a large state space 

consisting of approximately 4.9×1019 possible configurations, and only the goal state has an 

associated reward signal. This causes a sudden stepwise gain in rewards when making the final 

solving move. 

 

A less extreme example of a sparse rewards task is the numerical puzzle game, Sudoku. The 

objective of Sudoku is to fill in missing cells of a 9×9 grid with the numbers 1-9, subject to the 

conditions that no number may appear twice in the same row, column, or 3×3 block. Because of 

these conditions, Sudoku is also known as a constraint satisfaction game. Like the Rubik's Cube, 

Sudoku has an enormously large state space, as there are approximately 6.671×1021 valid Sudoku 

grids alone [10], and a reward signal is only achieved during the final step of the solving process.  

 

                     
 

It is worth noting that traditional Monte Carlo tree search techniques have exhaustive computing 

needs compared to GPT-2. For example, AlphaGo uses 1920 CPUs and 280GPUs (or $3000 in 

electricity costs) for each game [11]. The research explores solving these sparse reward games 

without reinforcement learning or Monte Carlo tree search. Instead, we apply the long-range 

rewards (weights) found in current language transformers based on their attention strategies 

applied to text generators. The best-known examples of games with text generators largely focus 

on fine-tuning the GPT-2. Previous work has applied GPT-2 to perfect information games (e.g. 

chess, Go).  For Sudoku and Rubik’s Cube, deterministic (search) algorithms deliver sufficient 

quantities of good training data such that traditional deep learning techniques can solve the games 

using computer visions approaches and convolutional neural networks [12-13]. We propose to 

solve the games using text-based (ASCII) archives and fine-tune the transformer architecture to 

visualize another strategic solution to the sparse rewards challenges. 

 

 

Figure 3. Solution Cube Notation for Visualizing Moves 
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2. METHODS 
 

This research compares solving three classes of games using language modeling: Rubik’s Cube, 

Sudoku, and mazes. For each game or puzzle, language representations are generated from 

archives of available gameplay and fine-tuning large pattern recognition models. While the 

models were originally trained for language generation tasks, they can be fine-tuned to generate 

plausible game moves. One common element of the approach stems from the game moves in a 

string (ASCII text) format.  Another notable feature is their visualization, so the language model 

can be viewed as another game player and not an abstract symbol generator alone. In other 

words, one can assess the model through a score and rate the strategies it employs. 

 

2.1. Rubik’s Cube Representation 
 

For a Rubik's task, we generated a dataset consisting of 5,000 pairs of initial cube configurations 

and corresponding solutions. To generate the initial configurations, a scrambling formula was 

created by randomly generating a sequence of moves to perturb the cube from the completed 

state. These scrambling formulas were anywhere between 1 and 5 moves in length, and an equal 

number of samples were generated for each possible scramble formula length. Once an initial 

configuration was determined, the cube state was represented by an encoding string following 

text formats[14]. As illustrated in Figures 2-3, this encoding uses the cube string positions for an 

unfolded cube with ordered positions (9 digits) for the following faces: Up (U), Right (R), Front 

(F), Down (D), Back (B) and Left (L). The string order proves important [15] since a fully solved 

cube would have 9x(URFDBL) for the completed color faces. The position U1 can be any of the 

6 standard colors (red, yellow, orange, blue, white, green). A starting state like “RBL…” means 

the right color (say, green) is in fixed position U1, the back color (say, red) is in position U2, etc. 

Finally, once all scrambling formulas were converted to encoding strings, duplicate cube states 

were removed from the dataset and the remaining samples were split into a training set containing 

2404 samples and a test set containing 601 samples.  

