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ABSTRACT 
 

Cartoons are an important art style, which not only has a unique drawing effect but also reflects 

the character itself, which is gradually loved by people. With the development of image 

processing technology, people's research on image research is no longer limited to image 
recognition, target detection, and tracking, but also images In this paper, we use deep learning 

based image processing to generate cartoon caricatures of human faces. Therefore, this paper 

investigates the use of deep learning-based methods to learn face features and convert image 

styles while preserving the original content features, to automatically generate natural cartoon 

avatars. In this paper, we study a face cartoon generation method based on content invariance. 

In the task of image style conversion, the content is fused with different style features based on 

the invariance of content information, to achieve the style conversion. 
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1. INTRODUCTION 
 

Cartoon faces appear in animations, comics, and games. They are widely used as profile pictures 

in social media platforms, such as Facebook and Instagram. Drawing a cartoon face is labor 
intensive. Not only it requires professional skills, but also it is difficult to resemble unique 

appearance of each person’s face. Through style transfer, which can express the picture effect 

more perfect and be able to achieve the desired effect. It can be done without complex PS 
retouching and does not require particularly good drawing skills to complete the corresponding 

task. In the film production or webcast, it can make the image performance more involved, more 

vivid image special effects to do more abstract perfection. Image stylization originated from the 

research of Gatys and others, who found that although today's style migration has achieved good 
results, there are still some areas for improvement. The first thing to solve is the time consuming 

problem, even if you choose the optimal solution, it takes a long time to train a model, obviously 

there is still a lot of room for improvement, and there is still a lot of room for optimizing the time 
problem for selfie images. 

 

In recent years some social networking services have been popular such as TikTok. Photo-to-
cartoon style transfer for face can be useful for the services especially when the users do not want 

to show their own faces. And due to COVID-19, many schools have adopted online classes to 

prevent the expansion of the infection. Teachers want to know how well their students understand, 

what they learned and how well the students focus on. What the teachers said from nonverbal 
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information such as facial expression, facial pose, eye-gaze, etc. On the other hand many students 
do not want to show their faces. In this case photo-to-cartoon style transfer can be useful, because 

it can keep facial expression, facial pose, and eye-gaze, while it converts real photo style into 

cartoon style. The purpose of this paper is to construct a model which can convert real face 

images into cartoon face images using deep neural networks.  
 

2. BACKGROUND AND SIGNIFICANCE 
 

In today's hot deep learning, image processing based on deep learning has also been more 
researched, such as super-resolution reconstruction, repair of missing images, colorization of 

black and white images, and AI face replacement. In addition to the above applications of deep 

learning in images, research on image stylization has also emerged in recent years, with the main 

idea of turning a common image into an artistic style painting. Gatys et al. used convolutional 
neural networks to synthesize the texture of image features and found that the feature image 

extracted by convolutional neural networks can show the style characteristics of an image and 

also the content characteristics of an image, and the feature map is a representation of the deeper 
features of an image. The idea proposed by Gatys et al. is to input the image into the 

convolutional neural network, reconstruct the image with different convolutional layers, extract 

the features of different dimensions of the image with different convolutional layers, calculate the 
style features with the Gram matrix, simulate the texture features of different style maps, and 

reconstruct the final result by fusing the content map and style map to create a beautiful painting 

with the content and artistic style of the photograph. The final result is created by fusing the 

content map and the style map to create a beautiful painting with photo content and artistic style. 
 

Nowadays, image stylized migration is also used in various fields, such as video broadcasting, 

movie special effects, etc. Stylized photos are often sought after and loved by young people on 
various social networks. Although the stylized migration of images has made a good effect in 

some fields, most of the artistic style migration nowadays is in oil paintings with obvious textures, 

and line images such as cartoons and sketches are seldom involved. 
 

The influence of manga in our lives is huge, for example, the Japanese classic anime such as 

Black Deacon and Cherry Puff; the American Disney and Marvel anime are still loved by 

countless fans all over the world. The other world created by anime and manga is a place that 
many people dream of, and reading comics can relax their mood, improve their imagination, find 

their ideals and trust in comics, and see the hope for the future. After the above analysis, I think it 

is still necessary to continue to improve the existing research and apply the neuro art algorithm to 
the creation of comic style rendering. 

