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ABSTRACT 
 

The electronic cash was introduced by Chaum in 1982 and now many e-cash systems have been 

proposed in order to mimic the fiat currency. Bitcoin provides us with an attractive way to 

construct a decentralized e-cash system. Ideally, we would like to make the system more 

practical, for example, the users can be able to transfer coins between each other multiple times 

and they can also withdraw arbitrary amount of coins rather than one or the predefined 

number, so that in the spend protocol the user can spend any amount of valid coins. 

 
In this paper, we propose a provably secure and more practical e-cash system. Firstly, it can 

provide the anonymous transfer of coins between users, so that the merchant can spend the 

received coins further; secondly, the user can withdraw arbitrary amount of coins rather than 

the one or predefined number; thirdly, during the transfer of coins, the coins have a fixed size; 

finally, the fair exchange between the users can also be achieved. 
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1. INTRODUCTION 
 

This document describes, and is written to conform to, author guidelines for the journals of 

AIRCC series.  It is prepared in Microsoft Word as a .doc document.  Although other means of 
preparation are acceptable, final, camera-ready versions must conform to this layout.  Microsoft 

Word terminology is used where appropriate in this document.  Although formatting instructions 

may often appear daunting, the simplest approach is to use this template and insert headings and 
text into it as appropriate. 

 

Bitcoin [1] is the most prominent cryptocurrencies, whose security does not rely on any single 

trusted third party and the transaction ledger is publicly available. But now the cash is still the 
most prevalent payment method in real life because that cash transaction is anonymous, 

transferable and it can prevent the double-spending attack. Furthermore, there exists no unfair 

exchange when the users exchange with physical cash. Here we focus on the construction of a 
more practical e-cash system [2] that can simulate the physical currency better. It is known that 

the proof of coins' validity is based on some personal message, which is easy to break the users' 

privacy. Moreover, in the e-cash system, the user withdraws coins from the bank then sends it to 
the merchant who must deposits it to the bank rather than spends it further. And in the trustless 

network, the unfairness occurs between users, e.g., the malicious payer or payee can refuse to 

sending the valid messages. 

http://airccse.org/cscp.html
http://airccse.org/csit/V12N16.html
https://doi.org/10.5121/csit.2022.121604
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Obviously, the ideal e-cash system should be equipped with the same security properties of the 
physical cash. There has been number of works aim to solve these problems, but these works 

usually solve several problems and also bring some new problems, for example, using malleable 

signature to achieve the transitivity of coins [3], so the users can get a valid signature of another 

message according to some transformation without communicating with the bank, but this 
scheme brings another problem that the size of the coin is increasing during the process of 

transfer. 

 

1.1. Our Contributions 
 

In this paper, we present a provably secure and more practical e-cash system that is closet to the 
physical cash。In this system, the only trusted component is the blockchain and we achieve that: 

 

 transitivity: the valid coins can be used further by the payee; 
 arbitrary amount of coins: the user can withdraw arbitrary amount of valid coins from the 

bank; 

 prevent double-spending:any user cannot spend a same coin twice; 
 fair exchange: none of users can cheat in the trustless network. 

 

1.2. Related Work 
 

A complete e-cash system should satisfies: anonymity, transitivity, divisibility, the ability to 

prevent double-spending attacks and fair exchange among users. Now we describe the related 
works in the following aspects. 

 

Transitivity means that, in e-cash system, the merchant (or payee) can spend the received coin 

further without depositing it to the bank firstly. Okamoto and Oha[4,5] are the first to propose 
transferable e-cash, but they only provided the weak anonymity. Then in 1992 [6] proved that the 

size of transferable coins is increasing during the transfer process. Baldimtsi [3] showed us the 

first transferable e-cash system that satisfies all of the anonymity properties and provides us with 
a new efficient double-spending detection mechanism, but the size of coins is increasing during 

the transfer process. The works [7,8] proposed a fully anonymous and transferable e-cash scheme 

that satisfies all the security properties, which can prevent double-spending attack with the help 

of blockchain. However, the size of coins is still increasing during the transfer process, and it 
presents a noneffective solution for this problem that, when the size reaches the upper bound, the 

user can deposit it to the bank and then the bank declares that this coin is invalid. 

 

Divisibility means that the user can withdraw a unique coin of value ≤ 2𝑛  from the bank and 

spend it in several times to some distinct merchants. Compact e-cash allows the user to withdraw 

a wallet from the bank that contains 2𝑛  coins in the withdraw protocol [9,10], however, this 
scheme only allow the user to spend one coin each time, which makes the scheme unpractical. 

Canard proposed the first efficient divisible e-cash system secure in the standard model [11]. And 

Tewari showed us the e-cash system that the user can withdraw arbitrary denomination of coin 

[7], which must be spent in one time. 
 

Fair exchange between users means that, in the trustless network, the malicious user may refuse 

returning the corresponding message when he learns some knowledge. Constructing contracts on 
blockchain provides us with a feasible method [12,13] and the works [14,15,16] show us how 

bitcoin can be used in the area of MPC, where the fairness means that the dishonest users will pay 

a fine for the honest ones as a compensation. In the e-cash system the participants may face the 

following problem that shall the buyer pays the merchant first then the merchant sends the buyer 
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service or the other way around ? Is there a way that none of the parties can cheat the other one? 
The works [17,18] used blockchain to achieve the fair exchanges among users. 

 

1.3. Organization 
 

In section 2, we review some classical definitions and notations. Section 3 describes the Bitcoin 

simply. In section 4, we present our constructions of the e-cash system. And the security proof 
and conclusion are showed in section 5 and 6 respectively. 

