
David C. Wyld et al. (Eds): AI, AIMLNET, BIOS, BINLP, CSTY, MaVaS, SIGI - 2022

pp. 115-122, 2022. CS & IT - CSCP 2022 DOI: 10.5121/csit.2022.121811

MACHINE LEARNING BASED TO

PREDICT B-CELL EPITOPE REGION

UTILIZING PROTEIN FEATURES

Fatema Nafa and Ryan Kanoff

Department of Computer Science, Salem State University, Salem, USA

ABSTRACT

Considering the current state of Covid-19 pandemic, vaccine research and production is more

important than ever. Antibodies recognize epitopes, which are immunogenic regions of antigen,

in a very specific manner, to trigger an immune response. It is extremely difficult to predict such

locations, yet they have substantial implications for complex humoral immunogenicity

pathways. This paper presents a machine learning epitope prediction model. The research

creates several models to test the accuracy of B-cell epitope prediction based solely on protein

features. The goal is to establish a quantitative comparison of the accuracy of three machine

learning models, XGBoost, CatBoost, and LightGbM. Our results found similar accuracy

between the XGBoost and LightGbM models with the CatBoost model having the highest

accuracy of 82%. Though this accuracy is not high enough to be considered reliable it does

warrant further research on the subject.

KEYWORDS

machine learning models; data exploratory techniques; B-cell epitope prediction.

1. INTRODUCTION

Given the current rate of globalization, we can expect with near certainty that we will see events

similar to the Covid-19 pandemic in the coming years. This makes vaccine research and

development, especially the speed and efficiency of these processes, more relevant than ever. An

essential aspect of vaccine research and development is B-cell epitope prediction. B-cell epitope

regions are areas of antigen proteins that when recognized by B-cells produce large amounts of

antigen-specific antibodies. Historically, B-cell epitope predication has relied primarily on

sequence data and not protein features. By utilizing these protein features we can potentially

increase the speed of B-cell epitope prediction which may help expediate the research and

development of new vaccines.

For the purpose of this paper, we used several different machine learning models to test the

relationship between protein features and B-cell epitope regions in an attempt to find this highest

accuracy possible. The input to our algorithm is a dataset consisting of protein/amino acid

sequences and their associated protein features and target behavior (anti-body inducing

behavior). Three different machine learning models applied to this dataset. All of these models

utilize boosting algorithms, specifically gradient boosting. These algorithms function by first

creating weak learners and converting them to strong learners [1]. XGBoost or extreme gradient

boost, is a gradient boosting decision tree (GBDT) model that focuses on speed and performance

[2]. In recent years it has gained significant popularity through its ability to yield highly accurate

results from large datasets. LightBGM is another gradient boosting tree-based model. Alongside

http://airccse.org/cscp.html
http://airccse.org/csit/V12N18.html
https://doi.org/10.5121/csit.2022.121811

116 Computer Science & Information Technology (CS & IT)

the expected speed and performance of a gradient boosting model, LightBGM offers reduced

memory usage which can help facilitate large-scale data processing. The final model, CatBoost,

is another GBDT model. It behaves much like similar models; however, it specializes in data

processing speed, with the potential to be notably faster than the previously mentioned models

[3]. Each of these models will output an accuracy for the prediction of the target behaviour based

on the features.

2. RELATED WORK

Machine learning algorithms have become one of the foremost methodologies within the field of

bioinformatics and more specifically, immunoinformatic, for the purpose of predicting B-cell

epitope regions. The following section will detail a number of papers regarding B-cell epitope

prediction to provide a basic survey of the topic. Three of the most methodologies used include

Naïve Bayes Classification, Support Vector Machine and Artificial Neural Networks [2]. Many

papers that explore B-cell epitope region prediction will include at least one of these as part of

their methodology. J Chen et al used the amino acid pair (AAP) antigenicity scale to predict B-

cell epitopes. They saw significantly improved performance with the AAP antigenicity scale by

utilizing support vector machine rather than existing scales [4].

Tao Lui et al utilized deep learning, a type of neural network with many hidden nodes and hidden

layers, to create a predictive model for linear B-cell epitopes. They obtained sample peptides

from the IEDB database and used this data to build a feed forward deep neural network. This

ensemble prediction model was named DLBEpitope and performed better than current major

models [5].

A great deal of success has also been made less conventional models such as BERT-based

epitope prediction.

