
David C. Wyld et al. (Eds): CST, NLMLT, DMS, CLBD, ITCS, VLSIE - 2022

pp. 61-77, 2022. CS & IT - CSCP 2022 DOI: 10.5121/csit.2022.121907

STUDY OF CONSISTENCY AND

PERFORMANCE TRADE-OFF IN CASSANDRA

Kena Vyas and PM Jat

DAIICT, Gandhinagar, Gujarat, India

ABSTRACT

Cassandra is a distributed database with great scalability and performance that can manage

massive amounts of data that is not structured. The experiments performed as a part of this

paper analyses the Cassandra database by investigating the trade-off between data consistency

andperformance. The primary objective is to track the performance for different consistency

settings. The setup includes a replicated cluster deployed using VMWare. The paper shows how

difference consistency settings affect Cassandra's performance under varying workloads. The

results measure values for latency and throughput. Based on the results, regression formula for

consistency setting is identified such that delays are minimized, performance is maximized and

strong data consistency is guaranteed. One of our primary results is that by coordinating
consistency settings for both read and write requests, it is possible to minimize Cassandra

delays while still ensuring high data consistency.

KEYWORDS

NoSQL, Cassandra, Consistency, Latency, YCSB, and Performance.

1. INTRODUCTION

Data's relevance has skyrocketed to the point where it is now seen as a precious asset. For any

organisation, data is an essential. Every day, massive amounts of data get generated. Data of

various formats are seen nowadays in IoT devices such as smartwatches, smart TVs, and home
assistants. Every second or minute, data of different kinds gets generated from different devices.

As a result, the ability to properly store and retrieve such huge and diverse data is required.

Relational databases have typically been used to store structured data with a high level of
consistency. But when it comes to working with unstructured data, they have a number of

drawbacks. The rigorous schema constraints of relational databases make it challenging to store

massive data, which is typically anticipated to be unstructured or loosely structured. Field lengths
are limited in relational databases, which leads to improper handling of unstructured data.

Because of the inadequacies of relational databases when it comes to massive data, NoSQL

databases have grown in popularity.

NoSQL Databases are non-relational data management systems. It gives a way to save and

retrieve data. The data is represented differently than in relational databases, where tabulated

relations are used. It does not require a fixed schema. The key advantage of using a NoSQL
database is for huge data with dispersed data repositories. Therefore, it's becoming more

prevalent in big data and real-time online applications. NoSQL databases have the following

features: Flexible schemas, High availability, and Horizontal scaling. NoSQL databases has
eventual consistency and hence lacks ACID features.

http://airccse.org/cscp.html
http://airccse.org/csit/V12N19.html
https://doi.org/10.5121/csit.2022.121907

62 Computer Science & Information Technology (CS & IT)

1.1. Motivation

The main motivation of this paper is to find optimal setting for Cassandra database such that it

provides strong consistency and minimal latency. Understanding this trade-off is crucial for
finding a database state that is consistent. The paper examines the trade-offs that NoSQL

databases must make between consistency, availability, and latency. It's crucial to understand

how different consistency settings affect system latency. There are many NoSQL databases
available for use. various industry trends suggest that Apache Cassandra is one of the top three in

use today together with MongoDB and HBase [1]. Apache Cassandra is a columnar distributed

database that takes database application development forward from the point at which we

encounter the limitations of traditional RDBMSs in terms of performance and scalability [2].
Cassandra is a NoSQL distributed database system that is known for managing large amounts of

distributed data. It provides high availability without a single point of failure [3].

1.2. Objective

In this paper, the Cassandra database is used to provide a quantitative examination of the
fundamental Big Data trade-offs between data consistency and performance. We'd like to provide

practical recommendations to developers that use Cassandra as a distributed data storage system,

allowing them to forecast Cassandra latency while keeping the required consistency level in
mind, and to optimise the consistency settings of operations. A benchmarking approach is

developed that optimizes Cassandra's performance that guarantees strong data consistency under

the selected workload. A NoSQL database like Cassandra supports database replication in order
to maintain availability in the case of event failure or planned maintenance events. Cassandra

keeps replicas on several nodes to ensure automatic failover and durability. Depending on the

replication mechanism employed, a consistency setting needs be found that maximises

performance while minimising latency.

