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ABSTRACT 
 

In molecular and computational biology, predicting the three-dimensional structure of a protein 

from its amino acid sequence has long been an outstanding goal. Soft computing techniques for 

solving protein structure prediction problems have been gaining the attention of researchers 

because of their capacity to accommodate imprecision and uncertainty in vast and complicated 

search spaces. This paper provides a comprehensive overview of recent protein structure 

prediction efforts and progress using various soft computing techniques. This paper summarises 

key research in the field of protein structure prediction that has been published in the recent 

decade. Despite significant research efforts in recent decades, there is still a lot of room for 

improvement in this field. 
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1. INTRODUCTION 
 

Proteins play a vital role in all living organisms. Proteins are complex macromolecules comprised 
of one or more long chains of amino acid residues connected by peptide bonds. Proteins perform 

various functions within organisms, including catalysing metabolic reactions, DNA replication, 

responding to stimuli, providing structure to cells, and transporting molecules from one place to 
another [1]. The function of a protein is directly linked with its native structure. The protein 

sequence is composed of 20 different amino acids that are aligned in linear chains via peptide 

bonds [2]. The classification techniques of popular protein sequences involve the extraction of 
particular characteristics of the sequences; these characteristics depend on the structural and 

functional properties of the amino acids [3]. During synthesis, an individual protein is folded into 

a three-dimensional structure under the influence of various chemical and physical factors, 

providing essential biological functions and properties that play an essential role in biological 
science, medicine, drug design, and disease prediction [4]. Sometimes, proteins fold into an 

incorrect structure (known as misfolding); a single missing or incorrect amino acid could cause 

such a misfold, which leads to a protein with different properties which can be harmful to the 
organisms [5]. Therefore, knowledge of protein structure is very crucial in protein research. 

 

Biologists describe a hierarchy of protein structures with four levels to better characterize the 
structural properties. The levels are organised in steps, with each lower level influencing the 

construction of the next. A linear sequence of amino acid residues is linked together in long 
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chains by peptide bonds to form a primary structure of a protein. The secondary structure refers 
to the periodic structure fragment of the polypeptide chain. The impact of hydrogen bonding 

between amide hydrogen and carbonyl oxygen in the peptide chain produces it. The fundamental 

elements of the secondary structure of the proteins are the α-helix and β-sheets [6]. The tertiary 

structure is a whole polypeptide chain generated by further combination and folding of multiple 
secondary structures in 3-D space. It could already represent the primary biological function of 

those proteins that only have one polypeptide chain [7]. The quaternary structure is a protein 

complex consisting of several polypeptide chains with multiple tertiary structures, and it could 
completely represent the characteristics of its biological function [8]. As a result, protein structure 

prediction (PSP) is the technique of determining a protein's three-dimensional structure from its 

amino acid sequence. 
 

 
 

Fig.1. Levels of Protein Structure 

 
Protein structure prediction (PSP) is a global optimization problem and today’s most important 

and stimulating problem of structural bioinformatics, due to the fact that it determines the 

biological functions and the properties of a protein. PSP is a multimodal optimization problem 
classified as NP-hard [9]. Anfinsen's thermodynamic hypothesis [10] states that the native 

structure of a protein corresponds to the global minimum of the free energy surface of the protein, 

therefore, the protein structure prediction (PSP) problem can be translated into a global 
optimization problem. Hence, predicting the native structure of a protein is an important and 

challenging task in computational biology [11]. 

 
In general, experimental techniques like X-ray crystallography (XRC), Nuclear Magnetic 

Resonance (NMR), and cryo-electron microscopy (cryoEM) have been used to determine the 

native structure of protein, that are not always feasible and are very expensive and time-
consuming[12].  More recently, Cryo-EM has fostered an acceleration of the protein structure 

determination process. This method's secret is in using photographs of frozen molecules to 

ascertain their structure. Despite this, the method typically produces structures with lesser 

resolution than those measured by other experimental techniques [13]. Though there has been a 
continuous improvement in the experimental techniques, the gap between the number of protein 

sequences and the known structures is increasing rapidly. As of June 2021, the 
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UniProtKB/TrEMBL [14] database contains 21,91,74,961 protein sequences, whereas in the 
Protein Data Bank (PDB) there are 1,80,419 protein structures stored.  