 

3. CURRENT STATUS OF RESEARCH ON THE TOPIC 
 

Neural network based image style migration was proposed in 2015 by Gatys et al. in two papers. 
In the literature of Gatys et al. in 2015, a texture model based on the feature space of 

convolutional neural network is proposed, in this model, the texture is represented according to 

the interrelationship between the feature maps in each layer of the network, and the texture 
extraction increasingly captures the stylistic content features of natural images while making the 

object information more and more clear. As shown in the figure, the original image is input to the 

neural network on the left, and the texture analysis is obtained by extracting features in different 

convolutional layers and calculating the Gram matrix, while the white noise image is input on the 
right, and the loss function of the texture in different layers is calculated to synthesize the texture. 

In another paper, the texture synthesis method of the first paper is used to perform the image style 

migration in the oil painting style. The authors use the intermediate neural network layers to 
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reconstruct the content, keep the largest pixel value part, and then fuse it with the extracted 
texture image to get the final image containing different oil painting art styles. 

 

 
 

Figure 1.  Image texture extraction based on CNN 

 

Li used traditional methods for the artistic rendering of images and videos. Ulyanov D et al. used 

a feed-forward convolutional network to generate multiple samples of the same texture of 

arbitrary size and transfer the artistic style from a given image to any other image, the network 
was hundreds of times faster than the results of Gatys et al. The main component of the style 

conversion method is a block-matching-based operation for fixing layers, constructing target 

activities in a given style and content image, a process called "Style-swap" by Chen et al. By 
replacing the content image with a patch of the style image, this method performs the relevant 

processing on one layer only. The core of the paper is the proposal of AdaIN, a new adaptive 

instance normalization that aligns the mean and variance of content features with the mean and 
variance of style features. Liao et al. proposed a deep image analogy technique in which two 

images, image A and image B, are given in the paper. The two images are mutual content map 

and style map, and the conversion needs to result in images with mutual style in their original 

content, the two images of this method must have high similarity, or use the network of VGG for 
the extraction of features of the image, the high-level convolution will extract to the texture of the 

image, so the paper believes that A and 
BA after the extraction of features by VGG19, the coarse-

grained output of the top convolutional layer of feature maps should be very similar, i.e., the 

feature maps of A and 
BA  are basically the same. If they are considered the same, we can 

reconstruct the content of 
BA by deconvolution of the top layer feature map of A, and then fuse it 

with the features of image B to get the final image 
BA , while image 

AB  is the same. A new 

project by Chinese students from Cornell University and engineers from Adobe is based on 

image style migration for high-definition image style migration, which is more inclined to style 
migration between two photos, detail and clarity are the characteristics of this article, the input of 

the style image is a high quality photo, the result can change day to night, is a high-definition 

photo to high-definition photo Different styles of conversion, using to the style image is no 
longer an artistic painting. The team introduced two main core innovations in the style migration. 

In the optimization process, a set of realistic regularized loss functions are added to the loss 

function to prevent distortion of the generated images. The paper introduces semantic 

segmentation by transferring the style features of the lawn to the lawn, the style features of the 
sky to the sky, etc., which can avoid the mismatch of the content of the style migration and make 

the output image more realistic. 
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From the endless image processing work in recent years, people have more and more research 
and ideas in image processing, and there are new breakthroughs in image stylization, image 

recognition, video stylization and so on. Especially in the area of image style migration, deep 

learning has been hot in recent years and has brought more new ideas and better results for image 

processing. Nowadays, people's standard of living is getting higher and higher, and the pursuit of 
art is also getting higher and higher, so the image stylization algorithm based on deep learning 

has become an area worth exploring more and more, and there is a high possibility that more 

excellent image stylization results can be achieved by deep learning and other related algorithms 
in the future. 