1.3. Outcomes

A benchmarking methodology is created for working with read and write workloads in different

proportions. Various workload runs are executed on the deployed cluster and their results are

measured. The Cassandra database is monitored for Latency and Throughput values when read
and write workloads are executed on it for a varying number of threads. Various combinations of

read and write workloads are considered. The outcome of this paper will help the user of the

database in identifying a consistency setting that is strong and simultaneously provides sufficient
throughput with minimized latency. Two experiments are performed as a part of this work that

measured the performance of the Cassandra database for varying read/write workloads, changing

threads, and different consistency settings. The first experiment measures the results by

separating the read and write workloads. In the second experiment, various proportions of
read/write workloads are considered together so that we can get all possible combinations and

can measure the results accordingly. From the measured results, regression formulas are

generated which can be used for prediction purposes.

1.4. Paper Organization

This paper is organised as follows. In the next section i.e., Section 2 is Cassandra and

Consistency where concepts like NoSQL, replication factor and consistency levels are covered,

Section 3 talks about Performance Benchmarking with YCSB along with related works, Section 4
is about experimentation, the two experiments performed as a part of this paper are explained in

Computer Science & Information Technology (CS & IT) 63

detail along with their objective, setup, and results. Section 5 concludes the paper with a
conclusion.

2. CASSANDRA AND CONSISTENCY

Two Facebook developers, Lakshman and Malik, released Cassandra to the Apache community
in 2008. They describe Cassandra as a "distributed storage system for managing very large

amounts of structured data spread across many commodity servers while providing highly

available service with no single point of failure"[4]. Cassandra is a column-oriented, peer-to-peer
NoSQL database that is a distributed and decentralized storage system that is open source. It

oversees massive amounts of structured/unstructured/loosely structured data from all around the

world. It ensures high availability, which eliminates the possibility of a system failure and

provides eventual consistency [5].

Cassandra provides a familiar interface known as Cassandra Query Language (CQL). CQL offers

an abstraction layer to the database where implementation specifics are hidden, and native access
syntaxes are provided. The data in Cassandra is kept in keyspaces, which are similar to databases

in relational database concepts. A column family in the Cassandra database is equivalent to a

table in a relational database, and they can be represented as a collection of rows. Rows are
formed of columns and their values, which are represented as key-value pairs [6]. The

Replication Factor and Strategy can be defined at the time of keyspace creation.

2.1. Cassandra Data Model

The Wikipedia page of Cassandra mentions that the Cassandra data model is “designed for
distributed data on a very large scale” [7]. Cassandra runs in main memory and makes

asynchronous disc writes on a regular basis. Cassandra comprises ACID properties in order to

increase availability and performance. The structure of the Cassandra model is quite different

from the relational model.

A Cassandra cluster is a storage unit in the database. It consists of multiple keyspaces. A level of

Column families exists beneath the keyspace level. A column family is a logically arranged
collection of one or more columns depending on database design. There will be one or more

column(s) inside a column family. Within the Cassandra data paradigm, a column is the simplest

data structure and is at the lowest level. A column has 3 different attributes namely name, value,

and timestamp. The name attribute is used to identify a column. Value attribute stores the actual
value related to the name attribute and timestamp is the time when the column is stored, it is

mainly used during data replication.

A "row" is similar to a relational database row which is a collection of values linked together.

However, there is a difference between the two. The row in the Cassandra model is dynamic and

can have a varying number of columns. One of the advantages of Cassandra is the flexibility
ofwhat may be stored and the fact that no space is allocated for columns that are not part of the

current data set.

2.2. NoSQL

NoSQL is often referred to as "non-SQL" or "non-relational". Eben Hewitt has his own
explanation of what NoSQL is all about in his book Cassandra: The Definite Guide [8].

"Comparing NoSQL to relational is basically a shell game," Hewitt argues. Eben Hewitt implies

that NoSQL cannot be directly compared to a relational database because it encompasses a wide

64 Computer Science & Information Technology (CS & IT)

range of non-relational database types. Most NoSQL databases provide some level of balance
among consistency, availability, partition tolerance, and latency. Although a few databases have

made ACID (Atomicity, Consistency, Isolation, Durability) transactions core to their architecture,

most NoSQL stores lack these [9].