 
To bridge this sequence-structure gap, computational approaches are preferred to overcome the 
difficulties associated with the experimental approaches [15]. The three basic computational 

approaches for PSP are homology or comparative modelling, threading or fold recognition, and 

ab-initio or denovo technique. Homology modelling is based on comparing the sequence's 
similarity, but the threading approach is a method for connecting probably brief sub-

conformations of the relevant sub-sequence [16]. On the other hand, ab-initio methods try to find 

a 3D model of the protein exclusively using the amino acid sequence, according to the laws of 

physics and chemistry [17]. Critical Assessment of protein Structure Prediction (CASP), a well-
known biennial competition of protein structure prediction adopted this classification. Results 

from this competition serve as a benchmark of computational biology's progress [18].  

 

2. OVERVIEW OF TECHNIQUES USED IN PSP 
 

Although PSP is NP-hard problem, no precise and effective method can provide the best solution 

in a polynomial amount of time. For decades, a lot of researchers have offered several approaches 
to solve the PSP. But several methods have limitations when the complexity of a problem 

increases. In contrast to other available methods, Nature Inspired Computing (NIC) based 

techniques can be employed to tackle PSP and provide solutions that is close to optimal in terms 

of complexity [19]. Emerging technology called Nature Inspired Techniques (NIC) intends to 
create new computational methods by drawing inspiration from how nature behaves in diverse 

scenarios while tackling challenging issues. A subset of Nature Inspired Computing (NIC) 

methods is Swarm Intelligence (SI). Swarm intelligence (SI) algorithms are primarily stochastic 
search and optimization methods that are inspired by the collective behaviour and self-

organization of insect swarms. They are effective, flexible, and reliable research methodologies 

with several latent parallelisms that yield nearly ideal results [20]. 

 
SI is a promising stream to develop powerful solutions for optimization problems. Also, 

Metaheuristics have shown promising outcomes in the solution of difficult optimization problems 

[21]. For high-dimensional issues, they become constrained in terms of effectiveness and 
runtime. GPU-based parallel metaheuristics have been implemented in a variety of ways, and 

they appear to be a viable option for reducing execution time and improving solution quality. 

GPUs are now an effective tool for high-performance computing. They utilise the single-
instruction, multiple-data (SIMD) architecture, which enables the concurrent parallel execution of 

hundreds of threads [22]. NIC techniques have successfully been experimented with and applied 

to machine learning and advanced artificial intelligence. Most of the current research is based on 

methods encouraged by these concepts [23]. 
 

Artificial Intelligence (AI) has been a thriving field, with a lot of applications. In recent times AI 

shows great promise in protein structure prediction. AI can accurately and efficiently predict 
thousands of possible protein structures [24]. In order to compare the prediction models' output to 

the known crystal structures and evaluate the quality of the models, artificial intelligence 

programmes are trained using a variety of numerically represented atomic features from the 
models (such as bond lengths, bond angles, residue-residue interactions, physio-chemical 

properties, and potential energy properties) [25].  

 

Machine learning is a technology that allows computers to learn from their experiences and do 
tasks that are comparable to those performed by humans. ML algorithms formulate rules that link 

inputs to predicted results. Later, these rules are then applied to unknown data to provide 
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physiochemically plausible accurate solutions. Machine learning techniques in AI have been 
successfully applied to automate routine labour, understand speech or images perform medical 

diagnoses, and predict protein structures [26]. Recently, researchers have also proposed machine 

learning algorithms that are different from the previously dominating deep learning approach, 

such as the deep forest [27]. Even though machine learning has been seen to be very successful in 
a lot of fields, there is still a significant gap between methodology and practical applications. 

 

Deep Learning is a sub-field of Machine Learning based on artificial neural networks, usually 
used to learn the patterns from the input data, and in turn, make accurate predictions from it [28]. 

DL emphasizes the use of multiple layers to better represent data in different abstractions and has 

drastically improved the state-of-the-art methods in PSP. The use of DL approaches in structural 
bioinformatics improves the prediction model performance to a new level [29]. Deep learning has 

already been applied in a variety of protein processing tasks, including protein structure 

prediction [30], protein interaction prediction [31], protein secondary structure prediction [32], 

and protein sub cellular localization prediction [33]. Since the third generation of predictors, a 
variety of Deep Learning algorithms, as well as more traditional Machine Learning methods like 

k-Nearest Neighbours, Linear Regression, Hidden Markov Models, Support Vector Machines 

(SVM), and Support Vector Regression, have been routinely used for PSA prediction. 
 

Every year, a significant gathering known as the Critical Assessment of Protein Structure 

Prediction (CASP) compares models for predictions and prediction analysis. Since 1994, the 
CASP has been a community-wide, worldwide project for protein structure prediction that takes 

place biannually [34]. CASP aims to benchmark the protein-structure prediction methods and 

stimulate the advancement of the field. Fully blinded testing of structure prediction algorithms is 

the core principle of CASP [35]. 
 

