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ABSTRACT 
 
Traffic sign recognition (TSR) is a challenging task for unmanned systems, especially because 

the traffic signs are small in the road view image. In order to ensure the real-time and 
robustness of traffic sign detection in automated driving systems, we present a single level 

detection model for TSR which consists of three core components. The first is we use channel 

shuffle residual network structure to ensure the real-time performance of the system, which 

mainly uses low-level features to enhance the representation of small target feature information. 

Secondly, we use dilated convolution residual block to enhance the receptive field to detect 

multi-scale targets. Thirdly, we propose a dynamic and adaptive matching method for the 

anchor frame selection problem of small traffic signs. The experimental surface on Tsinghua-

Tencent 100k Dataset and Chinese Traffic Sign Dataset benchmark has better accuracy and 

robustness compared with existing detection networks. With an image size of 800 × 800, the 

proposed model achieves 92.9 running at 120 FPS on 2080Ti. 
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1. INTRODUCTION 
 
Traffic sign recognition (TSR) is a critical component of Automated Driving Systems (ADS) [1] 

and High-Definition Maps (HD Map) [2], which can provide TSR aims to help make drivers 

more aware and able to make better safer driving decisions. Therefore, TSR must fulfill the 

requirements of high precision and real time. However, TSR still faces big challenges, on the one 
hand, the complex road conditions and natural environments that appear in the images [3], and on 

the other hand, most traffic signs in the Tsinghua-Tencent 100k dataset (TT100K) [4] are smaller 

than 32 × 32 pixels, which means that most traffic signs account for less than 0.3% of the image 
and detecting small objects is more challenging than large ones. 

 

As a kind of object detection problem, TSR usually shares the same detection algorithms based 
on convolutional neural networks. On one hand, two-stage approaches such as Fast RCNN [5], 

Faster RCNN [6], Mask RCNN [7] and Cascade RCNN [8] use region proposals to detect 

objects. Although these neural networks are superior in terms of accuracy, the low per-frame 

detection speed limits their application in real-time TSR. On the other hand, one-stage detectors 
such as SSD [9], YOLO series [10]-[11] [12] [13], YOLOX [14], etc. possess good speedups. 

Classic detectors still play a great role in TSR. Faster R-CNN [15] and SSD [16] are adapted to 

reduce the computational complexity for TSR. Yuan [17] et al. extracted regions of interest by 
adding attention module to CNN to refine the feature extraction of traffic signs in complex 
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backgrounds. Zhang [18] et al. introduced image enhancement and spatial pyramid pooling (SPP) 
modules based on YOLOv3 to effectively fuse low-level and high-level features. These efforts 

have had some effect, but it is still not enough to satisfy the demands of TSR. This has inspired a 

series of works targeting lightweight architecture design and better speed-accuracy trade-offs, 

including MobileNet [19], MobileNetV2 [20], ShuffleNet [21], ShuffleNet V2 [22], and so on. 
Although efficient, they are still not sufficient for low-dimensional feature extraction. In order to 

achieve real-time, high accuracy, and we present a single level detection model for TSR which 

can extract the low-dimensional feature more quickly and efficiently, as shown in Figure 1. 
 

 
 

Figure 1. The network structure of TSD. 

 
The main contributions of this paper are as follows: 

 

1) We propose an effective TSR detection model, which uses channel shuffle residual 
structure for low-level feature extraction, which can effectively reduce the 

computational overhead of the model. 

 

2) We introduce dilated convolution to increase the receptive field [23] and enhance the 
feature representation using an attention mechanism to improve the robustness of the 

model. 

 
3) We design an adaptive matching training samples algorithm to solve the problem of 

unbalanced distribution of small-scale traffic sign training samples, which can 

dynamically assign positive anchors according to the targets of different scales to 

improve the detection effect and robustness of traffic signs. 
 

4) We evaluate our model on the Tsinghua-Tencent 100k dataset (TT100K) [4] and the 

Chinese traffic sign dataset (CTSD) [24], and the results show that our model achieves 
outstanding performance in terms of faster speed and higher accuracy compared with 

state-of-the-art work. 

 

2. PREPARATION 
 
As a typical small object detection problem, the ability to detect small targets is critical for a TSR 

model [25]. CNNs use multi-level convolution and pooling operations to obtain deeper semantic 

features, These operations result in small objects existing only at shallow layers, but shallow 
features are not powerful enough in complex traffic scenes due to the lack of deep semantic 
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information. Therefore, the researchers have devoted their efforts to improving the small object 
feature representation capacity, including designing multiscale feature fusion backbones, adding 

feature pyramids to neural networks [26], and exploiting attention mechanisms [27]. 