While BERT models are typically used for natural language processing, Minjun Park et al were

able to create a Bert-based model, EpiBERTope. They pre-trained it with the Swiss-Prot protein

database so that it could predict linear and structural epitope while exclusively relying on protein

sequences. This model outperformed all the classic benchmark models include random forest,

gradient boosting, naïve bayes and support vector machine [6].

3. PROBLEM DEFINATION

The main motivation behind this work is, to highlight the work done in B-cell epitope prediction

using machine learning models, the limitation and the strength of each work presented in this

work. Also, introducing machine learning methods to predict the B-cell epitope, in additionally,

to provide future directions in terms of the limitation of the proposed method.

4. METHODOLOGY

This section covers pre-processing steps, and the methodology used in this research.

4.1. Data Pre-Processing

In this work Python [7], [8] is used for performing the prediction. Python is a general-purpose

programming language with most data analysis features provided by NumPy and pandas. It has

efficient high-level data structures and an object-oriented programming technique that is simple

but effective.

Computer Science & Information Technology (CS & IT) 117

This dataset was obtained from IEDB and UniProt available for public [9]. This dataset consists

of three csv files, input_bcell, input Sars and input covid. Input_bcell is by far the largest file

with dimensions 14387 x 14. All three of these files have the same columns excluding input Sars

which does not have the target column. The first few columns are identifying pieces for the

protein sequences and are not utilized by this paper. These include the parent protein id, protein

sequence, peptide start position, peptide end position and peptide sequence. All of these columns

are dropped in pre-processing because they are not needed when exclusively examining the

protein features.

4.2. ML Models

This work implements Boosting algorithms [2], [10]. Gradient boosting is an algorithm that

stands out for its predictability and speed, especially when dealing with big and complicated

datasets[11], [12]. Gradient Boosting algorithm has three main components, loss function, weak

learner, and additive model. The main goals of Gradient Boosting algorithms are to improve the

prediction power by converting a number of weak learners to strong learners. Boosting

algorithms work on the idea of first building a model on the training dataset, then building a

second model to correct the errors in the first model. This process is repeated until the errors are

minimized and the dataset is accurately predicted. Boosting algorithms are divided into three

main categories, AdaBoost algorithm, Gradient algorithm, and Extreme Gradient Boosting, or

XGBoost [2]. Gradient boosting algorithms can be Regressors (for predicting continuous target

variables) or Classifiers (predicting categorical target variables). In this paper, XGBoost is used

for predicting categorical target variables.

XGBoost stands for eXtreme Gradient Boosting. XGBoost is a powerful machine learning

algorithm. it is a supervised learning algorithm used optimized loss function and applied several

regularization techniques[2]. XGBoost is a more regularized form of Gradient Boosting.

XGBoost uses advanced regularization which improves model generalization capabilities.

XGBoost can be used for a variety of applications, including regression and classification

problems [f]. XGBoost is a faster algorithm because of its parallel and distributed computing. It

has a deep consideration in terms of systems optimization in machine learning [1]. The adoption

of XGBoost is mostly due to its execution speed and model performance. It uses ensemble

learning methods, which means it combines several different algorithms to produce a single

model. This method allows for parallel and distributed processing while maximizing memory

utilization. The steps of XGBoost shown in Algorithm 1.

LightGBM is a tree-based learning optimization technique. This approach, as an optimization

technique, minimizes both information loss and memory space usage. Furthermore, unlike

traditional learning tree algorithms that develop at the level of the node with the largest share of

information loss, Light GBM accelerates the learning process by

118 Computer Science & Information Technology (CS & IT)

CatBoost, like the Light GBM method, is part of the GBDT model, which seeks to handle

categorical features [3], [13], [14]. This approach is frequently used in search, system

suggestions, personal help, self-driving automobiles, and weather forecasting. This optimization

approach is notable for its data processing speed, which may be up to 60 times quicker than Light

GBM in some situations [1].

The main motivation of choosing these models is as following:

 Faster training speed and higher efficiency.

 Lower memory usage.

 Better accuracy.

 Support of parallel and GPU learning.

 Capable of handling large-scale data.

implementations of the Gradient Boosted Trees algorithm, a supervised learning method that is

based on function approximation by optimizing specific loss functions as well as applying

several regularization techniques. Gradient boosting is a machine learning technique that can be

used for a variety of applications, including regression and classification. It returns a prediction

model in the form of an ensemble of weak prediction models, most commonly decision trees. The

resulting approach is called gradient-boosted trees when a decision tree is the weak learner; it

usually outperforms random forest. A gradient-boosted trees model is constructed in the same

stage-wise manner as other boosting approaches, but it differs in that it allows optimization of

any differentiable loss function [15], [16].