 

2. PRELIMINARIES 
 

2.1. Assumptions 
 

Our construction is based on the following assumptions: 

 
 The only ``trusted component" is the Blockchain that each user has access to it (denoted by 

𝐿𝑒𝑑𝑔𝑒𝑟), and if a transaction is on the 𝐿𝑒𝑑𝑔𝑒𝑟 then it means that the transaction is provably 

valid. And the communication channel between users and 𝐿𝑒𝑑𝑔𝑒𝑟 is secure; 

 The amount of coins that the user can withdraw is limited; 
 The coin has 𝑙 ≥ 1different denominations (to correspond with the physical cash, it can have 

other definitions)𝑉𝑎𝑙1 > 𝑉𝑎𝑙2 > ⋯ 𝑉𝑎𝑙𝑙 and the bank holds the corresponding signature key 

pairs denoted as (𝑝𝑘1, 𝑠𝑘1), … , (𝑝𝑘𝑙 , 𝑠𝑘𝑙); 

 Each denomination has a fixed prefix and the form is Value, serial number, signature, i.e., 

Coin1 = (Val1,  SN1, 𝜎1) means that the denomination of Coin1 is Val1, its serial number is 

 SN1 and it can be provably valid with 𝜎1 and 𝑝𝑘1; 
 

2.2. E-Cash system 

 
As the traditional e-cash system [19,20], our scheme consists of two basic parties, the user 𝑈 (or 

the merchant 𝑀) and bank 𝐵, and the following algorithms: 
 

 𝑃𝑎𝑟𝑎𝑚𝐺𝑒𝑛(1𝜆): on input security parameter 𝜆, the parameter generation algorithm outputs the 

system public parameters 𝑝𝑎𝑟. We assume that 𝑝𝑎𝑟 is the default input to the remaining 

algorithms; 

 𝐾𝑒𝑦𝐺𝑒𝑛((1𝜆)) : the key generation algorithm is executed by 𝑈  and 𝐵  respectively, and 

outputs (𝑝𝑘𝑈 , 𝑠𝑘𝑈)  and (𝑝𝑘𝐵, 𝑠𝑘𝐵)  ,where (𝑝𝑘𝐵, 𝑠𝑘𝐵) =: ((𝑝𝑘′
𝐵

, 𝑠𝑘′
𝐵), (𝑝𝑘′′

𝐵
, 𝑠𝑘′′

𝐵)) =

((𝑝𝑘′
𝐵

, 𝑠𝑘′
𝐵); (𝑝𝑘1, 𝑠𝑘1), … , (𝑝𝑘𝑙 , 𝑠𝑘𝑙)); 

 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟(𝐵[𝑝𝑘𝐵, 𝑠𝑘𝐵], 𝑈[𝑝𝑘𝑈 , 𝑠𝑘𝑈]): the registration protocol allows 𝑈 to have an account 

in the bank and, at the end, both parties output 𝑜𝑘  for success or ⊥  for the failure of 

registration; 

 𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤(𝐵[𝑝𝑘′′
𝐵

, 𝑠𝑘′′
𝐵], 𝑈[𝑝𝑘𝑈 , 𝑠𝑘𝑈]): the withdraw protocol allows 𝑈 to get the coins 

with value 𝑉𝑎𝑙, which can be provable with the fixed prefix and the signature of 𝐵; 

 𝑆𝑝𝑒𝑛𝑑(𝑈1[𝑐𝑜𝑖𝑛, 𝑝𝑘𝑈1
, 𝑠𝑘𝑈1

], 𝑈2[𝑐𝑜𝑖𝑛, 𝑝𝑘𝑈2
, 𝑠𝑘𝑈2

]): the spend protocol allows user 𝑈1 with 

𝑐𝑜𝑖𝑛 to buy the 𝑈2's service 𝜔; 

 𝐷𝑒𝑝𝑜𝑠𝑖𝑡(𝑈[𝑐𝑜𝑖𝑛, 𝑝𝑘𝑈 , 𝑠𝑘𝑈], 𝐵[𝑝𝑘𝐵, 𝑠𝑘𝐵]): the deposit protocol allows the user 𝑈 to deposit 

𝑐𝑜𝑖𝑛 to his account held by𝐵. 
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2.3. Digital Signature Scheme 
 

A digital signature scheme consists of a triple of probabilistic polynomial-time algorithms 

(𝐺𝑒𝑛, 𝑆𝑖𝑔𝑛, 𝑉𝑒𝑟) satisfying the followings: 
 

 Key-generator algorithm 𝐺𝑒𝑛: on input 1𝜆, 𝐺𝑒𝑛 outputs (𝑝𝑘, 𝑠𝑘); 

 Signing algorithm 𝑆𝑖𝑔𝑛: on input secret key 𝑠𝑘  and a message 𝛼 ∈ {0,1}∗ , 𝑆𝑖𝑔𝑛  outputs 

signature 𝜎; 

 (Deterministic) Verifying algorithm 𝑉𝑒𝑟: on input public key 𝑝𝑘, message 𝛼 ∈ {0,1}∗ and 

signature 𝜎, 𝑉𝑒𝑟 returns 𝑜𝑢𝑡𝑝𝑢𝑡 ∈ {𝑎𝑐𝑐𝑒𝑝𝑡, 𝑟𝑒𝑗𝑒𝑐𝑡}; 

 For each key pair (𝑝𝑘, 𝑠𝑘) in the range of𝐺𝑒𝑛(1𝜆) and message 𝛼 ∈ {0,1}∗, the algorithms 

𝑆𝑖𝑔𝑛 and 𝑉𝑒𝑟 satisfy  

 

Pr[𝑉𝑒𝑟(𝑝𝑘, 𝛼, 𝑆𝑖𝑔𝑛(𝑠𝑘, 𝛼))] = 1 

 

where the probability is taken over the internal coin tosses of 𝑆𝑖𝑔𝑛 and 𝑉𝑒𝑟. 

 

2.4. Public Encryption Scheme  
 

A public encryption scheme consists of a triple of probabilistic polynomial-time algorithms 

(𝐸𝑛𝑐𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) satisfying the followings: 

 

 Key-generator algorithm 𝐸𝑛𝑐𝐺𝑒𝑛: on input 1𝜆, 𝐸𝑛𝑐𝐺𝑒𝑛 outputs (𝑠𝑘, 𝑝𝑘); 

 Encryption algorithm 𝐸𝑛𝑐: on input public key 𝑝𝑘 and message 𝛼 ∈ {0,1}∗, 𝐸𝑛𝑐  outputs a 

ciphertext 𝑐 ≔ 𝐸𝑛𝑐𝑝𝑘(𝛼); 

 Decryption algorithm 𝐷𝑒𝑐 : On input private key 𝑠𝑘 , a ciphertext 𝑐 , 𝐷𝑒𝑐  outputs 𝛼′ =
𝐷𝑒𝑐𝑠𝑘(𝑐). 