 

4. RELATED RESEARCH 
 

4.1. Unpaired Image-to-Image translation 
 

When paired images such as a real face image and the corresponding cartoon face image are 
needed to train photo-to-cartoon style transfer model, obtaining strictly paired images is very 

difficult. So the model that do not rely on paired images are of great practical importance. 

 

There is a gap between paired and unpaired picture training that cannot be eliminated. 
Nevertheless, in many cases, it is still feasible enough to use unpaired data exclusively. Zhu et al. 

[2] expand the range of possible uses of "unsupervised" configurations. To some extent, it solves 

the problem of deep learning: too little labeled data, difficulty in finding paired data, and using 
unpaired datasets for training. 

 

They proposed a method to learn from the source data domain X to the target data domain Y in 
the absence of paired data. Its goal is to use an adversarial loss function to learn the mapping 

YXG : , making it difficult for the discriminator to distinguish the picture )(XG from the 

picture Y. Since such a mapping is subject to huge limitations, an opposite mapping XYF :  

is added to the mapping G to make them pairwise, and a cyclic consistency loss function is added 

to ensure that XXGF ))(( . 

 

4.2. Landmark assisted CycleGAN 
 

Wu et al. [3] proposed a method to generate cartoon faces based on input human faces by 

utilizing unpaired training data. 

 

The process is divided into three main steps. First, the generator generates a rough cartoon face 
based on CycleGAN; afterwards, the model generates a pre-trained regression volume to predict 

the facial landmark based on the image generated in the first step, which marks the key points of 

the face. Finally, with both local and global discriminators, the researchers refine the face 
features in the cartoon image and the corresponding real image. In this stage, the consistency of 

the landmark is emphasized, so the final generated results are realistic and recognizable. 

Consequently, landmark Assisted CycleGAN is proposed to define consistency loss using facial 
landmark features to guide the training of local discriminators in CycleGAN. 

 

4.3. Unpaired Photo-to-Caricature translation 
 

Cao et al. [4] proposed a learning-based approach to solve the conversion from ordinary 

photographs to cartoons. A two-way model with a coarse-distinctive and a fine-distinctive 
discriminator is designed in order to take into account both local statistics and global structure 

during the conversion. For the generator, perceptual loss, adversarial loss, and consistency loss 
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are utilized to achieve representation to learn in two different domains. Moreover, an auxiliary 
noise input can be used to understand the style.    

 

It also presents a generative adversarial network (GAN) for photo-to-comic transformation 

without paired training datasets: the CariGAN. It uses two modules to explicitly model geometric 
exaggeration and appearance stylization, one is CariGeoGAN the other is CariStyGAN. In this 

way, a difficult cross-domain transformation problem is decomposed into two simpler tasks. 

Compared to advanced methods, CariGAN generates caricatures that are closer to hand-drawn 
while better maintaining the personality characteristics of the original face. In addition, the user is 

allowed to control the degree of exaggeration and variation of the shapes, or to give example 

caricatures to generate the corresponding styles. 
 

4.4. Cartoon adversarial generation network 
 
Researchers at Tsinghua University have proposed CartoonGAN [5], a comic style-based 

generative adversarial network that can train a comic style migration model. Previous image 

styling algorithms based on generative adversarial networks often require two sets of 
corresponding images to be trained to obtain better results, such as CycleGAN, which also makes 

the training data difficult to obtain. The paper proposes a GAN network architecture dedicated to 

cartoon style migration and two simple and effective loss functions. 

 
The cartoon generative adversarial network mainly proposes a cartoon stylized framework for 

generative adversarial networks, which directly trains the captured images with the cartoon 

images without matching them one by one and is easy to use. And the authors propose two kinds 
of losses, one is semantic content loss, which is a sparse regularization constructed in the high-

level feature graph of VGG network to cope with the large number of style variations between 

photos and cartoons; the other is an edge-promoting adversarial loss to maintain clear edges. To 
improve the convergence of the network to the target, an initialization phase is further introduced 

in this paper. The GAN framework consists of two CNNs: a generator, which is trained to 

produce outputs that make the discriminator indistinguishable, and a discriminator D, which 

classifies whether the image is from a real target or a synthetic one. The generator uses a 
convolutional layer for downsampling, follows a layout of eight residual blocks, and finally 

upsamples the image by microstrip convolution. The discriminator network D is used to 

determine whether the input image is a real cartoon image or not. The discriminator network has 
shallow layers, in fact, the discriminator network is a classification network, the discriminator 

mainly discriminates whether there are obvious boundary lines, the structure is two convolutional 

layers for downsampling, and then the convolutional layers return the classification results. 

