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ABSTRACT 
 

Wireless sensor nodes are designed to collect information about their immediate environment. 

Once gathered, such data are forwarded via a multi-hop communication pattern to a remote 

gateway, also known as the sink. This process referred to as the convergecast may often require 

several sinks in order to improve network efficiency and resilience. Provided that load among 
the latter nodes are well balanced and packet losses are mitigated. This paper aims to design 

such a protocol by combining clustering, path-vector routing and sinks’ duty cycle scheduling 

schemes to help balance load and minimize message overhead. Simulation results proved that 

this solution outperforms DMS-RP (Dynamic Multi-Sink Routing Protocol), a recent state-of-

the-art contribution, in terms of delay minimization, packet delivery and network lifetime 

enhancement. 
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1. INTRODUCTION 
 

Wireless Sensor Networks (WSNs) comprise small detection devices called sensor nodes and a 

central equipment referred to as the sink. The latter acts like a gateway to a third-party 
transportation network. WSNs’ applications are encountered in domains like ecology, security, 

transportation, to industry, health etc.  [1-3].  

 

One of the most critical operations in such networks is convergecast, namely, the data gathering 
and forwarding process [4]. Typical WSNs architectures involve usage of a single sink. However, 

many applications including those deployed in harsh environments require a large number of 

sensors [5]. Therefore, the latter have to face long routing paths and congestions particularly in 
sink’s neighbourhood [6]. The resulting energy wastes and packet losses quickly become 

detrimental to network lifetime and efficiency. A common technique to address these issues is to 

add extra sinks to the network [7]. Nevertheless, to really benefit this strategy, it is mandatory to 
distribute network load among sinks and to always find the optimal gateway for each sensor.  

 

Unfortunately, most solutions found in the literature leverage assumptions and schemes that are 

restrictive for real-world applications; e.g. fixed size clusters, interference-free links etc. 
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In this paper, we propose to seamlessly combine clustering, path-vector routing and scheduling 
schemes to assign the proper sink to each sensor node while balancing network load. The 

resulting protocol helps minimize delay, mitigate packet losses and prolong network lifetime. 

 

Our main contributions are as follows:  
 

- a  hop limitation clustering strategy that mitigates message overhead and network flooding;  

- a route discovery processes that simultaneously consider links’ asymmetry, interferences, and 
nodes’ congestion level;  

- a fully-distributed loop-free path-vector routing scheme that minimizes delays between sensor 

nodes and sinks; 
- a scheduling strategy that helps balance loads for both sensor nodes and sinks. 

 

The rest of the paper is organized as follows: Section 2 surveys the related contributions; then, 

the proposed solution is detailed in Section 3; the performance evaluation process, the results, 
and discussions are presented in Sections 4 and 5 followed by conclusion in Section 6. 

 

2. RELATED WORK 
 
Convergecast schemes commonly use routing techniques where shortest paths from sensor nodes 

to sinks are constructed relying on different metrics (Euclidean distance, number of hops, link 

quality, nodes’ energy level, number of possible retransmissions etc.) [8]. The resulting solutions 

can be reactive or proactive when the route discovery process is launched respectively on-
demand or in advance. From a topological point of view, these protocols are generally classified 

as flat and hierarchical ones [9]. In the first category, solutions leverage well-known tree 

construction schemes such as the Shortest Path Tree (SPT), Minimum Spanning Tree (MST), and 
random tree (RDCT) to find relevant routes between sensor nodes and sinks. However, in large 

scale wireless sensor networks, where scalability is at stake, hierarchical techniques like 

clustering are indispensable. This scheme consists of grouping nodes around a leader referred to 
as the Cluster Head (CH) [10]. The latter may be chosen randomly or not; but often according to 

different criteria (energy level, degree, location, etc.) [11-15]. LEACH by Heinzelman et al. [16] 

is one of the oldest protocols in this category. This protocol has inspired a huge number of 

contributions in the past two decades [17]. Unfortunately, these solutions are generally single-
sink oriented. Relatively few multi-sink solutions have been recently proposed. 

 

Masdari and Naghiloo[18] suggested a distributed fuzzy logic-based sink selection scheme to 
cope with congestions. Each sink declares its load to their neighbours. The nearest uncongested 

sink is then selected. Nevertheless, this solution is dedicated to only one-hop networks. Rajput 

and Kumaravelu [19] used a similar approach. They applied in contrast, a fuzzy c-means 

algorithm to balance the size of clusters and to optimize the number of sinks and their locations in 
the region of interest. However, this solution is limited to applications with a deterministic sink 

deployment and is not scalable; since the latter deployment and the clustering process are 

centralized to the distant base station. 
 