 For each key pair (𝑠𝑘, 𝑝𝑘)  in the range of 𝐸𝑛𝑐𝐺𝑒𝑛(1𝜆)  and message 𝛼 ∈ {0,1}∗ , the 

algorithms 𝐸𝑛𝑐 and 𝐷𝑒𝑐 satisfy:  

 

Pr [𝐷𝑒𝑐𝑠𝑘 (𝐸𝑛𝑐𝑝𝑘(𝛼)) = 𝛼] = 1 

 

where the probability is taken over the internal coin tosses of algorithms 𝐸𝑛𝑐 and 𝐷𝑒𝑐. 
 

2.5. Zero-knowledge Proofs of Knowledge 
 

In the 𝑠𝑝𝑒𝑛𝑑 protocol, the user will use the ZKPoK to let the merchant believe that the 𝑐𝑜𝑖𝑛 

exactly belongs to him and the merchant uses 𝑍𝐾𝑃𝑜𝐾 to let the user believe that he knows the 

service/witness 𝜔. 

 

A pair of interactive Turing machines < 𝑃, 𝑉 >   is called an interactive proof system for a 

language 𝐿 if machine 𝑉 is polynomial-time and the following two conditions hold: 

 

 Completeness: there exists a negligible function 𝑐 such that for every 𝑥 ∈ 𝐿,  

 

Pr[< 𝑃, 𝑉 > (𝑥) = 1] > 1 − 𝑐(|𝑥|) 

 

 Soundness: there exists a negligible function 𝑠 such that for every 𝑥 ∉ 𝐿, 

 

Pr[< 𝑃, 𝑉 > (𝑥) = 1] < 𝑠(|𝑥|) 
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𝑐(⋅)is called the completeness error and 𝑠(⋅) is the soundness error. 
 

Zero-knowledge protocol is the interactive proof system with zero-knowledge property, which 

means that the prover can convince the verifier that some instance 𝑥 ∈ 𝐿 without providing the 

verifier with any additional information beyond the fact. 
 

A zero-knowledge protocol is called a zero-knowledge proof of knowledge if 𝐿 ∈ 𝑁𝑃 and for 

every prover 𝑃∗ there exists a polynomial-time machine, called knowledge extractor, that can 

interact with𝑃∗, and at the end it outputs 𝑥. We follow the requirement in [16], without loss of 

generality, the last two messages in the protocol are challenge 𝑥  sent by the verifier and prover's 

response 𝑟. The extractor extracts 𝑥 after being given transcripts of two accepting executions. 

 

2.6. Security Properties 
 

In this section we give the security properties by redefining these of [3]. Firstly, we show the 

𝑂𝑟𝑎𝑐𝑙𝑒𝑠 that the adversary 𝒜 can interact in the security definitions. 

 

 𝐶𝑟𝑒𝑎𝑡𝑒(1𝜆) executes (𝑝𝑘𝑈 , 𝑠𝑘𝑈) ← UKeyGen() and outputs 𝑝𝑘𝑈; 

 𝐵𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟(𝑝𝑘𝑈) plays the bank side in the 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟 protocol and interacts with 𝒜. If 

𝑝𝑘𝑈 has been in the bank database, then abort; otherwise, 𝒜 owns an account in bank 𝐵; 

 𝐵𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤 plays the bank side in the 𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤 protocol and interacts with 𝒜; 

 𝑆&𝑅  is the 𝑆𝑝𝑒𝑛𝑑 𝑎𝑛𝑑 𝑅𝑒𝑐𝑒𝑖𝑣𝑒 oracle that allows 𝒜  to observe the process of 𝑆𝑝𝑒𝑛𝑑 
protocol between honest users; 

 𝑈𝑅𝑒𝑐𝑒𝑖𝑣𝑒 plays the 𝑚𝑒𝑟𝑐ℎ𝑎𝑛𝑡 side in the 𝑆𝑝𝑒𝑛𝑑 protocol and interacts with 𝒜; 

 𝑈𝑆𝑝𝑒𝑛𝑑 plays the 𝑢𝑠𝑒𝑟 side in the 𝑆𝑝𝑒𝑛𝑑 protocol and interacts with 𝒜; 

 𝑈𝐷𝑒𝑝𝑜𝑠𝑖𝑡 plays the 𝑢𝑠𝑒𝑟 side in the 𝐷𝑒𝑝𝑜𝑠𝑖𝑡 protocol and interacts with 𝒜. 
 

𝑼𝒏𝒇𝒐𝒓𝒈𝒆𝒂𝒃𝒊𝒍𝒊𝒕𝒚 means that the adversary 𝒜  should not be able to forge a valid coin (the 

signature of bank) without communicating with bank or forges a valid coin according to the coins 
that he has owned so that to spend more coins than he has withdrew from the bank. We use the 

following experiment to define 𝑼𝒏𝒇𝒐𝒓𝒈𝒆𝒂𝒃𝒊𝒍𝒊𝒕𝒚. 

 

 
 

 

 
 

 

 
 

Definition 1 (𝑼𝒏𝒇𝒐𝒓𝒈𝒆𝒂𝒃𝒊𝒍𝒊𝒕𝒚) An E-Cash system is unforgeable if for any probabilistic 

polynomial-time adversary 𝒜, we have the 𝑬𝒙𝒑𝒕𝒜
𝑢𝑛𝑓𝑜𝑟𝑔

(𝜆) defines as： 

 

Pr[𝑬𝒙𝒑𝒕𝒜
𝑢𝑛𝑓𝑜𝑟𝑔 (𝜆) = 1] < 𝑛𝑒𝑔𝑙(𝜆) 

 

𝑷𝒓𝒆𝒗𝒆𝒏𝒕𝒊𝒏𝒈 𝒅𝒐𝒖𝒃𝒍𝒆 − 𝒔𝒑𝒆𝒏𝒅𝒊𝒏𝒈 means that no user is able to spend a transaction twice. We 

use the following experiment to define 𝑷𝒓𝒆𝒗𝒆𝒏𝒕𝒊𝒏𝒈 𝒅𝒐𝒖𝒃𝒍𝒆 − 𝒔𝒑𝒆𝒏𝒅𝒊𝒏𝒈. 

 
 

 

Experiment 𝑬𝒙𝒑𝒕𝒜
𝑢𝑛𝑓𝑜𝑟𝑔

(𝜆) 

 𝑝𝑎𝑟 ←  𝑃𝑎𝑟𝑎𝑚𝐺𝑒𝑛 (1𝜆); 

 𝜎 ← 𝒜Creat,BRegister,BWith(𝑝𝑎𝑟); 
 let 𝑞𝑊, 𝑞𝐷 be the amount of coins that 𝒜 calls to 

𝐵𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤, 𝐵𝐷𝑒𝑝𝑜𝑠𝑖𝑡 respectively. 