 

5. RESEARCH METHOD 
 

5.1. Convolutional neural networks 
 
Convolutional neural networks are the most widely used of all kinds of deep neural networks and 

have achieved good results in many problems of machine vision, in addition to its successful 

applications in natural language processing, computer graphics, and other fields. In 1989, LeCun 
[6] proposed a convolutional neural network that is quite efficient for handwritten character 

recognition, which is also the origin of many convolutional neural networks nowadays. 

 
After nearly two decades of neural network coldness, the AlexNet network was proposed in 2012, 

which won the ImageNet competition at that time. the parameter scale of the AlexNet network 

became larger, the convolutional layers of the network became deeper, with a total of five 
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convolutional layers, and the maximum pooling layer was added to the first, second, and fifth 
convolutional layers to reduce the computation, and finally, the fully connected The network 

divides the convolutional layers into two parallel networks, which can effectively reduce the 

computation and improve the computational efficiency. 

 

 
 

Figure 2. AlexNet Network Structure Diagram 

 
GoogLeNet was proposed two years after AlexNet, the key in this network is the Inception block, 

that is, the input image is extracted with different scales of features, this mechanism change 

reduces the number of parameters to one twelfth of AlexNet. The network integrates multi-scale 
convolutional kernels and pooling layers, which effectively reduces network parameters, prevents 

overfitting and reduces computational effort to improve efficiency. 

 

 
 

Figure 3. GoogLeNet Inception Modular 

 

ResNet residual neural network was proposed by four Chinese including KaimingHe from 

Microsoft Research [9], the network structure of ResNet can pass down all the previous 
parameters, and the accuracy of the network is greatly improved. However, when the number of 

network layers is increased to 1202, the result decreases due to the overfitting caused by the deep 

number of network layers. The main core of the residual network is to pass the information of 
each layer directly to the output, which will not lead to degradation problems due to the increase 

of the number of network layers, and the accuracy rate can be increased based on the increase of 

the number of network layers to ensure the integrity of the extracted features. 
 

5.2. CycleGAN 
 
The field of image transfer is the domain of GAN networks, and recently many people have 

applied CycleGAN networks to the field of image style transfer.  
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Figure 4 shows structure of general GAN which is composed of generator G and discriminator D. 
The generator G generates data G(z) from a random input z, and makes the generated data as 

close to the real data as possible. On the other hand the discriminator D tries to distinguish the 

real data from the generated data G(z) as much as possible. The two networks are always playing 

a game, in which G gradually gains the upper hand and the generated data is no different from the 
real data. 

 

 
 

Figure 4. General GAN 

 

The goal is to realize the data migration of two domains, to realize the translation between images 

with the help of GAN, as shown in Figure 5. There should be two discriminators of domains, and 
each discriminator will judge separately whether the data of their respective domains are real 

data. As for the generator, the image translation needs to turn the image of domain A into the 

image of domain B. Therefore the generator is somewhat like the autoencoder structure, except 
that the output of the decoder is not the image of domain A, but the image of domain B. To make 

full use of the two discriminators, there should also be a translation back, which means there is 

another generator that translates the data from domain B to domain A. 

 

 
 

Figure 5. Data migration of two domains 

 

The dashed arrow in Figure 5 indicates ‘treat the image at the beginning of the arrow as the 

image at the end of the arrow and continue according to the flow chart’. It means that for Real A, 

the complete process is like this:
fakefakereal ABA  ; for Real B, the process is like 

this:
fakefake BAB real

. It can be seen that the whole process is a cycle for both domain A and 

domain B images, so it is called CycleGAN. The whole cycle can be seen as an autoencoder, the 

two generators are seen as encoder and decoder, and the two discriminators are criteria. 
 