 

 
 

Figure 2. Three structures of FPN in the RetinaNet network. C3~C5 are the input feature layers with 

downsampling multiplier 8, 16, 32, respectively, and F3~F7 are the output layers after FPN, respectively. 

The gray lines denote unused channels.  

 

Among all, FPN [26] is a popular module as it can rise the detection accuracy by fusing multi-

scale features, in which small scale features contributes the most to TSR. Therefore, before we go 
to the elaboration of our detector, we first evaluate to what extent of the contribution of FPN in 

TSR, which we hope can inspire our design of TSR detector. Unfortunately, we found that the 

depth pyramid level plays a secondary role in TSR. Figure 2 shows the three structures of FPN 

we’ve evaluated, and Table. 1 shows the results of FPNs on RetinaNet [28] network and 

TT100K dataset. 

 
Table 1.  The result under TT100K dataset with 800×800 input. 

 

model mAP 𝐀𝐏𝟓𝟎 𝐀𝐏𝐬 𝐀𝐏𝐦 𝐀𝐏𝐥 

MiMo 0.559 0.841 0.266 0.690 0.778 
MiSo 0.554 0.841 0.283 0.698 0.720 

SiSo 0.556 0.847 0.285 0.698 0.750 

 

From Table. 1, we found that MiMo, MiSo, and SiSo achieve comparable performance in TSR, 

and even SiSo structure is the best for small targets. We speculate that the small target 
information on C3 feature layer is detailed enough without using the complex information on C4 

and C5 layers. Table. 1 demonstrates that FPN is of limited help in TSR. This is also claimed by 

YOLOF [29]. Motivated by this observation, we design a detector based on the SiSo structure 
and remove the deep layer to reduce the inference time. Also we redesign the network structure to 

extract traffic sign features efficiently, and design an adaptive allocation strategy in order to 

balance the problem of under-allocation of positive samples for small traffic sign training. 

 

3. METHODOLOGY 
 

This section proposes a real-time yet efficient single-stage detection framework based on SiSo 

structure for TSR, denoted as TSD hereafter. Its schematic diagram is shown in Figure 1. The 
backbone is used for feature extraction, the neck further processes the features and distributes 

them to the head, and the head performs the classification and regression tasks and generates the 

final prediction result. In this section, we will elaborate the three components of TSD 

respectively. 
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3.1. Backbone 
 

The residual structure [30] can effectively solve the problem of gradient disappearance and 

gradient explosion caused by too deep network structure. However, a larger network structure 
also brings a boosting number of parameters and computational overhead. In order to better 

achieve the accuracy and real-time performance of TSR, we designed a new residual structure as 

shown in Figure 3. We replaced the conventional residual structure with CS residual structure, 
and the parameters were reduced by 36.7% with comparable performance. 

 

 
 

Figure3.  Residual structures. (a),(b) are traditional residual structures, c and d are CS residual structures 

we designed. where 64-d denotes the input dimension, Channel shuffle randomly disrupts the channel, 

which allows information exchange between channels of the same group. 

 

The network parameters of the entire backbone are shown in Table 2. The Focus module can 

obtain a two-fold downsampling feature map without information loss, and the CBR module 

consists of Convolutional, Batchnorm [31], and ReLU activation functions [32]. 
 

Table 2.  Structure of Backbone. 

 

layer-name Parametric Output-size 

Input - 800×800×3 

Focus [ Slice
CBR 1 × 1

] 400×400×32 

CBR [
conv 3 × 3，s = 1

Batchnorm
ReLU

] 400×400×32 

CS Residual, s=2 [
half1: CBR 3 × 3, s = 2

half2: CBR 1 × 1，s = 2
half1: CBR 3 × 3

] 200×200×64 

CS Residual [half1: CBR 3 × 3
half1: CBR 3 × 3

] 200×200×64 

CS Residual, s=2 [
half1: CBR 3 × 3, s = 2

half2: CBR 1 × 1，s = 2
half1: CBR 3 × 3

] 100×100×128 

CS Residual [half1: CBR 3 × 3
half1: CBR 3 × 3

] 100×100×128 
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3.2. Neck 
 

The input of the neck is the output of backbone, which we first simply process using a 1 × 1 

convolution and a 3 × 3 convolution to obtain a 128-channel feature layer. Then, in order to make 
the output features of neck cover all the targets on various scales, we use the dilated convolution 

[33] to form the residual block, whose rate is 2, 3, 5 in order, and the channel of the dilated 

convolution is set to half of the input channel, and we add SElayer [34] to enhance the feature 
expression after the convolution, and the overall structure of the neck is shown in Figure 4. 

