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ABSTRACT 
 

The assessment of Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) associated 

with brain changes remains a challenging task. Recent studies have demonstrated that 

combination of multi-modality imaging techniques can better reflect pathological 

characteristics and contribute to more accurate diagnosis of AD and MCI. In this paper, we 

propose a novel tensor-based multi-modality feature selection and regression method for 

diagnosis and biomarker identification of AD and MCI from normal controls. Specifically, we 

leverage the tensor structure to exploit high-level correlation information inherent in the multi-

modality data, and investigate tensor-level sparsity in the multilinear regression model. We 

present the practical advantages of our method for the analysis of ADNI data using three 

imaging modalities (VBM-MRI, FDG-PET and AV45-PET) with clinical parameters of disease 

severity and cognitive scores. The experimental results demonstrate the superior performance of 
our proposed method against the state-of-the-art for the disease diagnosis and the identification 

of disease-specific regions and modality-related differences. The code for this work is publicly 

available at https://github.com/junfish/BIOS22. 
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1. INTRODUCTION 
 

Alzheimer’s Disease (AD) is one of the most common and incurable neurodegenerative diseases 

[1], which can result in progressive cognitive decline and behavioral impairment, and even cause 

death in severe cases. A recent report shows that 26.6 million AD patients exist in the world and 
1 out of 85 people will be living with AD by 2050 [2]. Thus, for timely therapy that might be 

effective to slow the disease progression, it is important for early diagnosis of AD and its 

prodromal stages like Mild Cognitive Impairment (MCI). In particular, MCI is attractive because 
it represents a transitional stage between normal aging and dementia [3]. Evidence shows that 

patients with MCI have a high risk to convert into AD, about 12% per year, while healthy 

controls convert at a 1–2% rate [4]. 

http://airccse.org/cscp.html
http://airccse.org/csit/V12N18.html
https://doi.org/10.5121/csit.2022.121812
https://github.com/junfish/BIOS22
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Recent studies have showed great promise for the use of multi-modality imaging in predicting the 
progression of AD markers and clinical diagnosis [5–7], such as Magnetic Resonance Imaging 

(MRI) and Positron Emission Tomography (PET). The results indicate that multi-modality 

imaging data contain complementary information of clinical importance and thus have the 

potential to improve the performance of AD diagnosis tasks and provide further insight into the 
pathophysiology of AD [8]. However, multi-modality imaging data contain noisy and 

heterogeneous information, making it challenging to effectively incorporate them into 

quantitative models. It is also challenging to analyze all voxels in the whole brain, as the number 
of whole-brain voxels usually far exceeds the number of observations available in practice, 

leading to overfitting. 

 
Recently, various machine learning methods have been proposed for the analysis of multi-

modality images in AD studies [6, 9–13]. Feature selection, which searches for a subset of 

significant features from the original set of features, is critical for effective machine learning, as 

spurious features can harm the learning process, especially in the presence of multi-modality and 
high dimensionality data. Furthermore, unlike feature extraction techniques such as principal 

component analysis (PCA) [14], which project raw data onto a new low-dimensional space, 

feature selection tends to preserve the interpretability of raw data, as the selected features have 
clear connections to the original ones. This can help experts to understand which features are 

relevant to certain disease states. 

 
Feature selection methods are either classifier dependent or classifier independent. The classifier 

dependent method can potentially provide better performance as it directly makes use of the 

interaction between features and accuracy [15]. In this respect, several approaches at different 

levels of complexity have been developed and applied for multi-modality AD diagnosis and risk 
factor analysis (e.g., [6, 7, 10]). However, existing methods mainly adopt vector space models for 

multi-modality fusion, which may lead to the loss of valuable information due to vector 

quantization, and thus degrade the prediction performance. 
 

In this paper, we propose a novel tensor-based method to model the inherent relationship between 

the features of multi-modality data and perform joint feature selection and tensor regression for 

AD diagnosis, in which tensor-structured sparsity and low-rankness properties are jointly 
exploited to learn the interpretable coefficients. We test the feasibility of this method on a large 

neuroimaging data set from the ADNI cohort using disease severity score and cognitive scores of 

MMSE and ADAS-13 across three different imaging modalities, including VBM-MRI, FDG-
PET, and AV45-PET. Extensive experimental results demonstrate that the proposed method has 

better prediction performance compared to the vector space models, as well as good 

interpretability for diagnostic results from selected discriminative regions and modality-related 
differences. 