 

                                     
 

 

 

Figure 5. Maze generator and transformer solutions 

 

Figure 4. Example Sudoku Starting and Final States 
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After the initial Rubik's cube configurations and corresponding encodings were generated, a 

solution was determined using the Kociemba algorithm [15]. The Rubik’s solution syntax 

introduces each move as space-separated letters with punctuation and numbering conventions 

describing the turn. A single letter alone means to turn that face in the URFDBL dictionary of 

choices clockwise by 90 degrees (quarter turns). A letter with an apostrophe means the opposite 

counterclockwise turn by 90 degrees. If the letter has a number 2, the face gets a half-turn (180 

degrees).  An example initial state and solution of single moves is shown in Figure 3.  We 

visualize each step of the cube solution using the Visual Cube application [16] and validate 

solutions using the PyCuber python library [17]. 

 

2.2. Sudoku Representations 
 

For Sudoku, we collected one million solved games [18], which consists of a similar split view of 

the initial and final state. To divide the start and finished puzzle, we insert a word prompt [WP] 

to demark the first digit of the 81 in the 9x9 puzzle (Figure 4). A zero value represents a blank or 

open slot. The second demarcation [RESPONSE] serves as a delimiter for the puzzle solution. 

The visualization of a solved puzzle was customized in a console application that pushes each 

new digit onto the string for replacing the next available open gap (zero). The puzzle’s starting 

and ending delimiters (<|…|>) allow the generated text of a proposed solution to be parsed and 

truncated to simplify interpretation.  

 

                                      
 

2.3. Maze Representations 
 

For solving mazes, we generated 10,000 random mazes and embedded their ASCII text solutions 

between the start and stop delimiters. To generate mazes of 4x4 and 5x5 [19], we use (+) and (-) 

signs to outline the text grid boundaries, the use (|) pipe symbology to define walls. As shown in 

Figure 5, we encode both the unsolved and solved mazes in a single training text example for 

each maze. The training solutions follow the search methods outlined as breadth or depth-first 

techniques [20]. Each example maze begins with the upper left corner as the starting position 

(**); the direction of maze navigation follows a text arrow notation (^^=up; >>=right; vv=down; 

<<=left).  As with the other cases, the training set represents a series of maze pairings (unsolved 

and solved) with one maze in a single row submitted to the transformer.   

 

3. RESULTS 
 

For each puzzle, this work found a visual representation of the language model at play. Where 

possible, the gameplay is shown as animated versions with sequences of moves. 

 

 
Figure 6. Rubik’s Cube Transformer Solving for 

Single Rows 
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3.1. Cube Solver 
 

On the Rubik's Cube data, the transformer was unable to solve the complete puzzle more than 

one in seven attempts. Out of the 601 generated responses for the test examples, 11 were invalid 

(~1.8%), 576 were incorrect (~95.8%), and only 14 were correct (~2.3%). The small proportion 

of invalid generated responses indicates that despite being trained initially on natural language, 

the transformer has adapted well to the "unnatural" language of Rubik's cube formulae; even 

when it was unable to solve the cube, the overwhelming majority of the time the transformer 

produced an output which corresponds to a valid Rubik's formula. Figure 6 shows the solution for 

single rows as an incomplete solution but progressively improved cube state.  

 

                                           
 

Given the short fine-tuning period (~2000 epochs) and the small number of training examples 

(~2400), it is significant that the transformer was able to solve the Rubik's puzzle at all. 

Interestingly, though the majority (9/14) of correct generated responses were only 1-3 moves in 

length, the remaining correct responses were long: one response was 52 moves long, three were 

53 moves long, and the longest was 61 moves. Given the small sample size, it is difficult to 

generalize about the transformer's performance. Regardless, the existence of these solutions 

suggests the transformer may have learned certain solving patterns present in the Kociemba 

algorithm. 

 

A video comparing Rubik’s Cube solutions is found online [21]. Figure 7 compares the 

Kociemba algorithm (right) to the transformer solution (left) at the same time step. The algorithm 

solution shows a quarter turn before reaching the end with all six aligned colored faces after 71 

steps.  The transformer generates 64 steps before reaching the token limit (1024) for generated 

text outputs as an inherent GPT-2 limit. To illustrate the sparse rewards, neither the algorithmic 

nor transformer solution capitalizes on a partial reward, such as solving one color for a face or 

multiple faces in an intermediate step.  The transformer did, however, occasionally solve for 

single rows and columns in instances where it was unable to solve the puzzle before reaching the 

token limit. An example of the Rubik’s Cube transformer solving for rows and columns is shown 

in Figure 6.  