 

 
 
Figure 4.  The neck structure. 1×1 and 3×3 represent the size of the convolution kernel, and three 

consecutive dilated convolution residual blocks can increase the receptive field range, and in the residual 

blocks we add an attention mechanism to enhance the feature representation, and all convolutional layers 

are followed by a Batchnorm layer and a ReLU layer. 

 

3.3. Head 
 

For the head, we use two parallel task-specific head compositions: a classification head and a 
detection head. We follow the design of the FFN in DETR [35], so that the two heads have 

different number of convolution layers. The classification head has a 1 × 1 convolution and a 3 × 

3 convolution, and the regression head has a 1 × 1 convolution and three 3 × 3 convolutions, 
followed by batch normalization layer and ReLU layer. Also, we follow the design in Auto assign 

[36] by adding an implicit objectness prediction (without direct supervision) for each anchor on 

the regression head. The final classification scores for all predictions are generated by 
multiplying the classification output with the corresponding implied objectivity. 

 

The loss function consists of categorical loss and regression loss, where we use Focal Loss as the 

category loss function and GIoU Loss as the location loss function. The total loss is shown in 
Equation 1. 

 

Loss = γ1
1

Npos
∑ Lcls

i + γ2i
1

Npos
∑ Lreg

j
j   (1) 

 

Where Npos denotes the number of positive samples, i denotes all positive and negative samples, 

j denotes all positive samples, and γ1 and γ2 are the values of the weights learned by the network. 
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3.4. Label Assignment 
 

The definition of a positive sample is crucial for the optimization of the target detection problem, 

and in the anchor-based approach, the definition of a positive sample is based on the IoU between 
the anchor and the GT frame. For example, in RetinaNet [37], an anchor is a positive sample if 

the maximum IoU between it and the GT frame is greater than a given threshold value of 0.5. 

This strategy is called Max-IoU matching. When facing small-scale targets and large scale gaps 
between targets, this methods have certain drawbacks, the large target will match more positive 

anchors than the small target, which will lead to an unbalanced distribution of positive and 

negative anchors. Small targets may match few or no positive anchors, which makes the detector 

pay more attention to the large ground-truth boxes and ignore the small ground-truth boxes 
during training, resulting in poor detection. Thus we propose an adaptive matching strategy.  

 

Based on the pre-generated anchors, we additionally use the predicted bbox as supplementary 
information and propose an adaptive matching strategy: calculate the IoU value of the predefined 

anchor and GT, select the IOU value greater than 0.15 At the same time, we use the predicted 

bbox with the IoU value of GT greater than 0.15 as a supplementary candidate positive sample. 
Then we calculate the mean and standard deviation based on the total candidate positive samples 

to obtain a threshold, and then use the threshold to filter the final set of positive samples. The 

specific algorithm is as follows: 

 

Algorithm 1 Adaptive matching training samples 

Input: 

G is a set of ground-truth boxes on the image 

A is a set of all anchor boxes 

P is a set of all Prediction boxes 

Y is the initial IoU threshold with a default value of 0.15 

Output: 

O is a set of positive samples 

N is a set of negative samples 

I is a set of ignore samples 

Detail: 

1: for each ground-truth g ∈ G do 
2:  build an empty set for candidate positive samples of the 

ground-truth g: Cg; 

3:  for each ai ∈ A do 

4:   compute IoU between g and ai :Ag = IoU(ai, g); 

5:   if Ag = IoU(ai, g)>Y then 

6:    Cg=Cg ∪ ai; 

7:   end if 

8:  end for 

9:  for each pi ∈ P do 

10:   compute IoU betweengandpi :Pg = IoU(pi, g); 

11:   if Pg = IoU(pi, g)>Ythen 

12:    Cg=Cg ∪ pi; 

13:   end if 

14:  end for 

15:  compute IoU between Cg and g:Dg = IoU(Cg, g); 

16:  compute mean ofDg : mg = Mean(Dg); 

17:  compute standard deviation of Dg: vg = Std(Dg); 
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18:  coumpute IoU threshold for ground-truth g: tg = mg + vg; 

19:  for each candidate c ∈ Cg do 

20:   ifIoU(c, g) ≥ tg then 

21:    P2 = P2 ∪ c; 
22:   elifY ≤ IoU(c, g) ≤ tgthen 

23:    I = I ∪ c; 