 

2. MATERIALS AND METHODS 
 

2.1. Data Acquisition and Preprocessing 
 

In this work, a total of 692 non-Hispanic Caucasian participants in the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database [16] that passed quality control were used for our 
analysis, including 163 cognitively normal controls (CN), 73 normal controls with significant 

memory concern (SMC), 214 patients with early MCI (EMCI), 149 patients with late MCI 

(LMCI), and 93 AD patients. Each subject has three modalities of imaging data, including 
structural Magnetic Resonance Imaging (VBM-MRI), 18 F-fluorodeoxyglucose Positron 

Emission Tomography (FDG-PET) and 18 F-florbetapir PET (AV45-PET). 
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The multi-modality imaging data were aligned to each participant’s same visit. The structural 
MRI scans were preprocessed with voxel-based morphometry (VBM) using the SPM software 

[17]. Generally, all scans were aligned to a T1-weighted template image, segmented into gray 

matter (GM), white matter (WM) and cerebrospinal fluid (CSF) maps, normalized to the standard 

Montreal Neurological Institute (MNI) space as 2 × 2 × 2 mm3 voxels, and were smoothed with 
an 8 mm FWHM kernel. The FDG-PET and AV45-PET scans were also registered to the same 

MNI space by SPM. The MarsBaR toolbox1 was used to group voxels into 116 ROIs defined by 

Automated Anatomical Labeling (AAL) [18]. ROI-level measures were calculated by averaging 
all the voxel-level measures within each ROI. 

 

To assess the level of AD’s development, we consider three clinical scores as our prediction 
responses: (1) Disease Severity Score (DSS), in which we treat different stages of AD 

progression as an index of disease severity (1-CN, 2-SMC, 3-EMCI, 4-LMCI, and 5-AD), (2) AD 

Assessment Scale–Cognitive 13-item (ADAS-13) [19], with a total score of 85, improving the 

responsiveness of classic ADAS-Cog [20] for MCI by considering more candidate tasks related 
to additional cognitive domains, and (3) Mini-Mental State Examination (MMSE) score [21], a 

widely used screening test of cognitive function among the elderly, with a maximum score of30 

points. We normalize these three prediction scores to the range of [0, 1] so that they have the 
same scale, and the higher scores indicate the greater severity of the cognitive impairments. 

 

2.2. Tensor Construction 
 

Tensors are higher-order generalizations of matrices to multiple indices that can be used to 

represent multi-dimensional and multi-relational data. To model the inherent relationship and 
connectivity between the ROIs from multi-modality data for AD/MCI assessment, we investigate 

three sizes of tensor representations as follows. 

 

 𝟏𝟏𝟔 × 𝟑. We concatenate 116  feature values from all three imaging modalities along an 

additional modality dimension in the order of VBM, FDG and AV45 . Each modality 

contains 116  ROI-based features, thus resulting in a 2D tensor of size 116 × 3  for each 
subject. 

 𝟏𝟏𝟔 × 𝟏𝟏𝟔 . We construct an ROI-to-ROI connectivity matrix based on the pairwise 

similarity of ROIs, thus obtaining a 2D tensor of size 116 × 116 for each subject. For each 

ROI, we concatenate features from three modalities into a vector of 3 dimensions, denoted 

as𝑟𝑖 , 𝑖 = 1, 2,⋯ , 116. Then we use the k-Nearest Neighbor (𝑘NN) graph [22] to construct the 

connectivity matrix via the Gaussian similarity function, i.e., 𝑿𝑖,𝑗 = exp(− ‖𝑟𝑖 − 𝑟𝑗‖
2
𝜎2⁄ ), 

where𝜎  is a user defined parameter specifying width. For simplicity, we set 𝜎 = 1and 

consider 𝑘 = 1, 2,⋯ , 116in our paper. In particular, when 𝑘 = 116, it is a fully connected 

matrix, as each ROI is connected to other ROIs. 

 𝟏𝟏𝟔× 𝟏𝟏𝟔 × 𝟑. We construct an ROI-to-ROI connectivity matrix in each modality using the 

𝑘NN graph as above, and concatenate them along an additional modality dimension to 

generate a 3D tensor of size 116 × 116 × 3 for each subject. 

 

2.3. Joint Feature Selection and Tensor Regression 
 

Figure 1 provides an overview of our proposed method, which uses tensor data as input features 

to perform feature selection and regression simultaneously. 