If (𝑉𝑒𝑟𝑝𝑘𝐵
(𝜎) = 1)⋀(𝑞𝑊 < 𝑞𝐷), then return 1; otherwise, return 0. 
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Definition 2 (𝑷𝒓𝒆𝒗𝒆𝒏𝒕𝒊𝒏𝒈 𝒅𝒐𝒖𝒃𝒍𝒆 − 𝒔𝒑𝒆𝒏𝒅𝒊𝒏𝒈)An E-Cash system can prevent double-

spending if for any probabilistic polynomial-time adversary 𝒜 , we have the 𝑬𝒙𝒑𝒕𝒜
PreDS(𝜆) 

defines as： 

 

Pr[𝑬𝒙𝒑𝒕𝒜
PreDS(𝜆) = 1] < 𝑛𝑒𝑔𝑙(𝜆) 

 

𝑨𝒏𝒐𝒏𝒚𝒎𝒊𝒕𝒚. We define anonymity in three aspects as {𝑂𝑏𝑠𝑒𝑟𝑣𝑒 − 𝑡ℎ𝑒𝑛 − 𝑅𝑒𝑐𝑒𝑖𝑣𝑒, 𝑆𝑝𝑒𝑛𝑑 −
𝑡ℎ𝑒𝑛 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒 and 𝑆𝑝𝑒𝑛𝑑 − 𝑡ℎ𝑒𝑛 − 𝑅𝑒𝑐𝑒𝑖𝑣𝑒 [3] respectively. 
 

𝑂𝑏𝑠𝑒𝑟𝑣𝑒 − 𝑡ℎ𝑒𝑛 − 𝑅𝑒𝑐𝑒𝑖𝑣𝑒 means that the adversary 𝒜 cannot link a coin that he receives as a 

bank during the 𝐷𝑒𝑝𝑜𝑠𝑖𝑡 protocol or user during the 𝑆𝑝𝑒𝑛𝑑 protocol to a coin that he observed 

transitivity between two honest users before. 
 

 

 
 

 

 
 

   

 

 

𝑆𝑝𝑒𝑛𝑑 − 𝑡ℎ𝑒𝑛 − 𝑅𝑒𝑐𝑒𝑖𝑣𝑒 means that the adversary 𝒜 cannot link a coin that he spent as a user 

during the 𝑆𝑝𝑒𝑛𝑑 protocol to a coin that he receives during the 𝑆𝑝𝑒𝑛𝑑 protocol as a merchant or 

during the 𝐷𝑒𝑝𝑜𝑠𝑖𝑡 protocol as a bank.  
 

 

 

 
 

 

 
 

  

  

   
 

𝑆𝑝𝑒𝑛𝑑 − 𝑡ℎ𝑒𝑛 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒 means that the adversary 𝒜 can not link a coin that he spent as a user 

during the 𝑆𝑝𝑒𝑛𝑑 protocol to a coin that he observes the transitivity between two honest users. 
 

 

 

 

Experiment 𝑬𝒙𝒑𝒕𝒜
PreDS(𝜆) 

 𝑝𝑎𝑟 ←  𝑃𝑎𝑟𝑎𝑚𝐺𝑒𝑛 (1𝜆); 

 𝒜 broadcasts two transactions to redeem the same transaction; 

If these two transactions are confirmed in the 𝐿𝑒𝑑𝑔𝑒𝑟, then return 1; 

otherwise, return 0.  

Experiment 𝑬𝒙𝒑𝒕𝒜,𝑏
OtR(𝜆) 

 𝑝𝑎𝑟 ←  𝑃𝑎𝑟𝑎𝑚𝐺𝑒𝑛 (1𝜆); 
 (𝑐𝑜𝑖𝑛0, coin1, 𝛿) ← 𝒜Create,S & 𝑅(𝑝𝑎𝑟); 
 if 𝛿 = 1 then simulate 𝑈𝑆𝑝𝑒𝑛𝑑(𝑐𝑜𝑖𝑛𝑏)} to 𝒜; otherwise, 

simulate 𝑈𝐷𝑒𝑝𝑜𝑠𝑖𝑡(𝑐𝑜𝑖𝑛𝑏)} to 𝒜 (𝑏 ∈ {0,1}); 

 𝑏∗ ← 𝒜Create,S & 𝑅,𝑈𝑆𝑝𝑒𝑛𝑑,𝑈𝐷𝑒𝑝𝑜𝑠𝑖𝑡(par); 

If 𝑏∗ = 𝑏,then return 1; otherwise, return 0. 

Experiment 𝑬𝒙𝒑𝒕𝒜,𝑏
StR (𝜆) 

 𝑝𝑎𝑟 ←  𝑃𝑎𝑟𝑎𝑚𝐺𝑒𝑛 (1𝜆); 

 (𝑐𝑜𝑖𝑛0, coin1, 𝛿) ← 𝒜Create,UReceive(𝑝𝑎𝑟); 
 if 𝛿 = 1 then simulate 𝑈𝑆𝑝𝑒𝑛𝑑(𝑐𝑜𝑖𝑛𝑏)} to 𝒜; 

otherwise, simulate 𝑈𝐷𝑒𝑝𝑜𝑠𝑖𝑡(𝑐𝑜𝑖𝑛𝑏)} to 𝒜 (𝑏 ∈
{0,1}); 

 𝑏∗ ← 𝒜Create,S & 𝑅(par); 

If 𝑏∗ = 𝑏,then return 1; otherwise, return 0. 
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Definition 3(𝑨𝒏𝒐𝒏𝒚𝒎𝒊𝒕𝒚) An E-cash system is anonymous if for any probabilistic 

polynomial-time adversary 𝒜, we have 𝑬𝒙𝒑𝒕𝒜,𝑏
OtR(𝜆), 𝑬𝒙𝒑𝒕𝒜,𝑏

StR (𝜆) and 𝑬𝒙𝒑𝒕𝒜,𝑏
StO (𝜆) define as: 

 

Pr[𝑬𝒙𝒑𝒕𝒜,𝑏
OtR,StR,StO(𝜆) = 1] < 𝑛𝑒𝑔𝑙(𝜆) 