3. SOLVING PSP USING VARIOUS TECHNIQUES (LITERATURE SURVEY) 
 

In this section, we present a literature survey on relevant methods of protein structure prediction 
based on soft computing techniques. Soft computing is built on both organic and artificial 

concepts. It is referred to as computational intelligence. The major concepts related to the various 

successful soft computing techniques are discussed in the following section. 

 

3.1. Computational Approaches to PSP 
 
These can broadly be categorized into Template-Based Modelling (TBM) and Template-Free 

Modelling (FM). TBM makes use of a template to predict 3D models. The proteins with the same 

sequences tend to bend in the same structures form the basis of this method. It can be seen that 

even proteins with a 30% sequence identity bend in the same structures [36]. 
 

Free-modelling, ab initio modelling, and de novo modelling are used interchangeably to discuss 

template-free modelling approaches. Ab initio protein structure prediction or Free modelling 
(FM) attempts to build a 3D structure without using homologous proteins as templates [37]. FM 

methods rely on creating algorithms that can quickly discover global energy minima and a 

scoring system that can choose the best conformation from among the several created models. 
FM aims to predict the most stable protein spatial arrangement with the lowest free energy [38]. 

Template-based approaches have a greater prediction accuracy than other methods, especially 

when the target protein and template are relatively homogeneous, making them useful in practical 

applications. 
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SWISS-MODEL [39], developed by Torsten Schwede's structural bioinformatics group, is a 
well-known online tool for homology modelling of protein structures. In the last two decades, it 

has become one of the most extensively used homology modelling tools. Template identification, 

target-template alignment, model construction, and model evaluation are all part of the prediction 

process. HHblits [40] is employed for template recognition and target-template alignment. 
Modeller [41] is another homologous modelling tool developed, that uses the target-template 

alignment to implement structure modelling by satisfying spatial restraints. I-TASSER [42] [43] 

is a comprehensive structure prediction method based on the threading method developed by the 
Yang Zhang Lab.  

 

The Yang Zhang Lab has created another good fragment-assembly approach, QUARK [44]. 
QUARK employs replica-exchange Monte Carlo simulations guided by a knowledge-based force 

field to build structural fragments ranging from 1 to 20 residues. Bhageerath [45] is one such ab 

initio-homology hybrid method. It is accessible in the form of a web server called Bhageerath-H 

[46]. The main focus of the protocol is on the reduction of conformational search space. It is 
based on a template-based modelling and energy-based function that generates several structures 

according to a systematic sampling of loop dihedral conformational space. The performance of 

this software was tested by using CASP10 targets with promising prediction results. After the 
assessment of its shortcomings, an updated version was introduced in the CASP12 meeting as 

BhageerathH+ [47]. The David Baker Lab created Rosetta [48], a template-free approach that 

assembles a full-length structure from fragments of 3-9 residues from PDB Structures. To predict 
globally minimized protein models it follows a Monte Carlo simulation-based strategy. Its 

greatest success was recorded in CASP11, when it accurately predicted the structure of a 

sequence of 256 amino acids [49]. 

 
CASP (Critical Assessment of Protein Structure Prediction) determines the current state of the art 

of protein structure prediction. The first success in protein tertiary structure prediction was 

observed in CASP4, but primarily for small proteins (≤ 120 residues). In later years, better 
contact prediction approaches were introduced in CASP11 [50] competing pipelines with 

promising improvements in prediction accuracy. A similar pattern was observed in CASP12 with 

the incorporation of alignment-based contact prediction methods [51]. The use of deep learning 

techniques for structure prediction in CASP13 demonstrated considerable improvement above the 
average GDT_TS score. That gives an encouragement to delve further into deep learning-based 

approaches to solve the protein folding problem [52]. Experimental results on CASP11, CASP12 

refinement targets, and blind tests in CASP 13 turn out to be promising. Residue-residue 
interactions, disorder region prediction, model quality assessment (MQA) approaches, tertiary 

structure refinement, and other structure-related modelling categories are all evaluated by CASP. 

 
For protein sequences with 150 residues or fewer, free-modelling has so far proven to be a good 

fit. Few instances have been reported when algorithms went too far and attempted to predict the 

structure of longer proteins. CASP11 witnessed major success in ab initio protein structure 

prediction for a length of 256 amino acids [53]. Template-Based modelling approaches still have 
few limitations whereas ab initio approaches can move a step ahead and might help to understand 

the basic principles of protein folding [54]. 