In general, the two generators are designed in such a way like: 

 

 
 

Figure 6. The two generators 
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Z controls some properties in G such that the generated results are not unique and can be diverse 
[12]. The process of CycleGAN is clarified to write its objective function as follows. 

 

For discriminator A:     xDExDEL APxAPxD ABAA
  1loglog

2
 

For discriminator B:     xDExDEL BPxBPxD BABB
  1loglog

2
 

For generator BA:      1||||log
2

xGGxExDEL ABBAPxAPxG AABBA
        

For generator AB:      1||||log
2

xGGxExDEL BAABPxBPxG BBAAB
    

 
Adding refactoring error terms for generators, like pairwise learning, can guide the two 

generators to better perform the task of encoding and decoding. In turn, the two Ds serve to 

correct the encoding result to conform to the style of a certain domain. Not only does the 

structure is simple and effective but also the data of the pair is not required. Cycle consistency 
loss has been proposed which makes generic unpaired image-to-image translation possible. Given 

only two domains of image collections, CycleGAN can explore the collection-level supervised 

information and realize image transfer. 
 

5.3. Generative networks based on content invariance 
 
This paper studies the method of generating face cartoon drawings in the absence of paired 

experimental data. In the absence of paired data, the content features of the images need to be 

constrained by indirect means, and a cyclic generative adversarial network was first proposed in 
the literature [14] to achieve the interconversion of the two styles, which ensures the invariance 

of the content by reconstructing the generated image out of the original image. The same 

principle is used in the literature [15] and [16], with the difference that the encoding network is 

divided into a style encoder and a content encoder, which encodes the image to be converted and 
the style image, and then performs the fusion to go through a decoding network of a specific 

style. 

 

 
 

Figure 7.  Network Structure Comparison [14] 

 

 
 

Figure 8.  Network Structure Comparison [16] 
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The above figure shows the network structure of the literature [14] and the literature [16], and the 
encoders or decoders used by both methods are designed for different styles. The two styles are 

noted as style A and style B; x∈A,y∈B. where the network used for the different styles is 

distinguished by two colors in the figure, blue indicates encoding or decoding of images or 

features of style A, and yellow indicates encoding or decoding of images of style B. The encoder 
is denoted as E and the decoder is denoted as R, and the style is distinguished by superscripts A 

and B. The content and style encoders are distinguished by subscripts c and s.  
 

The method in Figure (a) directly converts the input image to the corresponding style image by 
using different style encoders and decoders. 

 

Since the style conversion is essentially a combination of the content information of the image to 
be converted and the style information of the reference image. Therefore, the method in Figure 

(b) extracts the content x and the y for the two input images x and y, respectively style features, 

and then the target images are obtained by the decoding network of corresponding styles. Both 
methods above restore the input image x or y by encoding and decoding the generated image, a 

process called image reconstruction. 

 

In the style conversion task, the purpose of image reconstruction is to ensure the content 
information of the original image, while the confrontation is to make the generated image with a 

specific style, a certain balance needs to be maintained between the two, if the content 

information is protected more, the network will choose to ignore the style information; on the 
contrary, the content of the generated image will not be guaranteed. 

 

However, training the interconversion of the two styles requires facing a problem in that the 

network needs to build additional models. for different styles of encoding and decoding networks 
and discriminative networks, which means that additional memory is occupied during the training 

phase space in the training phase. In the testing phase, only the A to B conversion needs to be 

implemented, and the extra models should be minimized. This study aims to find a method that 
can be trained in only one direction to achieve the generation of face cartoons, so it is necessary 

to find another reconstruction method that can be used to guarantee the invariance of the content 

and at the same time be able to reach a balanced state with the styles. 
 

Derived from the idea of the literature [16], the desired content features and style features can be 

extracted by constructing a content encoder and a style encoder separately, and to make the 

encoding network general, the same network is used for the extraction of content or style features 
for both style images. The two main reasons are as follows. 