 

3. BITCOIN 
 

Firstly, we recall the simplified version of bitcoin's transaction. Let 𝐴 = (𝐴. 𝑝𝑘, 𝐴. 𝑠𝑘) be a key 

pair and the form of transaction that user 𝐴  transfers the coin with value 𝑣  to user 𝐵  is as 

following: 
 

𝑇𝑥 = (𝑦, 𝐵. 𝑝𝑘, 𝑣, 𝜎) 

 

where 𝑦 is an index of the previous transaction 𝑇𝑦(𝑦 = 𝐻(𝑇𝑦) and 𝐵. 𝑝𝑘 is the recipient of 𝑇𝑥 , we 

also say that 𝑇𝑦 is redeemed by 𝑇𝑥 . The transaction 𝑇𝑥  is valid if: 

 

 𝐴. 𝑝𝑘 is the recipient of 𝑇𝑦; 

 the value of  𝑇𝑦 is at least 𝑣; 

 transaction  𝑇𝑦 has not been redeemed earlier; 

 the signature 𝜎 of 𝐴 is correct. 
 

And there is also another condition that the transaction may have several ``inputs" and we do not 

use this form in our construction so we will not describe it in details. Furthermore, we describe a 

more detailed version. In the real-world bitcoin system, the user has more flexibility in defining 

the conditions that how the transaction can be redeemed. The transaction 𝑇𝑦  contains a 

description of a function (output-script) 𝜋𝑦 whose output is Boolean and the transaction 𝑇𝑥  that 

can redeem 𝑇𝑦 if 𝜋𝑦 evaluates to true with input 𝑇𝑥 . The transaction is defined as: 

 

𝑇𝑥 = (𝑦, 𝜋𝑥 , 𝑣, 𝜎, 𝑡) 

 

Where [𝑇𝑥] = (𝑦, 𝜋𝑥 , 𝑣) is the 𝑏𝑜𝑑𝑦 of 𝑇𝑥  and 𝜎 is the witness that is used to make 𝜋𝑦 evaluates 

to true with input 𝑇𝑥 . the scripts 𝜋𝑥  are written in the Bitcoin scripting language.The transaction 

𝑇𝑥  is valid if: 

 

 time 𝑡 is reached; 

 𝜋𝑦([𝑇𝑥], 𝜎) is true; 

 transaction 𝑇𝑦 has not been redeemed before. 

 

In our construction, we define the transaction that is sent by bank 𝐵 as 𝑇 = (∧, 𝜋, 𝑣, 𝜎) (the index 

of the transaction that 𝑇 redeems is empty) and we also define the transaction that user 𝑈 wants 

Experiment 𝑬𝒙𝒑𝒕𝒜,𝑏
StO (𝜆) 

 𝑝𝑎𝑟 ←  𝑃𝑎𝑟𝑎𝑚𝐺𝑒𝑛 (1𝜆); 

 (𝑐𝑜𝑖𝑛0, coin1) ← 𝒜Create,UReceive(𝑝𝑎𝑟); 

 simulate 𝑆&𝑅(𝑐𝑜𝑖𝑛𝑏); 

 𝑏∗ ← 𝒜Create,UReceive,S & 𝑅(par) 

If 𝑏∗ = 𝑏,then return 1; otherwise, return 0. 
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to send to 𝐵  to deposit the coins as 𝑇 = (𝐻(𝑇′), 𝑝𝑘𝐵, 𝜎) , where 𝑇′ is the transaction that be 

redeemed by 𝑇. 

 

4. A MORE PRACTICAL E-CASH SYSTEM 
 

In this section, we present the detailed construction of a more practical E-Cash system, which 
satisfies the properties of transitivity, anonymity, preventing double-spending, the size of coin is 

fixed during the transfer process. 

 
For our construction we have the following assumptions: secure channels for all the 

communications so that an adversary cannot overhear or tamper with the transferred messages; in 

the 𝑆𝑝𝑒𝑛𝑑 protocol the user wants to buy the witness 𝑤 from 𝑈1, which satisfies 𝑈′𝑠 demand 

(i.e.: 𝑈1  knows 𝑥  that 𝑓(𝑥) = 𝑡𝑟𝑢𝑒  which is harder to find 𝑥  than verifying that 𝑓(𝑥) = 𝑡𝑟𝑢𝑒 

holds) with the value 𝑉𝑎𝑙′ and in the process that 𝑈 proves knowledge of signatures and 𝑈1 

proves knowledge of the witness 𝑤 will by executing a zero-knowledge proof of knowledge 

protocol with each other in the cut-and-choose technique, which is denoted as 𝜋. 

 

Before giving the description of our construction, we show 𝑃𝑜𝐾 of signature in details and 𝑃𝑜𝐾 

of witness 𝑤 is similar. 

 

 𝑈1 divides each signature 𝜎𝑖,𝑗  to 𝑛 parts 𝜎𝑖,𝑗
1 , … , 𝜎𝑖,𝑗

𝑛  and each part is committed separately by 

computing 𝜏𝑖,𝑗
𝑘 ≔ 𝐶𝑜𝑚𝑚𝑖𝑡(𝜎𝑖,𝑗

𝑘 ), where 𝑖 = 1, . . . , 𝑙, 𝑗 ∈ {1, … , 𝑚1}⋃ … ⋃{1, … , 𝑚𝑙}and 𝑘 =

1, . . . , 𝑛, and sends the commitments 𝜏𝑖,𝑗
𝑘  to 𝑈2; 

 𝑈2  sends the set 𝐽 ⊆ {(𝑖, 𝑗, 𝑘): 𝑖 = 1, . . . , l, 𝑗 ∈ {1, … , 𝑚1}⋃ … ⋃{1, … , 𝑚𝑙}, k = 1, . . . , n} , 

where the size of each 𝐽 is smaller than 𝑛0 so that 𝑈2 cannot use any 𝑛0-out-of-𝑛 parts to 

learn any knowledge of 𝜎𝑖,𝑗 and𝑛0 is predefined; 

 𝑈1 opens the proper 𝜎𝑖,𝑗  according to subset 𝐽; 

 𝑈2 verifies the openings. 
 