 

3.2. Deep Learning-Based Approaches in PSP 
 

In recent years, deep learning has recently proven extremely effective in tackling challenging 
problems in several problem domains of protein structure prediction. Their strength comes from 

their capacity to learn features of data at multiple levels of abstraction, beginning from relatively 

simple feature sets. Meanwhile, it has become a very powerful artificial intelligence tool in 
bioinformatics [55]. It is detailed in [55] how the prediction method DeepCov uses fully 
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convolutional neural networks to operate on frequency or covariance data for amino-acid pairs 
that are directly obtained from sequence alignments. The newly developed 

DeepMetaPSICOV(DMP) [56] deep learning-based contact prediction tool combines the input 

feature sets utilised by MetaPSICOV and DeepCov as input to a deep fully convolutional residual 

neural network. Similarly, MapPred [57] is also a deep learning-based contact prediction method. 
MapPred consists of two-component methods, DeepMSA and DeepMeta, both trained with the 

residual neural networks. 

 
Al Quraishi [58] builds a pure deep learning-based prediction approach. It is a one-step algorithm 

for the prediction of protein structure relying on an end-to-end deferential deep learning strategy. 

Thus, the RGN (Recurrent Geometric Networks) end-to-end differentiable protein structure 
predictor was created, allowing for the direct prediction of torsion angles to build the protein 

backbone. MULTICOM [59] is another protein structure prediction pipeline that has also 

incorporated recent advances in DL-based approaches to improve the protein structure prediction 

system. Torrisi et al. [60] recently reviewed DL-based approaches for the evolution of predictive 
methods for one-dimensional and two-dimensional Protein Structure Annotations, from simple 

statistical methods. Also looked at how these algorithms database growth has affected our ability 

to learn about evolution and co-evolution and how that has affected our ability to make better 
predictions. Moreover, Gao et al. [61] reviewed the recent advance in DL-based approaches for 

the protein sequence–structure–function paradigm. They analysed the emerging deep learning 

techniques for protein structural modelling and discussed advances and challenges that must be 
addressed. 

 

Li et al. [62] proposed a new Rosetta based method trRosetta (transform-restrained Rosetta) for 

protein structure prediction given a protein sequence developed by Yang’s and David Baker’s 
group. In order to predict the inter-residue geometry and orientations, three dihedral and two 

planar angles between the residues are used to indicate the orientations between two residues. For 

the first time, RaptorX-Contact [63], a residual neural network (ResNet)-based model, used a 
deep neural network to predict protein contacts, considerably increasing accuracy on 

difficult targets with novel folds. Hanson et al. [64] proposed the method called SPOT-Contact 

(Sequence-based Prediction Online Tools for Contact map prediction) that captures the 

contextual information from the whole protein ‘image’ at each layer. SPOT-contact is highly 
accurate for predicting contacts at all sequence-position separations, and improves over RaptorX-

Contact at all Neff values, with the largest improvement for low medium range Neff sequences. 

TripletRes [65] developed by Zhang’s group, is a contact map prediction that ranked first in the 
Contact Predictions category of CASP 13 for PSP. Co-evolutionary feature extraction, deep 

neural network modelling, and deep multiple-sequence alignment generation are the components 

of TripletRes. TripletRes training needed four GPUs operating at the same time using Adam, 
with an 80% dropout rate. It also correctly predicted both globally and locally multi-domain 

proteins. 

 

DeepMind’s AlphaFold [66] is another tool for protein structure prediction method developed by 
DeepMind, has achieved the best performance in the template-free modelling domain of CASP13 

and has evolved to AlphaFold2 at CASP14 [67]. It uses a two-step process for protein structure 

determination and also involves the use of co evolutionary profiles to guide model building. This 
methodology constructed high-accuracy models for 24 out of 43 test proteins achieving a TM-

score of 0.7 [68].The protein structure prediction field has seen a lot of progress due to Deep 

Learning (DL)-based techniques as verified by the success of AlphaFold2 in the most recent 
CASP14. AlphaFold works on the idea that given a protein sequence, it is feasible to build a 

learnt, protein-specific potential by training a Deep Neural Network to produce accurate structure 

predictions and then reducing the potential via gradient descent to predict the structure itself [69]. 
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DL-based Cryo-electron microscopy (Cryo-EM) is a useful method for studying protein 
structures and determining their dynamics [70]. Cryo-EM is a Nobel Prize-winning technique for 

creating three-dimensional maps of protein structures. The basic computational step in this 

method is the analysis of EM data to obtain protein structural information. Esquivel-Rodrguez et 

al. [71] reviewed recent improvements in computational approaches for modelling protein three-
dimensional structures using a 3D EM density map built from 2D maps. For Cryo-EM based 

protein structure determination, there have been some recent DL-based breakthroughs in several 

processes such as single-particle picking, backbone prediction, secondary structure prediction, 
EM density map refining, and all-atom prediction for protein complexes [72]. The authors 

reviewed some of the recent approaches for single-particle picking, backbone structure 

prediction, and secondary structure prediction for the construction of high-resolution 3D Cryo-
EM maps [73]. 