 

                                                
1https://imaging.mrc-cbu.cam.ac.uk/imaging/MarsBar 
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Objective Function. Assume that we have a dataset containing𝑁  subjects, each subject is 

represented by an 𝑀 th-order tensor 𝒳 ∈ ℝ𝐼1×⋯×𝐼𝑀  and is associated with a regression label 

𝑦 indicating disease status. Similar to linear regression, the tensor regression model can be 

formulated as follows: 

 

𝑦 = 〈𝒲,𝒳〉 + 𝜀, (1) 
 

 
 

Figure 1. The framework of the proposed method. The input data contains three modalities: VBM-MRI, 

FDG-PET, and AV45-PET, then 𝑘NN graph is applied to construct tensor data representation. Finally, we 

regress the response values by using the proposed method. 

 

where 𝒲  is the coefficient tensor, 𝜀  is the bias error, and 〈∙,∙〉  denotes the inner product 

operator. To exploit the high-dimensional structure and correlation in the tensor representation, 
we employ the following sparse and low-rank tensor regression model to solve Eq. (1) inspired 

by [23]. 

 

min
𝒲𝑟

1

𝑁
∑(〈∑𝒲𝑟

𝑅

𝑟=1

, 𝒳𝑖〉 − 𝑦𝑖)
2 +∑𝜆𝑟‖𝒲𝑟‖1

𝑅

𝑟=1

𝑁

𝑖=1

, s. t.CPrank(𝒲𝑟) ≤ 1. 
 

 (2) 

 

Where𝒲𝑟 = 𝒘𝑟
(1) ⊗⋯⊗𝒘𝑟

(𝑁) is a unit-rank tensor defined upon the CP rank [24],⊗denotes 

the outer product operator, and 𝜆𝑟 is the regularized parameter that contributes to the sparsity. 

 

Due to the use of a ℓ1-norm regularizer in unit-rank tensors, after finding the optimal solution in 

Eq. (2), we have many zero elements in ∑ 𝒲𝑟
𝑅
𝑟=1  , whose corresponding features are not useful in 

prediction of disease status. Furthermore, by simple arithmetic, we have‖𝒲𝑟‖1 = ∏ ‖𝒘𝑟
(𝑗)‖

1
𝑁
𝑗=1 , 

i.e., the sparsity ofa unit-rank tensor directly leads to the sparsity of itscomponents. This allows 

us to produce a set of sparse factor components 𝒘𝑟
(𝑗) for 𝑗 = 1,⋯ ,𝑁 simultaneously. Using this 

we can examine how each ROI behaves and how each modality 

contributes to the prediction. 
 

Optimization. A common way to solve Eq. (2) is to utilize the alternating least squares (ALS) 

[25]. However, in this way it is difficult to estimate 𝑅  and 𝜆𝑟 . Here we adopt a divide-and-
conquer strategy to sequentially solve the following sparse unit-rank estimation problems instead 

based on the fast stagewise unit-rank tensor factorization (SURF) algorithm [23], which can 

automatically estimate 𝜆𝑟 and is easy to tune the parameter 𝑅. 

 

min
𝒲𝑟

1

𝑁
∑(〈𝒲𝑟 , 𝒳𝑖〉 − 𝑦𝑖

𝑟)2 + 𝜆𝑟‖𝒲𝑟‖1

𝑁

𝑖=1

, s. t.CPrank(𝒲𝑟) ≤ 1 

 

 (3) 
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where 𝑟 is the sequential number of the unit-rank terms and 𝑦𝑖
𝑟 is the current residue of response 

with 

𝑦𝑖
𝑟 ≔ {

𝑦𝑖if𝑟 = 1

𝑦𝑖
𝑟−1 − 〈𝒲𝑟−1, 𝒳𝑖〉,otherwise,

 
 

(4) 

 

Where 𝒲𝑟−1 is the estimated unit-rank tensor in the (𝑟 − 1)-th step. The final estimator can be 

obtained as𝒲 = ∑ 𝒲𝑟
𝑅
𝑟=1 . 

 

3. RESULTS 
 

3.1. Experimental Settings 
 
Competing Methods. To show the validity of the proposed method, we compared our method 

with the PCA feature extraction method followed by linear regression (PCA+LR), and three 

representative feature selection methods—Lasso [25], Elastic Net (ENet) [26], and Group Lasso 
(gLasso) [27]. 