Now, we present a more practical E-Cash system: 

 

 𝑝𝑎𝑟 ←  𝑃𝑎𝑟𝑎𝑚𝐺𝑒𝑛 (1𝜆): input the security parameter 𝜆  output the public parameter 𝑝𝑎𝑟 

and we assume that 𝑝𝑎𝑟 is the default input to the remaining algorithms; 

 {(𝑝𝑘𝐵, 𝑠𝑘𝐵) ← 𝐵𝐾𝑒𝑦𝐺𝑒𝑛(1𝜆): the bank generates the key pairs for different denominations 

as ((𝑝𝑘′
𝐵

, 𝑠𝑘′
𝐵); (𝑝𝑘1, 𝑠𝑘1), … , (𝑝𝑘𝑙 , 𝑠𝑘𝑙)) ≔ (𝑝𝑘𝐵, 𝑠𝑘𝐵):=((𝑝𝑘′

𝐵
, 𝑠𝑘′

𝐵) , (𝑝𝑘′′𝐵, 𝑠𝑘′′𝐵)); 

 {(𝑝𝑘𝑈 , 𝑠𝑘𝑈) ← 𝑈𝐾𝑒𝑦𝐺𝑒𝑛(1𝜆): the user generates the key pairs as (𝑝𝑘𝑈 , 𝑠𝑘𝑈); 

 Registration(U[(𝑝𝑘𝑈 , 𝑠𝑘𝑈), B[(𝑝𝑘𝐵 , 𝑠𝑘𝐵)]]): the user 𝑈 sends 𝑝𝑘𝑈 to bank 𝐵, if 𝑝𝑘𝑈 ∈ 𝐷𝐵  

(the database of the bank) then 𝐵 outputs ⊥; otherwise, 𝐵 selects a nonce 𝑛𝑜𝑛𝑐𝑒, computes 

ID𝑈 = 𝐻(𝑝𝑘𝑈||𝑛𝑜𝑛𝑐𝑒), adds (𝑝𝑘𝑈 , ID𝑈) to 𝐷𝐵 and returns ID𝑈 to 𝑈; 

 𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤(U[(𝑝𝑘𝑈 , 𝑠𝑘𝑈), (𝑝𝑘′𝑈 , 𝑠𝑘′
𝑈)], B[(𝑝𝑘′′𝐵, 𝑠𝑘′′𝐵)]): the user 𝑈 selects a new key 

pair (𝑝𝑘′𝑈 , 𝑠𝑘′
𝑈) and sends (𝑝𝑘′𝑈 , ID𝑈 ,Val) where 𝑉𝑎𝑙 denotes the amount of coins that he 

will withdraw from 𝐵. 𝐵 checks 𝑈′𝑠 account and its balance, returns ⊥ if one of them is 

invalid; otherwise, 𝐵 does the followings: 

- computes the number of coins with different denominations as 𝑚1, … , 𝑚𝑙; 

- computes signatures for each coin: selects 𝑠 ∈ 𝑍𝑝 (where 𝑝 is a prime) and computes 

𝜎𝑖,𝑗 = 𝑆𝑖𝑔𝑛𝑠𝑘𝑖
(𝑠||𝑗||ID𝑈) (𝜎𝑖,𝑗  is the signature of the 𝑗𝑡ℎ coin wit denomination 𝑉𝑎𝑙𝑖), 

where 𝑖 = 1, . . . , l, 𝑗 ∈ {1, … , 𝑚1}⋃ … ⋃{1, … , 𝑚𝑙}; 
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- prepares the transactions 𝑇𝑖,𝑗
𝑈 = (∧, 𝜋𝑖,𝑗, 𝑉𝑎𝑙𝑖, 𝜎𝑖,𝑗

𝐵 ), where 𝑇𝑖,𝑗
𝑈  means the  𝑗𝑡ℎ coin with  

denomination 𝑉𝑎𝑙𝑖  is transferred and 𝜋𝑖,𝑗(𝑇′
𝑖,𝑗) = 1  if 

𝑉𝑒𝑟𝑖𝑓𝑦𝑝𝑘′
𝑈

([𝑇′
𝑖,𝑗 , 𝜎′

𝑖,𝑗, [𝑇′
𝑖,𝑗]]) = 1; 

- broadcasts transactions 𝑇𝑖,𝑗
𝑈  and sends 𝐶𝑜𝑖𝑛 = (𝜎1,1 … 𝜎1,𝑚1

, … , 𝜎𝑙,1 … 𝜎𝑙,𝑚𝑙
) to user 𝑈; 

- deducts user 𝑈′𝑠 account. 

 

 Spend (𝑈1 [coin, (𝑝𝑘′
𝑈1

, 𝑠𝑘′
𝑈1

)] , 𝑈2 [ω, (𝑝𝑘𝑈2
, 𝑠𝑘𝑈2

))]:first we assume that 𝑈1  wants to 

buy a witness ω from 𝑈2, whose value is 𝑉𝑎𝑙′, so in this process 𝑈1 transfers 𝑉𝑎𝑙′ to 𝑈2 and 

get witness ω: 

 

- 𝑈1  computes the number of coins with different denominations as 𝑚1, … , 𝑚𝑙 and 

prepares the coins: 

𝑐𝑜𝑖𝑛𝑖,𝑗 = (𝑉𝑎𝑙𝑖 , 𝑆𝑁𝑖 , 𝜎𝑖,𝑗) 

where 𝑖 = 1, . . . , l, 𝑗 ∈ {1, … , 𝑚1}⋃ … ⋃{1, … , 𝑚𝑙} . And then 𝑈1  computes 𝜋 =
         𝑃𝑜𝐾(𝜎1,1 … 𝜎1,𝑚1

, … , 𝜎𝑙,1 … 𝜎𝑙,𝑚𝑙
) and sends 𝑐𝑜𝑖𝑛 = (𝑐𝑜𝑖𝑛1,1, … , 𝑐𝑜𝑖𝑛𝑙,𝑚𝑙

, 𝜋)to 𝑈2; 

- 𝑈2verifies that 𝑈1 owns 𝑐𝑜𝑖𝑛 exactly, and then computes ℎ = 𝐻(𝜔), 𝜋 = 𝑃𝑜𝐾(𝜔) and 

sends (ℎ, 𝜋) to  𝑈1; 

- 𝑈1verifies (ℎ, 𝜋) and prepares the following transactions: 