 

The molecular dynamics (MD) simulation is one of the most popular optimization techniques for 

fine-tuning protein structures. In order to speed up the extraction of the final structure from 
comparable fragments in the PDB and to improve the convergence of MD-based structural 

refinement simulations, Raval et al. [74] introduced contact-based restraints into MD simulation. 

David Shaw’s group utilized different sets of restraints to reduce the molecular dynamics 
simulation runs and prevent the model from getting trapped in a non-native energy state. MELD 

(Modelling Employing Limited Data) is a newly developed physics-based protein structure 

prediction approach that uses Bayesian law to use atomic molecular dynamics of proteins for 
structural modelling. It has proven to be productive in determining high-resolution structures of 

proteins up to 260 residues long [75]. Replica exchange molecular dynamics (REMD) and the 

residue-specific force field (RSFF1) in explicit solvent have been demonstrated by another group 

to shorten simulation times and control energy landscapes [76]. 
 

3.3. Support Vector Machines 
 

SVM is a machine learning method used to predict protein structure from its primary sequence. 

SVM's fundamental approach entails transforming the samples into a high-dimension Hilbert 

space and searching for a separation plane there [77]. The optimal separation plateau (OSH), also 
known as the separation hyperplane, is selected to maximize its distance from the nearby training 

samples. The nine SVM-based contact predictors that Wu et al. [78] created are combined with 

the sparse template contact restrictions in [79]. They make use of the I-TASSER's energy 
function as well as contact predictions produced by SVMSEQ's enhanced versions. 

 

Wang et al. [80] proposed a protein secondary structure prediction method based on SVM with 

position-specific scoring matrix (PSSM) profiles. The PSSM profiles are obtained from 
commonly used protein CB513 datasets and conclude that accuracy increases by 11.3%. Xie et al. 

[81] developed a new method for the PSSP based on an improved fuzzy support vector machine 

(FSVM), in which an approximate optimal separating hyperplane is constructed by iterating the 
class centres in the feature space, and sample points close to this hyperplane are assigned with 

large membership values, while outliers with small membership values are assigned with low 

membership values based on the K-nearest neighbour algorithm. SVMQA [82] is one of the best 
SVM based single-model quality assessment methods. Using 19 features, including 8 potential 

energy based and 11 comparing projected and actual models, this method generates a TM Score 

and GDT_TS score. 

 
Uziela et al. [83] introduced two unique approaches, ProQRosFA and ProQRosCen, modelled 

after the cutting-edge of ProQ2 technique. ProQ2 [84] is a model quality evaluation algorithm 

that uses SVM to forecast both the local and overall quality of protein models. While the new 
predictors are based on Rosetta energies, ProQ2 employs contacts and other features that were 
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computed from a model. ProQ3 inherits all of ProQ2's capabilities and add two new ones based 
on Rosetta energy: full-atom Rosetta energy terms and coarse-grained centroid Rosetta energy 

terms. On both the CAMEO and CASP11 datasets, ProQ3 exceeds ProQ2 in correlation and 

achieves the highest average GDT_TS score [83]. Another secondary structure prediction 

method, conSSert [85] based on support vector machines (SVM) gives remarkable accuracy for 
beta-strand prediction, with a QE accuracy of over 0.82 and a Q2-EH of 0.86. Finally, Zhou et al. 

[86] applied a support vector regression technique that detects the native structures of a protein 

among decoy sets. This method makes use of the fast Fourier transform, amino acid network 
score, and contact energy-based score. 

 

3.4. Neural Network Techniques 
 

Since Qian and Sejnowski first introduced one of the initial NN approaches for PSSP in 1988, 

NN has steadily grown to be the most popular model in this area and has accomplished great 
feats. Various NN architectures have been developed throughout time to produce the best results 

in certain application areas. Deep learning, recurrent neural networks, BP neural networks, radial 

basis function neural networks, and complex-valued neural networks have been the most often 
utilised NN models in the recent decade [87]. 