NoSQL systems can be classified into categories according to their data model. There are four

different types of NoSQL databases: Column-oriented, Graph, Document, and Key-value

databases. Cassandra, MongoDB, Couchbase, HBase, and Redis are some of the most popular
NoSQL databases. Cassandra offers a range of unique features which makes it a good choice for

us. Cassandra has no single point of failure because of its peer-to-peer architecture. Scalability is

another advantage that Cassandra provides for scaling up or down. It is highly available and fault
tolerant because of the data replication it provides. Such benefits provided by Cassandra makes it

a great choice.

2.3. Replication and Consistency

Data replication is the process of storing several copies of data in multiple nodes. The replication
approach ensures that the same data is available in other nodes if one node fails. Cassandra

supports replication in the database to ensure availability in the event of failure or other

predefined activity. The process of replicating data from one location to another is known as

replication. The replication method for each keyspace determines the nodes where replicas are
placed. Cassandra keeps replicas on several nodes to ensure fault tolerance and reliability. The

replication factor refers to the total number of replicas in the cluster. A replication factor of one

means that each row in the Cassandra cluster has only one copy. At the time of keyspace
generation, the Replication Factor can be specified. The replication factor should not be more

than the total cluster nodes.

The minimal number of Cassandra nodes that must recognize a read or write operation before it

may be declared successful is known as the Cassandra consistency level. Different Edge

keyspaces can have different consistency levels allocated to them. When the consistency option is

one, it indicates that for a read/write operation to succeed, at least one of the Cassandra nodes in
the datacentre must react. Depending on the replication mechanism employed, a consistency

setting can be found that maximizes performance while minimizing latency. Cassandra's

consistency settings can be set to balance data accuracy and availability. Consistency can be set
for a session or for each read or write operation individually.

Hewitt explains three different levels of consistency in his book about Cassandra [8].

Strong Consistency - All data received from the database must be the most current information

available. A mechanism for a global timer will be necessary to put a time stamp on the data and

actions done to the system. String consistency is essential in areas like financial institutions, e-
commerce websites, etc at all times. Strict consistency ensures that the data returned will be

consistent and valid. However, one disadvantage is that performance will be degraded because

the system will have to verify data with multiple nodes before returning the results.

Most NoSQL systems use the concept of R, W, N where R is the number of nodes from which

data is read, W is the number of nodes where data is written and N is the replication factor and

when we have R+W>N then, strong consistency can be achieved.

Eventual Consistency - Context here is we have partitioned and replicated data. Any update to

such a database needs to be propagated to all replicas. Any read request for a data item following
its write should get the last updated value irrespective of a replica from which value is being read.

Computer Science & Information Technology (CS & IT) 65

Eventual consistency is weaker than strong consistency. Whenever eventual consistency is used
and a request for data is made, then it may provide data which is one version older than the

current one. However, eventual consistency makes sure that the most recent data is available to

the user after a certain period of time.

When we make a change to a distributed database, eventual consistency ensures that the change

is mirrored across all nodes that store the data, ensuring that we get the same response every time

query is made. Eventual consistency offers low latency. Because changes take time to reach
replicas throughout a database cluster, early results of eventual consistency data queries may not

have the most current updates. The database system guarantees that if no new updates are made

to the object, eventually all accesses will return the last updated value [11].

Weak Consistency - Another type of consistency is weak consistency which gives no guarantee

that all nodes will have same data at any given time. From time to time, updates are exchanged

among nodes such that all nodes have updated data. After a certain period of time, the data in the
nodes will reach a consistent state.

2.3.1. Consistency Level (CL) on Write

The number of replica nodes that must acknowledge before the coordinator can report back to the

client is determined by the consistency level for write operations. The number of nodes that
acknowledge (for a given consistency level) and the number of nodes that store replicas (for a

certain replication factor) are almost always different. For e.g., even when only one replica node

recognizes a successful write operation with consistency level ONE and RF = 3, Cassandra

concurrently replicates the data to two other nodes in the background. Below are write
consistency levels that are used in the paper:

Table 1. Consistency levels for Write operation

Level Description

ONE It only requires one replica node to recognise it. Because only one
copy needs to acknowledge the write operation, it is faster.