 

Evaluation Metrics. For the quantitative performance evaluation, we employed two metrics: (1) 

root mean squared prediction error (RMSE), measuring the deviation between the ground truth 
response and the predicted values, and (2) sparsity of coefficients, defined as the percentage (%) 

of the number of zero elements to the total number of elements in the coefficients. 

 
Implementation Details. For model validation, subjects were randomly split into training and 

test sets in the ratio of 5:1. The hyperparameters of all methods were optimized using 5-fold cross 

validation on the training set. Specifically, we traversed all possible percentage of the principal 
components to realize the best results in PCA+LR. The regularizer parameter of Lasso was 

selected from {0.1, 0.2,⋯ , 1}. For the ENet, the weight of lasso ( ℓ1 ) versus ridge ( ℓ2 ) 

optimization was learned from {{0.1, 0.2,⋯ , 1}. For the gLasso, the features are grouped by 

modalities or ROIs, and the parameter-wise and group-wise regularisation penalty are selected 

via a grid search ranging from {10−6, 10−5, ⋯ , 101} , then applying a more fine-grained 

searching (i.e., {0.1, 0.2,⋯ , 1}) after the magnitude is determined. In our proposed method, the 

rank 𝑅  is incrementally learned from 1 to 70 with step size 1. To avoid randomness from 
affecting the experiments, five trails were conducted to record mean value and standard deviation 

of final results for each method. 

 

3.2. Experimental Results 
 

Table 1 shows the performance comparison of five methods. It is clear that the proposed method 
consistently outperforms the competing methods in terms of both RMSE and Sparsity. 

Specifically, we observe the following results. 

 

 The prediction performance of our method improves consistently when the feature sizes or 
dimensions of input data grow, which proves the connectivity information among ROIs in the 

brain is helpful to AD assessment. The gLasso outperforms the other three baselines and 

performs better with the higher-order tensor data, because the group variables can consider 

the structure information to some extent. In contrast, the Lasso and ENet struggle to handle 
higher dimensional data since vectorization may lead to a certain loss of structural 

information. These results indicate not only the importance of considering multi-modality 

information and constructing connectivity among ROIs in the brain data, but also the 
effectiveness of maintaining the dimensionality in tensor space during the learning process. 
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 PCA+LR is more consistent to achieve better results with higher dimensionality of input data 

than lasso-based baselines, bacause the 𝑘NN graph-based data construction introduces the 
redundant and noisy information with effective connectivity information and PCA is 

effective in filtering out unwanted information. However, PCA is a feature extraction method 

that destroys the structure of original feature space and turns it into principal components, 

making it difficult to identify significant ROIs of clinical importance. It further validates that 
our method is robust via seeking a low-rank and sparse tensor space that is helpful to feature 

selection and noise removal [23]. 

 Due to the usage of joint sparsity constraint in our objective function, the proposed method 

can produce the best predictive values and achieve the sparsest solution simultaneously, 
which increases the interpretability of our model for diagnostic results. More detailed 

medical significance will be shown in the following qualitative analysis section. 

 
Table 1. Performance comparison over different tensor structures on ADNI dataset. The results of mean 

values and standard deviation (mean ± std) are calculated across 5 trails. ↓ means the lower the better, 

and ↑ means the higher the better. 

 

 
 

3.3. Explanation Analysis for Feature Selection 
 

Heatmaps of Discriminative ROIs and Modalities. To understand the effectiveness of feature 

selection, we explore the most discriminative regions using features identified by compared 

methods on the original data of 116 × 3. We locate the most discriminative regions based on the 

selected frequency of each region. Figure 2 illustrates the average coefficient weights of four 

feature selection methods across five trials. It is obvious that our method achieves more sparse 
solutions and pays higher attention to the VBM modality as it is a useful approach for 

investigating neurostructural brain changes in dementia. The top 10 selected brain regions by our 

method are: Temporal-Pole-Sup-L, Hippocampus-L, Vermis-10, Hippocampus-R, Temporal-

Pole-Mid-L, Angular-L, Cerebelum-10-L, Pallidum-R, Cerebelum-10-R, Caudate-L, Cingulum-
Post-L. Most of these selected regions are known to be highly related to AD and MCI in previous 

studies [28-32]. It is evident that only our method can identify the areas of Hippocampus and 
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Temporal Pole in VBM (as marked in Figure 2) which are two critical regions relevant to AD 
pathology. Furthermore, we also use the factor components learned by our method to measure the 

contributions of each modality for prediction. According to the average absolute value of 𝑤𝑟
(2)

for 

𝑟 = 1, 2,⋯ ,70, we find that the three modalities are ranked as follows: VBM > AV45 > FDG, 

which coincide with our results in Figure 2 and the previous findings [33]. 