 

3.2. Sudoku Solver 
 

Figure 8 shows the GPT-2 gameplay for Sudoku from a randomly selected initial state to a partial 

(but flawed) final solution. The orange diamonds show the repeated digits as errors in completing 

the square with unique numbers both in the interior square and the overall rows and columns. A 

validation algorithm that checks for repetitions (1-9) in every row, column, and sub-square could 

potentially serve as an overlay on generated text games, much in the same way that Chess game 

generators playing against humans filter out invalid moves.  Because GPT-2 models include the 

Figure 7. Transformer (left) vs. Kociemba 

(right) algorithm 
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training text formatting in their transformer architecture, the Sudoku training set may benefit 

from the native grid or matrix rather than string input which masks the sub-grid orientation. The 

resulting transformer would generate complete puzzle grids rather than require additional 

visualizations as shown in Figure 8 for a console (command-line) player.  

 

                    
Figure 8. Sudoku Solution Stages using GPT-2 

 

3.3. Maze Solver 
 

Figures 5 and 9 show transformer solutions to the 5x5 (Fig. 5) and 4x4 (Fig. 9) maze sizes.  

Unlike the Sudoku case, the maze training set preserves formatting for its basic maze grid 

without removing all end-of-line breaks as a single string. In this way, the maze resembles a 

narrative paragraph versus the Sudoku sentence format. The trained transformer outputs both a 

viable unsolved maze and its proposed solution as a pair bracketed by starting and ending 

delimiters. Since all outputs are generated unconditionally and without a prompt for a starting 

maze, the output appears as both a scenario generator (viable unsolved maze) and a solution 

generator (moves to complete the puzzle).  Given the token limit of 1024 for generated text, the 

proposed maze sizes stop at 6x6 grids if the formatting is 4 spaces per grid as shown in Figure 9 

and if the unconditional output includes both the starting maze and its paired solution.  If a 

prompt or conditional model is run, the maze sizes naturally extend but the combinatorial moves 

limit the solution’s viability. 

 

                                              
Figure 9. Transformer solution to text mazes in 4x4 size 

 

4. DISCUSSION 
 

Many other games with sparse reward signals have received attention from the reinforcement 

learning community, including Sokoban, Montezuma's Revenge, and Mountain Car [13,22]. 

Unlike these games, both Rubik’s Cube and Sudoku are well-suited to the application of text 

generators because they conveniently allow for the examination of sparse rewards problems from 
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within the confines of games with sequential play and discrete representations of state. 

Additionally, for both games, deterministic (search) algorithms can provide sufficient quantities 

of training data such that traditional deep learning techniques, e.g. CNNs, can solve them.  

Compared to denser reward games, the maze, Rubik’s, and Sudoku puzzles require considerable 

exploration across a flat fitness or optimization landscape.  In the case where a solution might 

take more computing resources to iterate exploratory steps, the attention mechanism behind GPT-

2 offers a method to attack the contextual problem of knowing where the numbers or colored 

faces might relate to each other in the constrained volume of the cube or number squares. Figure 

10 illustrates the Sudoku weights for layer 9 as an example of long-term attention and context 

between a starting number and its long-range dependencies. However, the transformer’s ability to 

solve beyond the 1024 token limit of generated solutions limits the exploration to easier game 

starting points only. No transformer output for either game achieved a finished state from an 

arbitrarily random (“hard scrambled”) state in the allotted number of steps.  Instead, the 

transformer trained on nearly completed states (e.g. perturbed from a finished state) showed 

promise in accomplishing its goal to solve the puzzles.  Just as with the chess and Go 

Transformers, the goal of generating plausible gameplay shows possible application but succeeds 

with supervision and filtering of illegal actions. The secondary goal of demonstrating rule-

acquisition (plausible moves) suggests that explicit human knowledge of strategies or heuristics 

may not be needed specifically for opening or closing moves when the completion times fall 

within the attention limit of the transformer’s context.  