PutMoney𝑖,𝑗
 𝑈1 = (𝐻 (𝑇𝑖,𝑗

𝑈1) , 𝜋′𝑖,𝑗 , 𝑉𝑎𝑙𝑖 , 𝜎𝑠𝑘′
𝑈1

, 𝑡) 

ClaimMoney𝑖,𝑗
𝑈1(𝐻 (PutMoney𝑖,𝑗

 𝑈1) , 𝜋𝑖,𝑗
𝑈1 , 𝑉𝑎𝑙𝑖 , 𝜎𝑠𝑘′

𝑈1
, 𝑡′) 

where𝜋′
𝑖,𝑗 = ((Verify𝑝𝑘𝑈1

(𝑇𝑖,𝑗) ∧ 𝐻(𝜔) = ℎ) ∨ (Verify𝑝𝑘′
𝑈1

(𝑇′
𝑖,𝑗) ∧ 𝜋𝑖,𝑗

𝑈1 =

                (Verify𝑝𝑘′
𝑈1

(𝑇𝑖,𝑗))); 

- 𝑈2 prepares the following transactions: 

ClaimMoney𝑖,𝑗
𝑈2 = (𝐻 (PutMoney𝑖,𝑗

𝑈1) , 𝜋𝑖,𝑗
𝑈2 , 𝑉𝑎𝑙𝑖 , 𝜎𝑠𝑘𝑈2

, 𝜔, 𝑡1) 

             where 𝜋𝑖,𝑗
𝑈2 = 𝑉𝑒𝑟𝑖𝑓𝑦𝑝𝑘𝑈2

(𝑇𝑖,𝑗); 

- 𝑈1 broadcasts transactions PutMoney1,1
 𝑈1 , … , PutMoney𝑙,𝑚𝑙

 𝑈1  to the 𝐿𝑒𝑑𝑔𝑒𝑟 and computes 

𝑐 = Enc𝑝𝑘𝑈2
(𝜎1,1, … , 𝜎1,𝑚1

; … ; 𝜎𝑙,1 , … , 𝜎𝑙,𝑚𝑙
).If not all the transactions appear on the 

𝐿𝑒𝑑𝑔𝑒𝑟 or 𝑈2 does not receive the correct 𝑐 in time 𝑡, then the protocol halts; 

- 𝑈2  waits for all the transactions PutMoney1,1
 𝑈1 , … , PutMoney𝑙,𝑚𝑙

 𝑈1  appearing on the 

𝐿𝑒𝑑𝑔𝑒𝑟 ,he broadcasts transactions ClaimMoney1,1
 𝑈2 , … , ClaimMoney𝑙,𝑚𝑙

 𝑈2  to the 

𝐿𝑒𝑑𝑔𝑒𝑟,which will reveal the witness 𝜔. And if none of these transactions appears on 

the 𝐿𝑒𝑑𝑔𝑒𝑟  in time 𝑡1 , then 𝑈1  broadcasts transactions 

ClaimMoney1,1
 𝑈1 , … , ClaimMoney𝑙,𝑚𝑙

 𝑈1 to get his coins back. 

 

 𝐷𝑒𝑝𝑜𝑠𝑖𝑡(𝑈[𝑐𝑜𝑖𝑛, (𝑝𝑘′
𝑈

, 𝑠𝑘′
𝑈)], 𝐵[𝑝𝑘𝐵 , 𝑠𝑘𝐵]) : before the 𝐷𝑒𝑝𝑜𝑠𝑖𝑡  protocol starts, we 

assume that 𝐿𝑒𝑑𝑔𝑒𝑟 contains transactions 𝑇𝑖(𝑖 = 1, … , 𝑛𝑙) (we also say that the number of 

coins that 𝑈 owns is 𝑛1) and each transaction can be redeemed by 𝑈. First 𝑈  prepares the 

following transactions whose recipient is bank 𝐵 (𝑝𝑘𝐵), then 𝐵 adds the amount of coins to 

𝑈′𝑠 account. 

 

- 𝑈  prepares transactions 𝑇′1 = (𝐻(𝑇1), 𝑝𝑘𝐵, 𝑉𝑎𝑙1, 𝜎[𝑇′
1]) , … , 𝑇′𝑛1

=

(𝐻(𝑇𝑛𝑙
), 𝑝𝑘𝐵, 𝑉𝑎𝑙𝑙 , 𝜎[𝑇′

𝑙]) and broadcasts them to the 𝐿𝑒𝑑𝑔𝑒𝑟 , and sends 𝑐 =

𝐸𝑛𝑐𝑝𝑘𝐵
(𝜎1, … , 𝜎𝑛𝑙

, (𝑝𝑘𝑈 , 𝐼𝐷𝑈), (𝑝𝑘′, 𝑠𝑘′)) to the bank 𝐵,where (𝑝𝑘′ , 𝑠𝑘′) is the key pair 



50         Computer Science & Information Technology (CS & IT) 

that signs the  𝑇′1, … , 𝑇′𝑛 , so that the adversary cannot disguise 𝑈 to let the bank to add 
the coins to his account because he dose not know the correct key pair; 

- Bwaits the transactions appear on the Ledgerand checks the received messages, if each 

of them is valid then adds the amount of coins to the 𝑈′𝑠 account, otherwise returns ⊥. 

 

5. SECURITY ANALYSIS 
 

Theorem. Suppose the Digital Signature Scheme, Public Encryption Scheme, Zero-knowledge 
Proofs of Knowledge and the bitcoin blockchain protocol are secure, then our e-cash system 

satisfies unforgeability, anonymity, transferability, divisibility, preventing double-spending 

attacks and fair exchange between users. 
 

Proof: (unforgeability) According to the definition of unforgeability (Section 2.6), we give the 

proof of unforgeability into two parts. 

 

Part 1: Let the adversary 𝒜  to execute 𝐶𝑟𝑒𝑎𝑡𝑒, 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟  and 𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤  protocols with the 

𝑂𝑟𝑎𝑐𝑙𝑒, we denote it as simulator 𝒮, without the knowledge of 𝑠𝑘𝐵 . By executing 𝐶𝑟𝑒𝑎𝑡𝑒 and 

𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟 protocols, the adversary 𝒜 has an account in the bank's database 𝐷𝐵. Then at the end 

of executing 𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤  protocol with 𝒮, the output of 𝒮 is 𝑐𝑜𝑖𝑛 = ((𝑐𝑜𝑖𝑛1, 𝜎1,1, … , 𝜎1,.𝑚1
), …, 

(𝑐𝑜𝑖𝑛𝑙 , 𝜎𝑙,1, … , 𝜎𝑙,.𝑚𝑙
)) . With the security of Digital Signature Scheme that, without the 

knowledge of signature key 𝑠𝑘𝐵 , 𝒮 can give a valid signature 𝒮 with negligible probability. 