Singh and Nagaraju [20-21] proposed to create routes by constructing a Wiener minimum 

spanning tree based on an Artificial Bee Colony optimization scheme. Regrettably, this strategy 
is not really scalable and requires knowing sinks’ positions.  

 

As for Wang and Su [22], they designed an algorithm based on breadth-first search strategy to 

create 2-disjoint path between each sensor node and the sinks using an edge colouring scheme. 
Nevertheless, this solution requires estimating Euclidean distance from a node to the sink. 

Calculation of this distance is costly.  
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Mukherjee et al. [23] used sensor nodes with 3-sector antennas to locate sinks. Based on the 
Euclidean distance from the sink, the deployment area is divided into 3 regions where nodes can 

respectively send data directly to the nearest sink (direct routing), via a one-hop (two-hop 

routing) or using multi-hop routing. Regrettably, this scheme does not cope with load balancing 

and needs specific sensor nodes.  
 

With protocol GeoM, Leão and Felea [24] considered using a geographical-based solution that 

linearly combines Euclidean distance and energy level metrics to determine the next hop. Data 
are sent to available sinks using a two-step multicast communication scheme. The first and the 

second step consist of selecting respectively target sinks and candidate forwarders. After 

calculating the weighted metrics of all couples (candidates and sinks), intersecting decisions are 
detected and eliminated to avoid packets duplications. However, this solution does not scale since 

it is not really distributed. Additionally, it requires that every node is aware of both its own 

geographic position and that of all the sinks. Gathering such information is very costly.  

 
Yildiz [25] proposed a Mixed Integer Programming (MIP) model aimed to maximize network 

lifetime for underwater WSNs. Unfortunately, this solution is not scalable since it is centralized 

and the proposed model leverages parameters difficult and costly to collect, such as total number 
of flows generated at a node and transferred over a specific link during the network, otal number 

of flows collected at a sink etc. 

 
Fu et al. [26] advised a field-driven paradigm to make routing decisions. In this scheme network 

is abstracted into an electrostatic or magnetic field etc. where packets behave like objects that can 

be”attracted” by the sinks. This solution is the first field-driven protocol that uses multi-path 

(multi-hop) routing and considers impact of external environment. The path selection leverages 
different metrics referred to as the potential fields, namely the depth, residual energy and the 

environmental information of sensor nodes. These metrics help respectively estimate the 

Euclidean distance while preventing messages to traverse dangerous areas and nodes with poor 
energy level. This strategy introduces fault-tolerance in the network but struggles to balance 

sinks’ load.  

 

Liu et al. [27] developed a solution to schedule traffic and select optimal paths by considering 
delays and load balancing. Each sensor node tries to find the shortest path to each sink then 

records the results and the transmitted traffics obtained. The latter are finally scheduled to 

balance the load of sinks. This solution does not scale since during initial step, it requires each 
sensor node to construct a path to each sinks.  

 

Onwuegbuzie et al. [28] suggested a three-step strategy. Firstly, the amount of traffic or network 
load/task to assign to each sink is estimated, and then whenever a task is to be executed, the real-

time load of each sink is computed. Finally, the real-time load to total weight ratio of each 

participating sink is calculated. The current task is thus assigned to the sink having the least load 

to weight ratio. Regrettably, this scheme is centralized hence, not scalable.  
 

Hassani et al. [29] presented a RPL-based [30] solution where hierarchical paths to select are 

evaluated via two linearly combined metrics namely, number of hops and the RSSI (Received 
Signal Strength Indicator). Each node selects a possible parent then computes its own rank from 

that of this neighbour using the combined metrics. The proper parent is chosen after comparing 

the expected transmission count for this neighbour metric to the obtained rank. However, in harsh 
environments, RSSI-based metrics are often a misleading.   

 

Daas et al. [31] designed a distributed multi-hop cluster-based routing protocol where paths are 

selected using both hop count and link state via its SNR (Signal-to-Noise-Ratio). This protocol 
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formally uses the Sink-As-Cluster-Head strategy to help balance the load of both sensor nodes 
and sinks. However, this solution requires fixed size clusters; thus, can hardly be applied to 

randomly deployed networks, e.g. to monitor phenomena in harsh environments. 