 

Firstly the so-called content features mainly include the shape structure information of the face, 
for the extraction of the image content features should not be affected by the image style, i.e. the 

content coding network should be general for all face images. Whether it is a real face image or a 

style image, the content features should be able to be extracted correctly.  
 

Secondly, in the style migration task, style can be used as an attribute, and for the same content 

feature, based on different style attributes, it should be possible to obtain images with different 

styles and keep the content unchanged. Further, in the style conversion, the style features are used 
as the condition of conversion, and the style features are fused with the content features, and then 

the decoder is used to get images of different styles. Although using different style encoders for 

different styles of images can get more style features, it increases the complexity of the network. 
In deep networks, the classification of images is performed by extracting images with 

classification is performed by extracting discriminative features from images, and for style 

determination, it can also be The discriminable features are extracted from the image to 
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determine the style of the image, and such discriminable features can be used as the style features 
of the image. can be used as the style feature of the image. 

 

 
 

Figure 9.  Generate network structure  

 

Since the network only needs to be trained to convert from style A to style B, the reconstruction 

of the image also only needs to reconstruct the input image. To ensure content invariance, the 
content encoding of the generated image should be as similar as possible to the content encoding 

of the input image, so the content encoding is performed on the generated image, and then the 

style features of the real face are fused to recreate the original image, i.e., the orange dashed box 
part in the figure. The reconstructions all use the style features of the real face, and theoretically, 

the style features of different images of the same style should be as similar as possible. Therefore, 

during the training process, for each input image to be transformed, a random image of the same 

style is input to extract its style features, the so-called feature input for reconstruction. 
 

6. EXPERIMENT 
 

I have already trained a generative adversarial network to generate cartoon faces after showing 
pictures of many real faces. Most of them here are from the CycleGAN implementation in 

PyTorch. 

 

I use the CelebFaces Attributes Dataset as training data, which is a large-scale face attributes 
dataset with more than 200K celebrity images, each with 40 attribute annotations. The images in 

this dataset cover large pose variations and background clutter, which means CelebA has large 

diversities, large quantities, and rich annotations. 
 

I have done several experiments to change the transformation effect of the images by changing 

the parameters, here are a few examples. In this time I changed the learning rate from 0.0002 to 

0.0016: 
 

 
 

Figure 10. Experiment1 
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This time I changed the lambda identity from 0.5 to 2.5: 
 

 
 

Figure 11. Experiment2 

 

7. CONCLUSIONS 
 
The influence of cartoons in life is enormous, such as Japan's Black Deacon, Cherry Puff and 

other classic anime; the U.S. Disney, etc. is still being loved by countless fans around the world. 
Since the cartoon style is different from the oil painting style in style transfer, the cartoon needs a 

neat and clear border to avoid a large number of uneven color blocks.  

 

Style transfer algorithms are increasingly studied. I have studied the common neural networks of 
deep learning, learned the principles and practice for the basic style transfer algorithm to lay the 

foundation for the next step of research. In addition, I read some papers about style transfer, 

studied and analyzed the cartoon translation style, to come up with a suitable model for cartoon 
style transfer. Based on the existing model, different parameters were experimentally analyzed to 

select the parameters suitable for cartoon style transfer, the dataset mentioned in this paper was 

used for training, which means the deep learning based cartoon style transfer algorithm was 

implemented. It is possible to generate cartoon style avatars with clear lines and simple character 
features, the results of different parameters are compared, with the aim of improving the 

algorithm and making the generated cartoon style avatar better. 

 
At present, there is some progress in cartoon style transfer, but there is still a difference for real 

cartoon avatars, the details of the transfer are not very good, and the details of the cartoon style 

are still lacking. The next work will focus on the following aspects: first of all, more research on 
the details to achieve a more realistic cartoon style transfer effect, secondly adjust the parameters 

to make the characters retain more features. Hopefully, after the details are improved, it can be 

applied to daily life, saving more time and creating more value. 
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