5. RESULTS

In this section, we present experimental results conducted on the dataset.

5.1. Dataset Description

The experimental data in this paper are derived from dataset developed during a research process

obtained from IEDB and UniProt [9].The dataset consists of 15 features, and the result in the data

were taken from 14907 people. General statistical information about the dataset shown in Table1.

Table 1. Statistical Information about the Dataset.

The first few features are identifying pieces for the protein sequences and are not utilized by this

paper. These include the parent protein id, protein sequence, peptide start position, peptide end

position and peptide sequence. All of these features are dropped in pre-processing because they

Computer Science & Information Technology (CS & IT) 119

are not needed when exclusively examining the protein features. The features and its abbreviation

are shown in Table 2.

Table 2. Dataset and Feature Abbreviation.

Features Abbreviation of Features

parent_protein_id Parent Protein

protein_seq parent protein sequence

start_position start position of peptide

end_position end position of peptide

peptide_seq peptide sequence

chou_fasman peptide feature, β turn

emini

peptide feature, relative surface

accessibility

kolaskar_tongaonkar

peptide feature, antigenicity

parker

peptide feature, hydrophobicity

isoelectric_point protein feature

5.2. Data Correlation

After data pre-processing, we have to learn whether or not the data is processed properly and how

much the correlation between the data is. The correlation coefficient can be used to reflect the

close relationship between the features. The correlation coefficient is calculated by the difference

method. It is also based on the dispersion of the two features and their respective averages. The

two differences are multiplied to reflect the degree of correlation between the two features. The

linear single correlation coefficient is studied as shown in Fig.1.

Figure 1. Correlation coefficient matrix

Diving more into the features. we have to learn whether or not the data is processed properly and

how much the correlation between the data is. Finding the distribution of each feature is

important. It is clear from Fig.2. some variables having skewed distribution. Most of machine

learning models assume that the data is normally distributed those variables may need scaling.

120 Computer Science & Information Technology (CS & IT)

Figure 2. The population distribution of all attributes.

From correlation coefficient matrix, we can figure out whether there is a linear correlation

between target and various parameters, such as the emini is 0.34.

5.3. Performance Metrics/Confusion Matrix

XGBoost, LightGBM and CatBoost Tree algorithms are used in this research work.

Experiments are performed using internal cross-validation 10-folds [17], [18]. Accuracy, F-

Measure, Recall, Precision and ROC (Receiver Operating Curve) measures are used for the

prediction of this work. Table.3.3 defines accuracy measures below.

Table 3. List of Accuracy Measures

Measures Definitions Formula

1. Accuracy (A) Accuracy determines the accuracy of the

algorithm in predicting instances.
A=(TP+TN) / (Total no of

samples)

2. Precision (P) Accuracy is measured by Precision. P = TP / (TP+ FP)

3. Recall (R) To measure the classifier¢¢s completeness or

sensitivity, Recall is used.
R =TP / (TP+FN)

4. F-Measure F-Measure is the weighted average of precision

and recall.
F=2*(P*R) / (P+R)

5. ROC ROC (Receiver Operating Curve) curves are

used to compare the usefulness of tests.

5.4. Result Analysis

By the iterated training and adjustment parameters of the training set, the comparison results are

showed between XGBoost, CatBoost, and LightGbM in Table.4.

Computer Science & Information Technology (CS & IT) 121

Table 4. Performance comparison for dataset.

Prediction

Models
Precision Recall Accuracy%

XGBoost 0.708 0.532 81.83

CatBoost 0.737 0.514 82.01

LightGBM 0.720 0.531 81.83

While carrying out B-cell epitope prediction, the model can also give the order of importance

feature for improving the accuracy of the prediction model through the tree model mechanism.

These important features can also be used as some clinical reference value for doctors.

Finally, the results of an attribute in all the models are weighted and summed, and then averaged

to obtain the importance score.

As shown in Fig.3.[19]

Figure 3. Feature importance of the Machine Learning Algorithm

As can be seen from Fig.3. we can clearly see that feature (peptide) is the most important

feature which has contributed towards the prediction of the results. Followed by feature

(kolaskar_tongaonkar) and feature (emini). The least important feature is feature (antigenicity).

The model can also give the order of importance feature for improving the accuracy of the

prediction model through the tree model mechanism. These important features can also be used

as some clinical reference value for doctors.

6. CONCLUSION

Data preparation is a necessary step in ensuring model accuracy and speeding up the process.