QUORUM It requires 51 percent or a majority of replica nodes across all

datacentres to acknowledge it.

ALL It requires confirmation from all replica nodes. Because all

replica nodes must acknowledge the write operation, it is the

slowest. Furthermore, if one of the replica nodes fails during the
write operation, the write operation will fail, and availability will

degrade. As a result, it's advisable not to use this option in

production deployment.

2.3.2. Consistency level (CL) on Read

The consistency level for read operations determines how many replica nodes must respond with
the most recent consistent data before the coordinator can deliver the data back to the client

successfully. Below are read consistency levels that are used in the paper:

66 Computer Science & Information Technology (CS & IT)

Table 2. Consistency levels for Read operation

Level Description

ONE Only one replica node returns the data at consistency level ONE. In

this scenario, data retrieval is the quickest.

QUORUM It signifies that 51 percent of replica nodes in all datacentres have

responded. The data is then returned to the client via the coordinator.

ALL It requires confirmation from all replica nodes. The read operation is

the slowest in this situation since all replica nodes must acknowledge.

Quorum Calculation - The QUORUM level works with the number of quorum nodes. The

following is how a quorum is computed and then rounded down to a whole number:

quorum = floor((sum_of_replication_factors / 2) + 1)

In a cluster of 3 nodes, a quorum is 2 nodes. In a cluster of 6 nodes, a quorum is 4 nodes.

There are mainly 2 ways for setting consistency in a cluster:

1st Way

To set the consistency level for all queries in the current cqlsh session, use CONSISTENCY in
cqlsh.

Syntax:
CONSISTENCY [Level]

Example: CONSISTENCY ONE

2nd Way

For setting the consistency level individually for each operation, the consistency can be set in the

command line argument (CLI).

-p cassandra.readconsistencylevel=[Level] -p cassandra.writeconsistencylevel=[Level]
Example:-p cassandra.readconsistencylevel=[ONE] -p cassandra.writeconsistencylevel=[ONE]

2.4. CAP Theorem

Being ACID compliance is one of the strengths of relational databases. However, it is hard to

achieve serializability in distributed and replicated environment and may leads to delays that are
beyond acceptable limits. NoSQL systems have compromised ACID properties in order to

achieve better performance when working with large data sets. Because of that, NoSQL systems

need to follow some other set of rules that fit the NoSQL criteria. A scientist called Eric Brewer

established a theorem called Brewer’s CAP theorem. Brewer et.al. [6] realizes this and presents
CAP theorem which states that any distributed data store can only provide two of the three (i.e.,

consistency, availability and partition tolerance) guarantees.

Computer Science & Information Technology (CS & IT) 67

Brewer's CAP theorem categorizes database systems according to their capabilities. The CAP
theorem was created to put the different NoSQL solutions together because the bulk of them was

obliged to compromise the ACID guarantee in order to focus on more critical aspects for their

specific needs. CAP is an acronym that stands for [13]:

 Consistency - At the same moment, all connected nodes see the same data.

 Availability - Even if a request is unsuccessful, it is guaranteed that a response will be
received if it is delivered to the database.

 Partition tolerance - There is no single point of failure in the system. If one node fails, the

data can still be accessed by another node, and the system will continue to function

normally.

Hewitt states in his book about Cassandra that “Brewer’s theorem is that in any given system,

you can strongly support only two of the three” [8]. The definition says that a database system
cannot provide all three properties at the same time. When a system is spread across numerous

nodes, it cannot be 100% consistent and available at any given time. When the state of a database

is changed (new data added or data updated) due to various reasons it will take a few

milliseconds or seconds to propagate the changes to other nodes because of which the system is
called eventually consistent.