 

Heffernan et al. [88] developed an integrated sequence-based prediction that predicts four 

different sets of structural properties of proteins by iterative learning in a parallel scheme based 
on a deep neural network. Local backbone structures that are represented by secondary structure, 

backbone torsion and Cα angles, and dihedral angles are the structural characteristics. SPIDER2 

expands on this technique by predicting solvent accessibility and training an independent set of 
weights for each iteration. Spencer et al. [89] proposed the first deep learning-based PSSP 

method, called DNSS, where restricted Boltzmann machine (RBM) based deep belief network 

(DBN) model was trained by contrastive divergence46 in an unsupervised manner. The method 
used a position-specific scoring matrix generated by PSI-BLAST to train a deep learning 

network. GPU and CUDA software optimizes the deep network architecture and efficiently trains 

the deep networks.  

 
Wang et al. [90] presented Deep Convolutional Neural Fields (DeepCNF) for protein SS 

prediction which is a conditional neural field deep learning extension for PSSP including Q3 and 

Q8. The DeepCNF integrated the advantages of both CNF and DCNN and include information 
about longer-range dependencies as well as the complicated link between neighbouring 

secondary structure labels and the sequence structure. Also, JPred4 [91] and Porter 5 [92] are the 

most accurate predictors used in the prediction of 3-class protein secondary structures. 

 
Yaseen et al. [93] proposed a novel method for improving secondary structure prediction 

accuracy by employing statistical context-based scores as encoded features in neural network 

training. This approach is being used by a server known as SCORPION (secondary structure 
prediction). The three common secondary structure states are predicted by SCORPION by 

grouping (G, H, I) into helices (E, B) into sheets, and (T, S, C) into coils, in accordance with the 

majority of secondary structure prediction algorithms. 
 

Multiple architectures are interlaced in a few modern PSSP approaches to enhance overall 

network prediction. Li and Yu [94] employed a deep convolutional recurrent NN architecture 

(DCRNN) to extract multi-scale local contextual information using CNN with varied kernel sizes. 
To predict secondary structure given amino acid sequence information, a typical feed-forward 

NN with one hidden layer is used. Their goal was to identify the ideal parameter configuration for 

producing the greatest prediction outcomes. 
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Zhang, B et al. [95] proposed a convolutional residual recurrent neural network (CRRNN) for 
both Q8 and Q3 secondary structure prediction. The model's parameters are evaluated, and 

dimensionality reduction is accomplished using a 1D convolutional filter with a single kernel. For 

PSSP, a recurrent neural network (RNN) is extensively used to solve sequence-based issues. 

Porter 4.0 [96] and SPIDER3 [97] are successful RNN methods for protein secondary structure 
prediction where physicochemical parameters are effectively included in the NN model to 

improve SS prediction and obtain up to 84 per cent accuracy. 

 
The Deep inception-inside-inception (Deep3I) network is presented as a novel deep neural 

network design for protein secondary structure prediction and developed as a software 

application. MUFOLD-SS. It is made up of a series of layered inception modules that transfer the 
input matrix to either eight or three secondary structure states [98]. Zhang and Shen [99] 

proposed a method called ThreaderAI that applies a deep residual neural network for prediction. 

By integrating sequence profile, predicted sequential structural features, and predicted residue-

residue contacts, ThreaderAI first uses deep learning to predict residue-residue aligning 
probability matrix. Then, by applying a dynamic programming algorithm to the probability 

matrix, it builds template-query alignment. 

 

3.5. Evolutionary Computation (EC) Techniques 
 

Based on the Darwinian concepts of evolution, Evolutionary Algorithms (EAs) and Genetic 
algorithms (GAs) represent two subtypes of Evolutionary Computation (EC). Different protein 

structural representations, such as dihedral or torsion angles and lattice models, may be used in 

EC-based methods (direction vector representation and hydrophobic–polar model). The 2D-HP 
triangular model is addressed in [100], where Evolutionary Programming is used as a search 

algorithm by applying a hybrid algorithm combining genetic algorithm, tabu search strategy, and 

local search procedure.  
 

The hybridization of global and local search techniques is commonly known as Memetic 

Algorithms (MAs) or Hybrid Genetic Algorithms. The method utilizes a structured population 

using a local search strategy based on the Simulated Annealing (SA) method, ad-hoc crossover, 
and mutation operators to deal with the problem. By utilising an Angle Probability List (APL), 

which helps in reducing the search space and providing guidance for the search strategy, it 

retrieves the structural knowledge recorded in the PDB [101]. 
 