 

Well-known techniques in reinforcement learning emphasize turning a sparse reward game into a 

denser environment. These approaches feature human domain expertise to craft heuristics, such 

that the exploration space shrinks or partial rewards provide a stepping stone to reach the 

solution. A simple example would be solving a maze problem by recursive backtracking or 

applying the right-hand rule [23]. In the case of Rubik’s Cube solvers, many intermediate steps 

might qualify as partial rewards, such as the layered method, cross, or daisy creations [24]. As a 

bookkeeping strategy, human Sudoku solvers favor keeping track of which numbers are still 

possible for each square, thus iteratively narrowing the search space.  The hard-coding of such 

heuristics however ranges outside the scope of the transformer architecture and its powerful 

capabilities to take raw text games as its only input without domain knowledge when fine-tuned 

to a new text source and format.  
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Figure 10. Layer visualization of long-range dependence for a single Sudoku game 

 

One intriguing outcome of exploring transformers with sparse rewards is to suggest new 

approaches. The attention mechanism itself builds in overweighted connection strengths across 

longer-range contexts, a critical feature for language models.  Ironically, one can posit that 

attention weights create a sparse reward landscape appropriate for generating interesting narrative 

text since a frequency-based word approach emphasizes common but less telling words (such as 

stop words “a”, “the”, etc.). In this way, attention-based models effectively balance the training 

dataset based on token interest and context rather than frequency.  For games, the reinforcement 

learning community similarly maps flat gradient landscapes to maximize the ratio of rewarding 

exploitation steps compared to fruitless exploration ones. A simple strategy in sparse rewards 

substitutes “curiosity-driven” exploration, such that incremental rewards appear when going to 

points previously not visited. In Sudoku, one can imagine a similar exclusion priority or 

constraint geared towards not aimlessly substituting [1-9] digits when a row, column, or sub-

square already has it.  This approach prioritizes a restricted action. In the linguistic origins of 

GPT-2, the same reward or weight structure might favor novel word choices to avoid repetitive 

phrases.  

 

The capability of transformers and other text generation methods to play games extends far 

beyond mazes, Rubik's Cube, and Sudoku. Previous research has highlighted their potential to 

generate plausible moves for other games which have historically served as benchmarks for 

game-playing algorithms, notably Chess [5] and Go [6]. Other board games and puzzles offer 

additional angles from which to examine environments with sparse reward signals (Figure 11). 

Hex, a board game that has previously drawn attention from the AI community, is one such 

game. Like Rubik's and Sudoku, it is a perfect information game where the only obvious reward 

signal is triggered after the final, game-winning move. Unlike Rubik's and Sudoku, Hex is a 

competitive, 2-player game. It is also amenable to Smart Game Format (SGF), a common 
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standardized notation for the textual representation of game states. Other candidate games and 

puzzles include TwixT, which is similar to Hex in both game layout and objective, and Tantrix, 

which offers sparse rewards in a competitive setting with more than 2 players. 

 

5. CONCLUSIONS 
 

Without encoding puzzle heuristics, the application of GPT-2 can generate viable moves in three 

sparse reward games: mazes, Rubik’s Cube, and Sudoku. These examples offer a novel text-

based method to learn plausible moves without human instruction, heuristics, or explicit domain-

specific rulesets. These puzzles provide appealing visualization environments to track algorithmic 

progress incrementally and score winning strategies, identify novel solutions, and augment the 

traditional black-box understanding inherent in large-scale transformers.  Just as attention-based 

methods provide long-range context, future efforts for improving transformers in gameplay 

should emphasize larger token limits (>2048 in GPT-3) or condensed game notations for 

archives.  
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