 

3. PROPOSED SOLUTION 
 
This section aims at presenting our scheme. We discuss our motivations, objectives and 

assumptions, then detail our solution referred to as MSCP (Multi-Sink Convergecast Protocol). 

 

3.1. Motivations and Objectives 
 

As discussed in previous sections, large scale wireless sensor networks often require using both 

clustering and deployment of several sinks. Surprisingly, few state-of-the-art cluster-based multi-
sink convergecast protocols have been proposed so far. Sink-As-Cluster-Head is a technique often 

used in these solutions to enhance energy waste mitigation particularly in sinks’ neighbourhood 

[32]. In this category, DMS-RP by Daas et al. [31] is one of the recent contributions that consider 
both link sate and asymmetry. However, this protocol ignores sinks load balancing, does not cope 

with network flooding and is only dedicated to deterministically deployed networks.  

 
We believe that to further increase throughput, network lifetime, and its pervasiveness, a 

convergecast protocol, besides scalability, must consider interferences and link asymmetry, 

schedule duty cycles of both sensor nodes and sinks, be loop-free, while minimizing message 

overhead. This work is aimed to address these issues.   
 

3.2. Assumptions 
 

We assume that: 

- nodes are equipped with an omni-directional radio; 

- each node has a unique identifier (ID); 
- nodes are uniformly and randomly deployed in the area of interest; 

-  nodes’ connection is modelled as an UDG (Unit Disk Graph); 

- each node can assess distances through the received signal strength or a specific localization 
protocol; 

- the number of sensor nodes is higher than the number of sinks. 

 

3.3. Description 
 

Let V denote the set of nodes in the deployment zone and 𝐸 the set links between them. Formally, 

𝐸={(𝑢,𝑣)∈𝑉×𝑉| 𝑑(𝑢,𝑣) < (ru + rv) } where 𝑑(𝑢,𝑣) is the Euclidean distance between nodes 𝑢 

and 𝑣 ; while ru and rv respectively denote the communication ranges of 𝑢 and 𝑣. MSCP consists 

of two stages, namely the clustering phase and the convergecast tree construction one. This 

protocol is a distributed asynchronous based scheme that uses message passing communication 
model.  

 

Clustering-based convergecast protocols require a head node to be elected inside each cluster. 
This issue referred to as the   leader election problem is a well-known topic in distributed systems 

design. In addition, clustering is a proved NP-complete problem [33]. 
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3.3.1. Cluster Formation 

 

This is a two-step cyclic phase starting with neighbour discovery and possibly followed by the 

creation of a new cluster. Each node u must to give a unique integer number to each neighbour. 

This number is randomly chosen in interval 1; ( )N u    ; where ( )N u is the set of its neighbours. 

 
We use a scheme similar to the one proposed for the clustering process inside the CONSTRUCT 

protocol [34]. Note that each cluster is identified by its Cluster Head ID (CHID); hence, each 

node knows the cluster it belongs to. Besides, we use a Sink-As-CH strategy, i.e. each sink creates 
a cluster in its k-hop neighbourhood; k is given as a parameter such as k = max_hop_count. 

 

CHs have a limited service time of which duration is fixed as a parameter. Therefore, after its 
mandate a CH must abandon its status and launch a new election process in its k-hop 

neighbourhood. Moreover, when two CHs move next to each other, the one with less cluster 

mates will eventually lose its role and become a new cluster mate; ties are randomly broken (see 

[34] for details). Figure 1 depicts the different statuses applicable to each node in a section of the 
network after the cluster formation phase. 
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Figure 1. Statuses of nodes used by MSCP’s clustering scheme 

 

3.3.2. Intra-cluster convergecast sub-tree construction 

 

After the creation of a new cluster, the CH has to construct the intra-cluster data forwarding sub-

tree and interconnect it to the inter-cluster infrastructure. To do so, CH u broadcasts in its k-hop 
neighbourhood a TREE-REQ message containing its ID then triggers a timer (TREE-timer) and 

waits for any response during _ _ ( )waitmax hop count t u seconds. This duration is calculated 

using Equation (1); where rtt(.) denotes the round-trip-time (in seconds) experienced with node v 
during neighbour discovery. N(u) is node u’s neighbourhood. 
 