3. PERFORMANCE BENCHMARKING WITH YCSB

YCSB is an abbreviation for Yahoo cloud serving benchmark. YCSB is a program suite for

computing the execution of NoSQL systems. It is used to evaluate/compare the working of

different NoSQL systems based on several parameters. YCSB Benchmark is a collection of

workloads. It can collect the performance metrics of a system under a specific, pre-defined
workload. It makes it easier to compare the performance of the next generation of data serving

systems [8]. The YCSB framework is a standard benchmark for evaluating the operation of

NoSQL databases such as Redis, MongoDB, HBase, Cassandra, and others. The YCSB
framework is made up of a client that generates a workload and a set of basic predefined

workloads that cover various aspects of performance. YCSB provides five different workloads.

Each workload is a unique combination of read/write queries and data sizes. The operations in the
workload are Insert, Update, Read and Scan. The vital feature of the YCSB framework is its

extensibility. The workload generating client is extensible which supports the benchmarking of

different databases. The workloads are [8]:

Table 3. YCSB default workloads

Workload Read Weightage Update Weightage Insert

Weightage

Scan

Weightage

A-Update Heavy 50% 50% 0% 0%

B-Read Mostly 95% 5% 0% 0%

C-Read Only 100% 0% 0% 0%

D-Read Latest 95% 0% 5% 0%

E-Short Ranges 0% 0% 5% 95%

68 Computer Science & Information Technology (CS & IT)

3.1. Related Works

Relational databases have been the choice for majority of systems due to their rich set of features.

However, they are not suitable for handling huge data. NoSQL databases have gained popularity
as they efficiently work with big data [13]. The paper “NoSQL Databases: MongoDB vs

Cassandra” talks mainly about NoSQL databases along with their types and also briefs about

CAP/ACID theorems. YCSB benchmark is used for the experimentation. The performance
parameter which signifies the execution time is taken into consideration for comparing the two

databases i.e., MongoDB and Cassandra. In the experiments, six different YCSB workloads are

used for testing both the databases. The results indicate that as the data size increased, MongoDB

started to reduce performance [13]. However, Cassandra became faster as data size increased.

Yahoo cloud serving benchmark framework is presented in the paper titled “Benchmarking

Cloud Serving Systems with YCSB”, that facilitates performance comparisons of data serving
systems. Four widely used databases like Cassandra, HBase, Yahoo!’s PNUTS, and a simple

sharded MySQL implementation are used in the paper for benchmarking. The papers use core

workload of YCSB for measuring performance and scalability of the databases. The results show
that Cassandra and HBase have higher read latency on a read heavy workload and lower update

latency on write heavy workload [14]. Along with that, Cassandra and PNUTS showed better

scalability. The paper also explains in details the core workloads provided by YCSB. The paper

also talks about the workload generating client that comes with YCSB using which new
workloads can be defined.

Our paper focuses on the consistency and latency trade-off aspect mainly. To identify the best
setting of threads and read/write workloads such that strong consistency can be obtained. The

paper “Consistency Trade-offs in Modern Distributed Database System Design” explains in detail

the consistency/latency trade-off. The paper gives a good introduction about CAP theorem.
According to CAP, the system must choose between high availability and consistency [10].

The paper “Interplaying Cassandra NoSQL Consistency and Performance: A Benchmarking

Approach” puts light on the trade-off between data consistency and performance. The main aim
of the paper is to allow the developers to predict the delay in Cassandra by considering the

required consistency level. The paper proposes a benchmarking approach for optimising

performance of Cassandra such that strong consistency is ensured [12]. In the paper, a Cassandra
database is deployed and executed in a real production environment. YCSB benchmark is

modified to execute application specific queries. The Cassandra database is benchmarked for

various conditions such as different workloads, different consistency settings, etc. After that,

regression functions are generated that interpolate the average read/write latency with precision.
The paper identifies optimal consistency setting by using regression functions which will help the

developers to find out settings such that required consistency level is obtained.

Our presented work shows how different consistency setting affect the Cassandra response time

and throughput. Because Cassandra provides the feature of tuneable consistency, it is possible to

achieve strong consistency by finding optimal settings. By monitoring various parameters of
Cassandra database while different combinations of workload, threads and consistency settings

are executed, we try to find certain consistency setting that provides the minimum latency.