 

Colormaps for Physical Brain Regions. We use the BrainNet Viewer [34] to visualize the brain 
structure and highlight the regions that the proposed method used to make the predictions against 

other compared methods, see Figure 3. It can be seen that our method is more sparse and uses 

more relevant ROIs to assess the progression of AD (as marked in Figure 3 (d)). 
 

 
 
Figure 2. Comparison of coefficient weights in terms of each imaging modality across five trials. Each row 

corresponds to a feature selection method: Lasso, ENet, gLasso, and our proposed method (from top to 

bottom). Within each panel, there are three rows corresponding to three imaging modalities, i.e., VBM, 

FDG, and AV45. 

 

3.4. Hyperparameter Analysis 
 

We further analyse the influence of two important hyperparameters in our method: 𝑘  and 𝑅, 

where 𝑘 controls the neighborhood information in the 𝑘NN graph, and 𝑅 controls the number of 

rank-one tensors that are required to approximate the tensor coefficient. We firstly vary the 

number of neighbours 𝑘 in 𝑘NN graph data construction to explore the robustness of our method 

to the data variation. As shown in Figure 4 (a), it can be noticed that 1) the higher dimensional 

data (red line) always outperforms low dimensional data (blue line) across nearly all of possible 𝑘 

values, and 2) the best results are consistently achieved in fully connected graphs (i.e.,𝑘 = 116). 

The results indicate that our method can make full use ofhigh-order relations among ROIs and 

modalities. Furthermore, we traverse CP-rank 𝑅 via a step size 1 to investigate its influence on 
our model performance, as it plays an important role for feature selection. As shown in Figure 

4(b), we can observe that 1) the proposed model consistently performs better with the increase of 

𝑅 and tends to be stable with ∼60, and 2) the sparsity of coefficient is reduced when 𝑅 is 

increased. The reasons behind these results are because a higher value of 𝑅 implies that more 

non-zero values of coefficients are included, and the most relevant features are selected in the 

beginning itself and the later attributes do not contribute much to the prediction performance. 
This shows that users of our model can adaptively make a balance between the accuracy and 

sparsity by controlling 𝑅. 
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(a) Lasso   (b) ENet 

 
 

 
 

          (c) gLasso   (d) Proposed 

 
Figure 3. The colormaps of 116 ROIs on the physical brains to the corresponding sparse solutions of each 

feature selection method. Each method shows the full eight-brain views, in which the first row from left to 

right are lateral view of left hemisphere, topside, lateral view of right hemisphere, the second row from left 

to right are medial view of left hemisphere, bottom side, medial view of right hemisphere, and the third 

row are frontal side and backside. 
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(a) Influence of 𝑘 on RMSE and Sparsity of DSS, ADAS-13 and MMSE (𝑅 = 60). 

 

 

 
 

(b) Influence of 𝑅 on RMSE and Sparsity of DSS, ADAS-13 and MMSE (𝑘 = 116). 

 
Figure 4. Influence of different hyperparameters on model performance associated to DSS, ADAS-13, and 

MMSE (from left to right). (a) The 𝑘 value in 𝑘NN graph to construct the brain network matrix; (b) the 

tensor CP-rank 𝑅 to control the low-rank and sparse property of coefficient weights. 

 

4. CONCLUSIONS 
 
In this paper, we proposed a joint feature selection and tensor regression model for the prediction 

of AD-related clinical scores and corresponding biomarker identification, in which tensor-
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structured sparsity and low-rankness properties are simultaneously exploited to learn the 
interpretable coefficients. We investigated three different tensor representations to model multi-

modality imaging data based on the ROI-level measures with the ADNI database. Our extensive 

experimental results validated that the proposed method can successfully identify biomarkers 

related to AD and achieve higher predictive performance than traditional sparse regression 
methods. Our approach is of wide general interest as it can be applied to other diseases when 

multi-modality data are available. In the future work, we will extend this approach to 

simultaneous multiple regression analysis for jointly modelling multiple responses and 
identifying the importance of regions with multiple clinical scores at the same time. 
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