                                             ( ) max rtt( ); ( )waitt u v v N u                                                                (1) 

 

When receiving a TREE-REQ message from a neighbour u , a node v  must increment the value 

of the hop-count field to 1 then estimates the transmission delay ,u v  using Equation (2); where 

,u vC , ,u vL and uS  respectively denote the capacity (i.e. maximum transmission rate) of link ( , )u v , 
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the received packet length on this link and the queuing delay (sojourn time) of this message 

inside neighbour u .  

 

Note that uS  is provided by the latter neighbour via a dedicated field in the message. 
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u v u
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C
                                                                                                                     (2) 

 

                      
, , 2 ,log (1 )u v u v u vC W SINR                                                                                             (3) 

 

As for, ,u vC  it is estimated using Equation (3); where 
,u vW  and ,u vSINR respectively denote the 

bandwidth of link ( , )u v  and the Signal Interference plus Noise Ratio experienced on this link.  

 

Dest Next Delay

 
                                   

Figure 2. Structure of convergecast table 

 

Node v  then increments the total-delay field with the estimated delay ,u v . Node v  must also 

insert its ID into the first-forwarder field if the latter node is a neighbour of the TREE-REQ 

message’s sender.   
 

A node must respond to a TREE-REQ message by broadcasting a TREE-ACK message if this 

node is a neighbouring gateway (i.e. is affiliated to another CH but has at least one neighbour 

inside the sender’s cluster), is a leaf-mate (i.e. a cluster member with only one neighbour) or is a 
CH-ring-neighbour (i.e. has exactly two neighbours of which one is the latter CH) see Figure 1. 

TREE-ACK message contains its ID, its CH’s ID, the value of the first-forwarded field provided 

by the received TREE-REQ message, a list of IDs of its neighbouring sinks, the delay to each of 
these sinks, and the estimated total delay of the TREE-REQ message.  

 

Note that TREE-REQ messages are forwarded by a node if the sender is a cluster mate (CHID 

=ID), this message is received for the first time, and its hop_count field’s value is below 
max_hop_count +1. Moreover, to mitigate the protocol overhead, TREE-REQ messages are 

never sent back to a forwarder. 

 
When forwarding a TREE-REQ message to its neighbours, a node sends the list of pairs (unique 

number, neighbour’s ID). The recipient neighbour then concatenates the given unique number to 

content of the message’s cast_vector field. 
 

TREE-ACK messages are forwarded following the same rules applied to TREE-REQ except that 

the CH’s ID is not compared to the forwarder ID.  

 

After receiving a TREE-ACK message sent by a neighbouring cluster gateway, the CH node u  

must update its convergecast table (as shown in Figure 2) by calculating the delay to each 

destination (i.e. sink) via Equation (4); where ,u x , ,u s and ,s x  respectively denote delays from 

CH u to sink x , from u to the sender s and from the sender s  to sink x .The first forwarder  
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provided by the TREE-REQ message is the next-hop. For the same destination only the lowest 
delay so far experienced is kept in this table. 

 

                                                         , , ,u x u s s x                                                                                  (4) 

 
TREE-ACK messages sent by other eligible nodes help CH to determine total delay from the 

senders. 

 
After TREE-timer expiration, the CH must reply to each received TREE-ACK message, via the 

first forwarder node, by sending a CAST message where the field type is respectively set to 1 if 

the receiver (i.e. sender of the TREE-ACK message) is a neighbouring cluster gateway and 0 

otherwise.  
 

Each CAST message also contains the list of sinks discovered by the CH and the delays to them. 

Before, sending this message, CH copies into the cast_vector field, content of the corresponding 
field of the received TREE-ACK. 

 

When receiving a CAST message with type field equals to 1, a node u  must update its 

convergecast table by calculating its transmission delay ,u x to each sink x as expressed by 

Equation (5); where ,u x , ,s x and ,s u  respectively denote delays from node u to sink x , from the 

sender s  to sink x and from the sender s  to node u . 

 
The latter analyzes content of the cast_vector field, extracts the unique number of which position 

equals value of the hop_count field. The neighbour that was assigned the latter unique number is 

chosen as the next hop.  

 

                                                          , , ,u x s x s u                                                                                 (5) 

 

However, when a leaf-member or a CH-ring-neighbour (see Figure 1 for illustration) receives a 
CAST message, it must respond by sending a CAST-ACK. Except that a CH-ring-neighbour 

must send a CAST-ACK only after receiving a CAST message forwarded by its non-CH 

neighbour. 
 