Computer Science & Information Technology (CS & IT) 69

4. EXPERIMENTATION

4.1. Experiment Objective

To describe a methodology for benchmarking the performance of Cassandra. To extract
experimental results, show how different consistency settings influence the latency and

throughput. To understand the relationship between the parameters and generate a regression

equation for predicting the parameters. The experiment extracts results based on two scenarios:

1. When the read and write operations are executed individually.

2. When mixed read and write workload are executed.

To narrow down the available options for consistency setting based on results obtained. The

objective also includes generating a data set for finding multiple regression equations which can

be used to perform predictive analysis and to find an optimal setting such that strong data

consistency is guaranteed.

4.2. Cassandra Cluster Setup

A Cassandra cluster of 3 nodes with different IP addresses is deployed on VMware. All the nodes
are connected in a cluster by installing Cassandra in all of them and configuring them. A

replication factor of 3 is configured for ALL consistency to be applied. The data in the nodes is 3-

replicated which means a row in a table has 3 copies in the cluster. The VMware virtual machine
uses CentOS operating system that is based on Linux. YCSB benchmark is used in order to

evaluate the performance of databases under different workloads. The YCSB Client is a Java

program that generates data for database loading and runs the loaded workloads.

Three nodes with IPs: 192.168.29.143, 192.168.29.144, and 192.168.29.145 are deployed in a

single cluster such that they are connected and Cassandra is installed on each.

4.3. Results

4.3.1. Experiment 1

In the experiment 1 where the performance of Cassandra is measured by considering the read and

write workload individually, the configuration is made as follows. A Cassandra cluster of 3 nodes
is deployed on the VMware. In our study, the focus is on examining the dynamic features of

Cassandra's performance in various consistency settings. We investigate how the current

workload affects database latency and throughput. The following configuration is made for
experiment 1.

● A replication factor of 3 is configured.

● Nodes have a Keyspace YCSB and table USERTABLE for experimentation purposes.
● YCSB workload c [read] and workload a [write] parameterized to execute only write

operations are used.

● 25,000 records are used for loading and execution
● The results are calculated with

○ a Varying number of threads from 10 to 1000.

○ 3 consistency settings: ONE, QUORUM, and ALL.

● Latency and Throughput for all the combinations are measured for further analyses.
● Regression equations

70 Computer Science & Information Technology (CS & IT)

Read Write Latencies and Throughput Measurements

The tables below show the results of the Cassandra performance benchmarking. The average

latency and throughput for read and write requests are shown. For each request, the results are

calculated using 25000 records. We may use a mix of average delay and throughput to look at
how average read and write delays are affected by the current workload.

Table 4. Cassandra READ latency statistics

Table 5. Cassandra WRITE latency statistics

Computer Science & Information Technology (CS & IT) 71

Latency graphs

Figure 1. Average Cassandra delay depending on the current workload: reads

Figure 2. Average Cassandra delay depending on the current workload: writes

72 Computer Science & Information Technology (CS & IT)

Throughput graphs

Figure 3. Cassandra Throughput depending on the current workload: reads

Figure 4. Cassandra Throughput depending on the current workload: writes

Experimental Results

Cassandra reads with the ONE consistency level achieve a maximum throughput of 1203 requests
per second, as shown in Table 4. It varies between 1240 and 110 requests per second for the

QUORUM and ALL consistency levels. For writes, it is 1437 for ONE consistency level and it

fluctuates around 1400 and 1250 for QUORUM and ALL consistency setting respectively.

The graphs in Figure 1 and 2 show the delay experienced for read and write operations

individually. The X-axis represents the number of threads running and the Y-axis represents the

delay in microseconds. The three lines denote the average latency for ONE, QUORUM, and ALL
consistency settings. The average latency for ALL consistency settings is the highest compared

Computer Science & Information Technology (CS & IT) 73

with ONE and QUORUM. However, as shown in Figure 3 and 4, the throughput for ALL
consistency settings is the lowest for both read and write operations.