Dorn et al. [102] proposed a knowledge-based Genetic Algorithm (GA), aiming to reduce the size 

of the conformational search space considering the previous occurrences of amino acid residues 

in experimentally determined proteins. Similar to the APL concept, the technique used 
appropriate torsion angle intervals for the amino acid targets. The NIAS server was made 

available by Borguesan et al. [103] to compute ad-hoc APLs to benefit from prediction 

techniques or in any other application that can use the conformational preferences of amino acids. 
A hybrid algorithm that combined GA and tabu search (TS) algorithms to solve PSP problems 

were used, where authors utilized TS instead of the mutation operator in GA for preventing 

premature convergence and providing a faster convergence rate [104]. 
 

Garza-Fabre et al. [105] applied a memetic algorithm (MA), based on fragment assembly 

technique identified as a search heuristic of the Rosetta ab initio protocol. The phenotypic 

crowding technique is used as a similarity criterion for the selection of individuals in the multi-
objective GA developed in [106]. Based on this approach, two solutions with the most similar 

ones are selected according to their structural differences, which inferred the template-based 

delay of the population convergence. Gao et al. [107] attempted a multi-objective evolutionary 
algorithm for protein structure prediction. They divide the force fields of the Chemistry at 
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Harvard Macromolecular Mechanics (CHARMM) protein-energy function into bond and non-
bond energies as their first and second objectives. Considering the effect of solvent innovatively 

acquires a solvent-accessible surface area as the third objective, and sixty-six benchmark proteins 

are used to verify the proposed method. 

 

3.6. Swarm Intelligence (SI) Techniques 
 
The collective behaviour of decentralised, self-organized systems, which can be either natural or 

artificial, is known as swarm intelligence (SI). Generally, SI systems contain a population of 

simple agents interacting locally with one another and with the environment. The inspiration 

usually comes from nature, especially biological systems. Recently, SI techniques have been 
applied to solve various PSP problems. 

 

In order to establish the protein structure, Cheng-yuan et al. [108] created a quantum-behaved 
PSO (QPSO), in which the population is split into an elite sub-population, an exploitation sub-

population, and an exploration sub-population. Fine-tuning and exploration strategies are used to 

facilitate faster convergence, bond angles are used to represent the protein conformation, and the 
AB off-lattice model reveals the protein-energy function. Zhou et al. [109] proposed an improved 

PSO for protein folding prediction. Levy probability distribution was utilised to update locations, 

and the velocities of the chosen worst particles were used to accelerate convergence and break 

out of local optima. For protein structure optimization, an enhanced Artificial Bee Colony (ABC) 
[110] algorithm was put forth and tested on comparatively less synthetic and natural protein 

sequences. The performance of the fundamental ABC algorithm is improved by an internal 

feedback method, which also produces results that are marginally superior to those of other 
algorithms. 

 

Another ABC variant for 3D PSP is presented in [111], where structure quality was improved by 
using the convergence information of the ABC algorithm during the execution process. The new 

algorithm performed better than previous cutting-edge methods on some cases of artificial and 

actual proteins, according to the authors' demonstrations. By applying the same technique as in 

[103] to thirteen genuine protein sequences, Li et al. [112] expanded their previous work and 
compared the outcomes with those found in the literature. Additionally, the chaotic ABC method 

has a high computing cost. Swarm intelligence systems were compared in a study of protein 

folding issues based on the 3D AB off-lattice model. Only a small number of artificial protein 
sequences with short lengths were used by the authors to analyse the performance of the standard 

versions of the algorithms [113]. When comparing actual protein sequences to artificial protein 

sequences, the comparison might be more accurate. 

 
The Particle Swarm Optimization search algorithm is used to discover the ideal pair of dihedral 

angles of a structure utilising a profile-level knowledge-based force field. Detail the population-

based harmony search as the optimizer as well as the 2D-AB off-lattice model [114]. In an effort 
to improve the artificial intelligence-based protein structure refinement method known as AIR, 

the authors of Wang et al. [115] developed a unique multi-objective particle swarm optimization 

(PSO) structure refinement protocol. The basic objective is to use multiple energy functions as 
multi-objective for correcting the potential bias problem caused by minimizing only a single 

energy function. When large conformation spaces are required, it can achieve optimal search with 

swarm intelligence and the information-sharing method amongst the particles in PSO. 