When the models are compared, it is evident that CatBoost outperforms several classic

approaches. We suggested a better feature combination approach based on CatBoost after

comparing it to the integrated algorithms. The experiment findings suggest that using the

CatBoost model, it is possible to develop a B-cell epitope prediction model with high prediction

accuracy, stability, and speed.However, there were no missing data in the datasets used in this

experiment. As a result, the same conclusions cannot be predicted from a dataset with missing

values and noisy data. As a result, we will test the accuracy and speed of the model’s using

datasets that include a variety of data types as well as missing data in the future. In addition, as

we are entering the BigData era, we would attempt running the models in-memory distributed

computing and design UGI for it to make it easy to use.

122 Computer Science & Information Technology (CS & IT)

REFERENCES

[1] R. B. Sundaram, “Gradient Boosting Algorithm: A Complete Guide for Beginners,” analyticsvidhya,

2021.
[2] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd

acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785–794.
[3] G. Huang et al., “Evaluation of CatBoost method for prediction of reference evapotranspiration in

humid regions,” J. Hydrol., vol. 574, pp. 1029–1041, 2019.
[4] J. Chen, H. Liu, J. Yang, and K.-C. Chou, “Prediction of linear B-cell epitopes using amino acid pair

antigenicity scale,” Amino Acids, vol. 33, no. 3, pp. 423–428, 2007.
[5] T. Liu, K. Shi, and W. Li, “Deep learning methods improve linear B-cell epitope prediction,”

BioData Min., vol. 13, no. 1, pp. 1–13, 2020.
[6] M. Park, S. Seo, E. Park, and J. Kim, “EpiBERTope: a sequence-based pre-trained BERT model

improves linear and structural epitope prediction by learning long-distance protein interactions

effectively,” bioRxiv, 2022.
[7] J. Faouzi and H. Janati, “pyts: A Python Package for Time Series Classification.,” J Mach Learn Res,

vol. 21, pp. 46–1, 2020.
[8] J. Hao and T. K. Ho, “Machine learning made easy: a review of scikit-learn package in python

programming language,” J. Educ. Behav. Stat., vol. 44, no. 3, pp. 348–361, 2019.
[9] R. Vita et al., “The immune epitope database (IEDB): 2018 update,” Nucleic Acids Res., vol. 47, no.

D1, pp. D339– D343, 2019.
[10] R. E. Schapire, “The boosting approach to machine learning: An overview,” Nonlinear Estim.

Classif., pp. 149–171, 2003.
[11] K. M. Ting, “A comparative study of cost-sensitive boosting algorithms,” 2000.
[12] A. J. Ferreira and M. A. Figueiredo, “Boosting algorithms: A review of methods, theory, and

applications,” Ensemble Mach. Learn., pp. 35–85, 2012.
[13] A. V. Dorogush, V. Ershov, and A. Gulin, “CatBoost: gradient boosting with categorical features

support,” ArXiv Prepr. ArXiv181011363, 2018.
[14] J. T. Hancock and T. M. Khoshgoftaar, “CatBoost for big data: an interdisciplinary review,” J. Big

Data, vol. 7, no. 1, pp. 1–45, 2020.
[15] S. Neelakandan and D. Paulraj, “A gradient boosted decision tree-based sentiment classification of

twitter data,” Int. J. Wavelets Multiresolution Inf. Process., vol. 18, no. 04, p. 2050027, 2020.
[16] T. Pinto, I. Praça, Z. Vale, and J. Silva, “Ensemble learning for electricity consumption forecasting in

office buildings,” Neurocomputing, vol. 423, pp. 747–755, 2021.
[17] S. De Bruyne and F. Plastria, “2-class Internal Cross-validation Pruned Eigen Transformation

Classification Trees,” Optim. Online Httpwww Optim. OrgDB HTML2008051971 Html.
[18] H. Van Hasselt, “Estimating the maximum expected value: an analysis of (nested) cross validation

and the maximum sample average,” ArXiv Prepr. ArXiv13027175, 2013.
[19] F. Nafa, A. Babour, and A. Melton, “Prerequisite Relations among Knowledge Units: A Case Study

of Computer Science Domain,” Comput. Model. Eng. Sci., doi: 10.32604/cmes.2022.020084.

© 2022 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://airccse.org/

	1. Introduction
	2. Related Work
	3. Problem Defination

	4. Methodology
	4.1. Data Pre-Processing
	4.2. ML Models
	5. Results
	5.1. Dataset Description
	5.2. Data Correlation
	5.3. Performance Metrics/Confusion Matrix
	5.4. Result Analysis

	6. Conclusion
	References