4.3.2. Experiment 2

As already discussed, if the overall number of written and read replicas is more than the factor of

replication, the Cassandra database can ensure the maximum data consistency model. This means

for a 3-replicated system there are six different read/write consistency settings that can be used to
provide high data consistency. They are

● 1R-3W: One read-All write
● 2R-2W: Quorum read-Quorum write

● 3R-1W: All read-One write

● 2R-3W: Quorum read-All write

● 3R-2W: All read-Quorum write
● 3R-3W: All read-All write

Besides, the two settings: 1R-3W and 2R-1W provide the 66.6% of consistency. Finally, the 1R-
1W setting can guarantee only the 33.3% of consistency [12]. Whenever a smaller number of

replicas are invoked read/write operations in Cassandra executes faster. Hence, in real life

experiments, the following consistency should be chosen: 1R-3W, 2R-2W and 3R-1W. All the
three combinations follow the rule:

As all the three consistency settings provide strong consistency, a system developer may want to

know the performance of those settings for different read/write load proportions and different

read/write consistency settings.

Read/Write Latency measurements

For this experiment, 5 different read/write load proportions are taken into consideration:

Read/Write-10/90%, Read/Write-30/70%, Read/Write-50/50%, Read/Write70/30% and

Read/Write-90/10%. For each of these 5 proportions, read and write latency are measured for 3
consistency settings such as 1) ‘Read ONE – Write ALL’ (1R-3W) 2) ‘Read QUORUM – Write

QUORUM’ (2R-2W) 3) ‘Read ALL – Write ONE’ (3R-1W). Table 6 to 10 shows the measured

results. The consistency setting that fetches the lowest latencies is highlighted. The tables below

show some estimations of Cassandra latency for various configurations, ensuring good
consistency in a mixed read/write workload.

74 Computer Science & Information Technology (CS & IT)

Table 6. READ and WRITE latency for ratio: 10/90%

Table 7. READ and WRITE latency for ratio: 30/70%

Table 8. READ and WRITE latency for ratio: 50/50%

Computer Science & Information Technology (CS & IT) 75

Table 9. READ and WRITE latency for ratio: 70/30%

Table 10. READ and WRITE latency for ratio: 90/10%

Experimental Results

The 1R-3W configuration delivers the lowest consistency for threads till 200 when the read load

proportion is less than 30%. For threads from 200, the 3R-1W setting shows optimal latency
among others. When the read load proportion increases, it can be observed that, regardless of the

current workload, the 1R-3W option delivers the best latency readings when compared to others.

For a read and write proportion of 90/10 %, the 2R-2W setting shows the lowest consistency for a

greater number of threads. As the number of requests per second and the fraction of read requests
increases, the 2R-2W and specifically the 3R-1W arrangements becomes extremely wasteful.

When the percentage of read requests is around 10%, the 3R-1W design still provides the shortest

delay in high write-heavy workloads.

76 Computer Science & Information Technology (CS & IT)

4.4. Correlational Analysis

To generalize our results, a multiple regression equation is generated such that it identifies the

optimal write consistency factor for the given workload. Syntax of multiple regression equation:

Y = Constant C0 + C1*(X1) + C2*(X2) + C3*(X3) + C4*(X4) (1)

The dependent variable Y is the write consistency measure needed to provide strong consistency.

There are 4 independent variables: X1-read latency, X2-write latency, X3-threads, and X4-

proportion of write workload. To make all of the parameters on the same scale, they are

compressed. The following multiple regression formula is created based on the 200 records
measured in our experiment:

Table 11. Multiple regression equation static

Y=0.5173-3.876*X1+3.5528*X2+0.3473*X3+0.0739*X4 (2)

Multiple Regression for Read Latency

Table 12. Multiple regression equation for read latency

Y=0.1598-0.1257*X1+0.8071*X2-0.0708*X3 (3)

Here the parameter Y is the read latency measured for various read and write combinations.

Multiple Regression for Write Latency

Table 13. Multiple regression equation for write latency

Y=0.1+0.0018*X1+0.7827*X2-0.0981*X3 (4)

Here the parameter Y is the write latency measured for various read and write combinations

Computer Science & Information Technology (CS & IT) 77

5. CONCLUSIONS

To measure Cassandra's latency and performance, we used benchmarking approach. The

benchmarking is performed to assess system performance in order to establish how well the

system can handle a mixed workload when different consistency settings are employed.