 
In order to propose a neural network model for protein secondary structure prediction (PSSP), 

PSO has been investigated [116]. Six common datasets, including PSS504, RS126, EVA6, 

CB396 and Manesh, have been used for the neural network's training and testing. The suggested 
model is validated using cross-validation with 10, 20, 30, and 40 folds, as well as sensitivity 
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analysis. Self-organizing map (SOM) based PSO approach with the efficient classification of 
secondary and tertiary proteins explored in [117]. They grouped 2D and 3D proteins, where 2D 

proteins contain fewer hydro-carbons than 3D proteins. The angles of the proteins are considered 

by evaluating the SOMs with the Bounding Box technique for a quicker analysis. An effective 

protein structure prediction method that combines template-based and template-free techniques 
was used by Gao et al. [118]. The initial protein conformations, in particular, can be constructed 

using a non-redundant protein database and a random selection approach with secondary 

structure limitations. To update the protein structures while keeping the secondary structures the 
same, three alternative structure evolution approaches are used: enhanced particle swarm 

optimization (PSO) algorithm, random perturbation, and fragment substitution. 

 

4. SUMMARY 
 
Protein structure prediction (PSP) is an important field of research in computational biology and 

protein science. Due to growing demand in the last decade, a large number of PSP methods have 

been proposed, but still, there is considerable scope for further improvement. This paper tried to 
cover the recent works published from 2012. In this review, we have outlined the most cutting-

edge soft computing methods used to solve the protein structure prediction problem. 

 
This paper first provides an introduction and the related knowledge of PSP; then, the overview of 

most relevant methods used in PSP are reported; finally, the literature review on various soft 

computing techniques like TBM (template-based modelling), TFM (template-free modelling), 

deep learning, support vector machines, neural networks, evolutionary computations, and swarm 
intelligence for solving PSP problem is provided. Various soft computing techniques and their 

tools that have been applied to solve the PSP problem are summarized in Table1. 
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Table.1. Summary of protein structure prediction methods 
 

 

Method/Tools Dataset Size Architecture Year Reference 

ProQ2 CASP7-9 Support Vector Machine (SVM) 2012 [84] 

Porter 4.0 TS115, PDB 
2 stages with Bidrectional Recurrent 

Neural Network (BRNN) 
2013 [96] 

Bhageerath-H CASP10 Template-Free based modelling 2014 [46] 

SCORPION Cull7987 
3 stages with Feed-forward Neural 

Network (FNN) 
2014 [93] 

PSI-BLAST CASP9-10 
Position-specific scoring matrix 

(PSSM) 
2014 [89] 

SPIDER 2 TR4590,CASP11 
Deep artificial neural network 

(DeepANN) 
2015 [88] 

Rosetta CASP11 Template-Free modelling 2016 [48] 

ProQ3 
CAMEO, CASP8-

10 
Support Vector Machine (SVM) 2016 [83] 

conSSert 
PDBSelect25, 

PISCES 
Support Vector Machine (SVM) 2016 [85] 

DeepCNF CASP,CB513 
Deep Neural Network with 5 hidden 

layers 
2016 [90] 

SVMQA CASP8-12 Support Vector Machine (SVM) 2017 [82] 

SPIDER 3 TR4590, TS115 

Long Short Term Memory (LSTM) 

Bidirectional 

Recurrent Neural Networks (BRNNs) 

2017 [97] 

RaptorX-Contact PDB25 Residual network (ResNet) 2017 [63] 

Porter 5 PDB 
Two-stage ensemble of BRNN and 

CNN 
2018 [92] 

MUFOLD-SS 
CullPDB, 

CASP10-12 

Deep Neural Network (inception-

inside-inception) 
2018 [98] 

CRRNN 
CB513, CASP10-

12 

Deep Neural Network with 5 hidden 

layers 
2018 [95] 

DeepCov PDB, CASP12 
2D Convolutional Neural Network 

(CNN) 
2018 [55] 

SPOT PDB, UniProt Residual-bidirectional-LSTM 2018 [64] 

QUARK CASP13 Deep Residual CNN 2019 [44] 

C-I-TASSER CASP13 
2D Convolutional Neural Network 

(CNN) 
2019 [42] 

RGN ProteinNet12 bi-Long Short Term Memory (LSTM) 2019 [58] 

DeepMetaPSICOV PDB, CASP13 Residual network (ResNet) 2019 [56] 

AlphaFold PDB, CASP13 Deep Neural Network 2020 [66] 

trRosetta 
CAMEO, 

CASP13 
Residual network (ResNet) 2020 [62] 

MapPred PISCES Residual network (ResNet) 2020 [57] 

ThreaderAI 
SCOPe40, 

CASP13 
Deep Residual Neural Network (RNN) 2020 [99] 

AIR CASP11-12 

Artificial intelligence-based multi-

objective optimization protocol 

(MOOP) 

2020 [115] 

TripletRes CASP11-13 Deep Neural Network 2021 [65] 

MULTICOM CASP8-11 
Deep Convolutional Neural Network 

(CNN) 
2021 [59] 
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