Note that CAST and CAST-ACK messages are forwarded following the same rules used for 

TREE-REQ and TREE-ACK ones. 
 

Each CAST-ACK message contains the list of sinks and delays to reach them with its cast_vector 

field embedding the forwarders’ unique number. All these information were extracted from the 

CAST message previously sent by the CH.  
  

After receiving a CAST-ACK message a node u  must use Equation (4) to update its 

convergecast table by calculating the delay ,u x to reach each sink x via the CH s ; then extracts 

from the cast_vector field, the unique number of which position equals value of the hop_count 

field; so as to choose as next hop, the neighbour that was assigned the latter unique number. 
 

3.3.3. Inter-cluster convergecast sub-tree construction 

 
Note that only sinks are allowed to periodically (i.e. at a beginning of a new duty-cycle) 

broadcast a HELLO message to clusters located at most max_cluster_hop_count hops.  
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After sending such a HELLO message a sink u must trigger a timer (HELLO-timer) and wait for 

any response from next-hop gateways during _ _ _ ( )waitmax cluster hop count t u seconds (see 

Equation (1)). HELLO messages are forwarded like TREE-ACK messages.  

 
Once a node receives a new HELLO message, if the forwarder’s CHID is different from its own 

CHID, the latter node must increment the cluster_hop_count field value to 1 and forward this 

message only if the value of this field is lower than max_cluster_hop_count. This node must also 

insert its ID into the first-forwarder field if it is a neighbour of the message’s sender (i.e. the 
sink). Only a range gateway (i.e. last cluster hop gateway), a leaf-mate (i.e. member with only 

one neighbour), sink–ring-neighbour (i.e. a node that has exactly two neighbours of which one is 

the sender sink), must respond by broadcasting a HELLO-ACK. (See Figure 1 for illustration). 
Note that a HELLO-ACK message is forwarded only by nodes that have previously received a 

HELLO message from the same sink. 

 

After receiving a new HELLO-ACK from a neighbour u , a node v  estimates the transmission 

delay ,u v  using Equation (2); then increments the total-delay field with the latter estimated 

delay ,u v and finally forwards the message. 

 

After HELLO-timer expiration, the sink must reply to each received HELLO-ACK message, via 

the first forwarder node, by sending a CAST message where the field type is set to 0. This 
message also contains the total delay value extracted from the HELLO-ACK. Such CAST 

messages are forwarded using the same rules applied to the HELLO ones.  

 
When a node receives a CAST message, it must reply by sending a CAST-ACK.  Except that 

sink-ring-neighbours must send a CAST-ACK message only after receiving a CAST message 

forwarded by its non-sink neighbour. CAST-ACK messages must also embed the total delay 
value extracted from the CAST ones. Besides, the cast_vector field of each CAST-ACK message 

contains the values provided by its corresponding CAST message. 

 

Therefore, when receiving a CAST-ACK message sent by node s , a node u  can update its 

convergecast table by calculating its transmission delay ,u x to the sink x using Equation (5) where 

,u x , ,s x and ,s u  respectively denote delays from node u to sink x , from the sender s  to 

sink x and from the sender s  to node u . Then the latter must analyzes content of the cast_vector 

field,  in order to extract the unique number of which position equals value of the hop_count 
field. The neighbour that was assigned the latter unique number is chosen as the next hop.  

 

To help balance the load, every sink must shift to sleep mode after waket seconds, i.e. if its energy 

consumption ratio   reaches a threshold  defined as a parameter.   is calculated using 

Equation (6) where iE  and fE  respectively denote sink’s energy at the beginning and at the end 

of its current duty-cycle. Before being inactive, sinks must alert their cluster mates by 
broadcasting a SLEEP message. The latter will be forwarded like HELLO messages. 

 

                                   
i f

i

E E

E



                                                                           (6) 

 

This idle state will last sleept seconds. The latter duration is determined using Equation (7) where 

  denotes the number of times a sink has been active; β > 0 is the Weibull distribution shape 

parameter; R  is uniformly and randomly chosen in the interval  0;1 . 
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1
1 1

ln( )sleept
R




                                                  (7) 

 

It is also noteworthy to mention that a CH must also trigger a timer (BUILD-timer) to help 

reconstruct the intra-cluster part of the convergecast tree after buildt seconds. This duration is 

determined using Equation (8); where it  denotes the mean time between wake-ups of the ith 

neighbouring sink while  is given as a parameter.  