Our research focuses on the relationship between multiple settings for consistency and the

performance of the Cassandra column-oriented database. The findings suggest that consistency

settings have a considerable impact on Cassandra's response time and throughput, which must be
taken into account during system development and monitoring. The Cassandra database gives

programmers the ability to fine-tune the consistency setting for each read and write operation

request. Software developers can assure strong consistency for their setup by managing the

consistency setting by ensuring that the sum of nodes written to and read from is more than the
replication factor. In our research, the aim is to choose optimal consistency setting such that

strong consistency is provided along with lower latency for our experiment-specific setup.

REFERENCES

[1] Github: Benchmarking Cassandra and other NoSQL databases with YCSB. https://github.

com/cloudius-systems/osv/wiki/Benchmarking-Cassandra-and-other-NoSQL-databaseswith-YCSB.

[2] Mishra, V. (2014), Beginning apache Cassandra development. Apress [E-book].
[3] P. Bagade, A. Chandra and A. B. Dhende, "Designing performance monitoring tool for NoSQL

Cassandra distributed database," International Conference on Education and e-Learning Innovations,

2012, pp. 1-5, doi: 10.1109/ICEELI.2012.6360579. Eben Hewitt. Cassandra: The Definitive Guide.

O’Reilly Media, Inc., 1 edition, 2010.

[4] Datamodel - cassandra wiki. http://wiki.apache.org/cassandra/DataModel.

[5] Daniel Bartholomew. Sql vs. nosql. Linux J., 2010.

[6] Lourenço, J.R., Abramova, V., Vieira, M., Cabral, B., Bernardino, J. (2015). NoSQL Databases: A

Software Engineering Perspective. In: Rocha, A., Correia, A., Costanzo, S., Reis, L. (eds) New

Contributions in Information Systems and Technologies. Advances in Intelligent Systems and

Computing, vol 353. Springer, Cham. https://doi.org/10.1007/978-3-319-16486-1_73.

[7] Abramova, Veronika & Bernardino, Jorge & Furtado, Pedro. (2014). Evaluating Cassandra

Scalability with YCSB. 8645. 199-207. 10.1007/978-3-319-10085-2_18.
[8] Eben Hewitt. Cassandra: The Definitive Guide. O’Reilly Media, Inc., 1 edition, 2010.

[9] Pritchett, Dan. (2008). Base an acid alternative. ACM Queue. 6. 48-55. 10.1145/1394127.1394128.

[10] D. Abadi, "Consistency Tradeoffs in Modern Distributed Database System Design: CAP is Only Part

of the Story," in Computer, vol. 45, no. 2, pp. 37-42, Feb. 2012, doi: 10.1109/MC.2012.33.

[11] Lakshman, Avinash & Malik, Prashant. (2010). Cassandra — A Decentralized Structured Storage

System. Operating Systems Review. 44. 35-40. 10.1145/1773912.1773922.

[12] Gorbenko, A and Romanovsky, A and Tarasyuk, O (2020) Interplaying Cassandra NoSQL

Consistency and Performance: A Benchmarking Approach. Dependable Computing - EDCC 2020

Workshops. EDCC 2020. Communications in Computer and Information Science., 1279. pp. 168-

184. ISSN 1865-0929 DOI: https://doi.org/10.1007/978-3-030-58462-7_14.

[13] Abramova, Veronika & Bernardino, Jorge. (2013). NoSQL databases: MongoDB vs cassandra.
Proceedings of the International C* Conference on Computer Science and Software Engineering. 14-

22. 10.1145/2494444.2494447.

[14] Cooper, Brian & Silberstein, Adam & Tam, Erwin & Ramakrishnan, Raghu & Sears, Russell. (2010).

Benchmarking cloud serving systems with YCSB. Proceedings of the 1st ACM Symposium on Cloud

Computing, SoCC '10. 143-154. 10.1145/1807128.1807152.

© 2022 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://wiki.apache.org/cassandra/DataModel

	Relational databases have been the choice for majority of systems due to their rich set of features. However, they are not suitable for handling huge data. NoSQL databases have gained popularity as they efficiently work with big data [13]. The paper “...
	4.1. Experiment Objective
	4.2. Cassandra Cluster Setup

	4.3. Results
	4.3.1. Experiment 1
	4.3.2. Experiment 2
	4.4. Correlational Analysis

	References