 

Part 2: Let the adversary 𝒜  to execute 𝐶𝑟𝑒𝑎𝑡𝑒, 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟, 𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤  and 𝐷𝑒𝑝𝑜𝑠𝑖𝑡  protocols 

with the 𝑂𝑟𝑎𝑐𝑙𝑒, we denote it as simulator 𝒮 with the knowledge of 𝑠𝑘𝐵 , and gets the valid coins 

𝑐𝑜𝑖𝑛 = ((𝑐𝑜𝑖𝑛1, 𝜎1,1, … , 𝜎1,.𝑚1
), … , (𝑐𝑜𝑖𝑛𝑙 , 𝜎𝑙,1, … , 𝜎𝑙,.𝑚𝑙

)) and the valid transactions that can be 

redeemed by 𝒜. Thus if 𝒜  succeeds at this game, then 𝒜  must redeem the same transaction 

twice and both are confirmed on the 𝐿𝑒𝑑𝑔𝑒𝑟  to accomplish the 𝐷𝑒𝑝𝑜𝑠𝑖𝑡  protocol. With the 

security of Bitcoin system, 𝒜 can redeem the same transaction more than once with negligible 

probability. So in this game, 𝒜 succeeds with negligible probability. 

 

(Preventing Double-Spending attack) Let the adversary 𝒜  to execute 𝐶𝑟𝑒𝑎𝑡𝑒, 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟,
𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤 and 𝐷𝑒𝑝𝑜𝑠𝑖𝑡 protocols with the 𝑂𝑟𝑎𝑐𝑙𝑒 to get the coins and transactions that can be 

redeemed by 𝒜. Then 𝒜 broadcasts two transactions that redeem a same transaction, so that the 

two transactions have the same ``head" and, with the security of Bitcoin system, the probability 

that these two transactions appear on the 𝐿𝑒𝑑𝑔𝑒𝑟 is negligible. Thus in this game, 𝒜 can succeed 

with negligible probability. 

 

(Anonymity) In the definition of anonymity, we divide it into three parts 𝑂𝑡𝑅, 𝑆𝑡𝑅 and 𝑆𝑡𝑂. For 

𝑂𝑡𝑅, we assume that the users communicate with other with a secure channel, so in the 𝑆𝑝𝑒𝑛𝑑 

protocol between two pairs of honest users (𝑈1, 𝑈2) and (𝑈3, 𝑈4) , where 𝑈 pays 𝑐𝑜𝑖𝑛1 to 𝑈2, 𝑈3 

pays 𝑐𝑜𝑖𝑛2  to 𝑈4  and 𝑉𝑎𝑙(𝑐𝑜𝑖𝑛1) = 𝑉𝑎𝑙(𝑐𝑜𝑖𝑛2). Thus, what the adversary 𝒜  can observe are 

View1 = {(PutMoney𝑈1 = 𝐻(𝑇𝑈1), 𝜋1 , 𝑉𝑎𝑙(𝑐𝑜𝑖𝑛1), 𝜎1), ClaimMoney𝑈2 = (𝐻(PutMoney𝑈1) , 

𝜋2, 𝑉𝑎𝑙(𝑐𝑜𝑖𝑛1), 𝜎2)} and View2 = {(PutMoney𝑈3 = 𝐻(𝑇𝑈3 ), 𝜋3 , 𝑉𝑎𝑙(𝑐𝑜𝑖𝑛2), 𝜎3), 
ClaimMoney𝑈4 = (𝐻(PutMoney𝑈3) , 𝜋4 , 𝑉𝑎𝑙(𝑐𝑜𝑖𝑛2), 𝜎4)} . Then 𝒜  communicates with 

𝑂𝑟𝑎𝑐𝑙𝑒𝑈𝑆𝑝𝑒𝑛𝑑(𝑐𝑜𝑖𝑛1)  or 𝑈𝐷𝑒𝑝𝑜𝑠𝑖𝑡(𝑐𝑜𝑖𝑛2)  and the view of 𝒜  is View3 = {(PutMoney𝑂 =
𝐻(𝑇𝑂), 𝜋5, 𝑉𝑎𝑙(𝑐𝑜𝑖𝑛1), 𝜎5),ClaimMoney𝒜 = (𝐻(PutMoney𝑂),𝜋6 , 𝑉𝑎𝑙(𝑐𝑜𝑖𝑛1), 𝜎6) or View4 =
{(PutMoney𝑂 = 𝐻(𝑇𝑂), 𝑝𝑘𝒜 , 𝑉𝑎𝑙(𝑐𝑜𝑖𝑛2), 𝜎7) }. Because View1 = View2 , so 𝒜  cannot link 

View3 or View4 to View1 or View2. As a result, in this game, 𝒜  can succeed with negligible 

probability. 

The same analysis method can be applied the to anonymity of 𝑆𝑡𝑂 and 𝑆𝑡𝑅. 
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(Transferability, divisibility and fair exchange between users) The security analysis of 

transferability, divisibility and fair exchange can be reduced to the security of Bitcoin system. In 

this system, (1) the payee can use the coin further without depositing to the bank first by 

redeeming the transactions on the 𝐿𝑒𝑑𝑔𝑒𝑟; (2) different coins have different denominations and 
each of them is transferred by an unique transactions so that user can spend arbitrary amount of 

coins; (3) the detailed form of bitcoin transaction allow us to define the conditions that the 

transactions can be redeemed. Thus, no user can cheat the others. 
 

6. CONCLUSION 
 

In this work, we develop a more practical E-Cash system that can be used to achieve 

unforgeability, preventing double-spending attacks, anonymity, transferability, divisibility, fixed 
size of coin during the transfer process and fair exchange between users. Our main contribution is 

to achieve the above security properties in one E-cash system. And the further work is to reduce 

complexity, e.g., in the Withdraw protocol, the bank signs every coin, so we assume that the 
amount of coins that the user can withdraw is limited and to achieve the real arbitrariness is the 

future works. 
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