24:   end if 

25:  end for 
26: end for 

26: N = A − P2 − I; 
27: return P2, N, I; 

 

4. EXPERIMENTS AND RESULTS 
 
We evaluated our TSD on TT100k and CTSD, using the COCO benchmark [38]. Most of the 

category in the TT100K are less than 100, and to make full use of the annotation information, we 

divided both datasets into three categories (danger, prohibitory, mandatory). We divide all traffic 
signs into small, medium, and large groups, which can compare the performance of traffic signs 

at different scales in more detail. We compare with some currently popular lightweight detection 

frameworks, such as YOLOv4-Tiny [39]. A description of the datasets and specific experimental 
details are given below. 

 

4.1. Datasets 
 

CTSD has 700 annotated images in the training set and 400 in the test set, and the traffic signs are 

classified into three categories (danger, prohibitory, mandatory). The training set of TT100K 
includes 6105 labeled images and the test set has 3071 images, with a total of 232 categories. 

Considering many of them have very few, and in order to make full use of their labeling 

information, we process them into the same three categories as CTSD, As shown in Figure 5. For 

TT100K, we divided the traffic signs into three categories: small, medium, and large according to 
their bounding box sizes, with those smaller than 32 × 32 being small targets, those with sizes 

ranging from 32 × 32 to 96×96 being medium targets, and those larger than 96×96 being large 

targets. The original annotation of the training set of TT100K consists of 51.43% small targets, 
41.45% medium targets, and 7.12% of large targets, as shown in Figure 6. When we resize it to 

an image size of 800 × 800 for training, the percentages of small, medium, and large targets are 

89.28%: 10.69%: 0.04%, respectively. Table 3 contains the image size and annotation size for 

both datasets. 
 

Table 3.  Details of TT100K and CTSD. 

 

Dataset train images test images image size(px) sign size(px) 

TT100K 6105 3071 2048×2048 8×9~285×343 

CTSD 700 400 
768×1024 

~720×1280 

20×20 ~ 

380×378 
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(danger) (prohibitory)         (mandatory) 

 
Figure 5.  Traffic sign categories in TT100K. 

 

4.2. Experiment Environment 
 

All experiments in this paper are conducted on Ubuntu 20.04LTs system with GeForce RTX 
2080Ti, based on MMdetection [40] framework, except for SSDLite where the input image size 

is 320×320. The rest of the image preprocessing is exactly the same, each image is resized to 

800×800, RandomFlip, RandomShift, Normalize. RandomFlip, RandomShift, Normalize. 
Batchsize is set to 8, and we adopt the learning rate setting in DETR [28], the initial learning rate 

is set to 0.02, and a smaller learning rate is set in the backbone network, i.e., 1/3 of the initial 

learning rate to stabilize the training at the beginning. We set the warmup times as 1500 times. 
For model inference, we post-processed the results using an NMS with a threshold of 0.5. 

 

 
 
Figure 6. Sample distribution in the used dataset. The left figure shows the two-dimensional distribution of 

large, medium and small targets in the original annotation of TT100K training set, and the right one shows 

the percentage of large, medium and small targets in the training set. 
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4.3. Comparison With Previous Work 
 

We used AP (Average Precision) (APs, APm, APl), AP50, and AP75which were introduced by MS 

COCO [38] benchmark to evaluate the accuracy and the number of images processed per second 
(FPS) to evaluate the inference speed. Since the image size in CTSD is not uniform, FPS metric 

is not evaluated. The results are shown in Table 4 and Table 5. The readers can also refer to 

Figure 7 for a more intuitive comparison result. 
 

 
 

Figure 7. Compare our method with the previous method on TT100K and CTSD. 

 
We can see that our detector can achieve the best results in most cases. Both YOLOv3-

MobileNetV2 and YOLOv4-Tiny used the Kmeans method [41] to obtain the anchor sizes, and 

the anchor settings for TT100K and CTSD were [[(73, 73), (110, 111), (157, 154)], [(31, 31), (42, 

41), (56, 55)], [(16, 16), (20, 20), (25, 25)]] and [[(23, 25), (30, 32), (43, 45)], [(12, 14), (15, 16), 
(19, 20)], [(6, 7), (8, 9), (10, 11)]]. 

 
Table 4.  Comparison of our method with other methods on TT100K. 

 

method mAP 𝐀𝐏𝟓𝟎 𝐀𝐏𝐬 𝐀𝐏𝐦 𝐀𝐏𝐥 FPS 

SSDLite 0.460 0.802 0.264 0.582 0.635 95 

YOLOv3-

MobileNetV2 
0.545 0.927 0.455 0.597 0.602 88 

YOLOv4-Tiny 0.437 0.855 0.264 0.530 0.612 114 

TSD (Ours) 0.643 0.929 0.498 0.717 0.746 120 

 
In terms of accuracy, our method achieves the highest AP metric of 92.9% on TT100K, which is 

7.4% higher than YOLOv4-Tiny, which indicates that our method has good results for small 
object detection. In the CTSD, YOLOv4-Tiny is comparable to our method. Please note, TSD is 

able to reach 94.3% if inputting 1024×1024 images for inference. 
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Table 5.  Comparison of our method with other methods on CTSD. 

 

method mAP 𝐀𝐏𝟓𝟎 𝐀𝐏𝐬 𝐀𝐏𝐦 𝐀𝐏𝐥 

SSDLite 0.538 0.853 0.268 0.576 0.563 

YOLOv3-

MobileNetV2 
0.644 0.922 0.411 0.687 0.532 

YOLOv4-Tiny 0.722 0.936 0.430 0.767 0.765 

TSD (Ours) 0.736 0.940 0.556 0.771 0.731 

 

 
(𝑎1)          (𝑎2) 

 

 
(𝑏1)                                  (𝑏2) 

 
Figure 8.  Partial visualization results, a1 and a2 are the visualization results of Yolov4-Tiny, b1 and b2 are 

our results. 
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In terms of inference speed, we test on TT100k with input image size of 800×800 for inference, 
our method has FPS of 120, which is slightly faster than YOLOv4-Tiny and fully satisfies the 

real-time requirement. 

 

To show the results of our experiments more visually, Figure 8 shows the visualization of some 
tested samples on YOLOv4-Tiny and TSD. 

 

4.4. Ablation Experiment 
 

We investigated the effectiveness of the backbone and neck components of TSD, and all 

experiments were performed on TT100K. 
 

In Table 6, we replace the CS Residual structure of the backbone part with the conventional 

residual structure, and we can see that CS Residual structure achieves comparable performance 
with the conventional residual structure, but CS Residual structure parameters were reduced by 

70% and FLOPs by 61.8% when the output channel of the backbone is 128. 

 
Table 6.  backbone uses different residual structures for comparison. 

 

Backbone 𝐀𝐏𝟓𝟎 Params(M) FLOPs (GFLOPs) 

Residual 0.929 0.667 12.101 

CS Residual(ours) 0.929 0.2 (70% ↓) 4.621 (61.8%↓) 
 

We tested different choices of dilation for the expansion convolution in the neck part, and the 

results are shown in Table 7. We can see that the difference in model results is not significant for 

different choices of dilation, and we guess the reason is that the target scale of TT100K is small, 
and the small receptive field is enough to cover most of the targets in the image. We learned that 

the grid effect occurs when the dilation of the dilated convolution is greater than 1 [33]. To 

ensure the robustness of the model, we set the dilation to 2, 3, 5. 
 

Table 7.  Different dilations，RF means receptive field. 

 

Dilation 𝐀𝐏𝟓𝟎 𝐀𝐏𝐬 𝐀𝐏𝐦 𝐀𝐏𝐥 RF 

1,2,3 0.926 0.490 0.713 0.748 13x13 

2,2,2 0.925 0.492 0.711 0.751 13x13 

1,2,5 0.924 0.486 0.712 0.761 17x17 

2,3,5 0.929 0.498 0.717 0.746 21x21 

2,4,6 0.921 0.479 0.710 0.754 25x25 

 

5. CONCLUSIONS 
 

In this work, we aim to improve the speed and accuracy of small traffic sign detection, and we 
find that FPN have limited improvement in detection capability for small targets. We propose an 

effective framework TSD for small TSR, detailing various optimization strategies, including for 

proposing CS Residual structure, Dilated convolution blocks and adaptive matching training 
sample methods. Experiments show that our method outperforms some lightweight detection 

algorithms on TT100K and CTSD. 
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Our model has some limitations when facing the detection of very large targets, because we focus 
more on the feature information within a certain range.If you need to, we suggest that you can 

further increase the range of receptive field or create another branch to detect large objects. 

 

For future work, we will try to optimize the detection algorithm using the anchor-free approach, 
which can eliminate our customization work for anchor and enhance the robustness of the model. 
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