 

                                                             1min( , ,..., )
, 2i i n

build

t t t
t 


                                             (8) 

 

Note that 
it  is calculated then included in HELLO messages sent by sink i.  Sink’s range 

gateways also spread this information along with the list of active sinks when sending TREE-
ACK messages. 

 

3.3.4. Data sending process 

 

After the convergecast tree is constructed, each cluster mate can send its sensed data to the 

nearest available sink. To do so, the CH or the sink may send a dedicated schedule via CAST 

messages.  
 

Note that, to mitigate energy waste, data often needs to be aggregated before being sent out of the 

cluster. In such a case, CH could information about this aggregation tree along with the possible 
scheduling scheme. The design of such a process is beyond the scope of this work. Nevertheless, 

any of the solutions that exist in the literature could be used.  

 
Figure 2 depicts algorithm used by MSCP. 
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Figure 2. Flowchart of MSCP 
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4. EXPERIMENTAL SET-UP 
 
In this section, we detail the extensive simulation campaign we carried out. Experiments were 

conducted using OMNeT++ 6.0 simulator [35]. We used the energy consumption model 

proposed by Heinzelman et al. [16]; the other parameters are summarized in Tables 1 - 4. The 

results were compared to those we obtained with DMS-RP (Dynamic Multi-Sink Routing 
Protocol) Multi-parent version + SNR (Signal Noise Ratio) proposed by Daas et al. [31].  

 

Table 3 presents parameters we used to randomly and uniformly vary link quality; namely, PRR 
(Packet Reception Ratio), SNR (Signal to Noise Ratio), SINR (Signal Interference plus Noise 

Ratio) and LQI (Link Quality Indicator) [36]. Tables 2 and 4 are inspired by the specifications of the 

IEEE 802.15.4 standard [37]. 

 

We evaluated the ability of MSCP and DMS-RP to efficiently transfer data the sinks through 
three metrics, namely, the average end-to-end delay, the packet delivery ratio, and the network 

lifetime [31]. To this end, we randomly and uniformly deployed sensors and sinks varying their 

population as described in Table 1, respectively using, a 100 and a 2 steps scale so that the sink-
to-sensor ratio is 0.02. We specifically investigated how the latter populations influenced these 

metrics. To vary link quality, we used the uniform distribution to randomly change parameters 

described in Table 3. Each 2.5s, 30% to 50% of nodes were randomly chosen to send data. 

 
This experiment was replicated 50 times for each variation of the number of nodes. Results were 

averaged with a 95% confidence interval. The experiment started after all the nodes were 

deployed and was ended according to the network lifetime definition i.e., when a sensor or a sink 
depleted is energy.  

 
Table 1. Simulation general parameters 

 

Parameter Value 

deployment zone 

number of sensors 

number of sinks 

sensors’ transmission ranges 

sinks’ transmission ranges 
max_hop_count 

max_cluster_hop_count 

sensors’ initial energy 

sinks’ initial energy 

self-discharge per second 

Eelec 

efs 

eamp 

d0 

length  of data 

β  Weibull distribution shape 

Wu,v  bandwith of a link (u,v) 

  Threshold of energy consumption ratio            

1000 m  X  1000 m 

100 - 1000  

2 - 20  

127 m 
250 m 
2 

2 

0.2  J 

20 J 

0.1 J 

50 nJ/bit 

10 nJ/bit/m2 

0.0013 nJ/bit/m4 

87 m 

2000 bits 

3 

2.4 GHz 

0.01 
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Table 2. Transition state delay 

 

                  Rx (s)        Tx  (s)       Sleep (s)        Idle 
Rx                   -               1               194                  - 

Tx                   1               -               194                  - 

Sleep              5              5                  -                    - 

Idle                 -               -                  -                    - 

 
Table 3. Link quality parameters 

 
                     PRR         SNR (dBm)       SINR(dBm)         LQI                                                             
Excellent        1              ]40; 60]          ]30; 40]              ]106; 255]                  
Good           ]0.75; 1[     ]25; 40]           ]15; 30]             ]102; 106]                   

Medium      ]0.35; 0.75]  ]15; 25]          ]5; 15]               ]80; 102] 

Poor             [0; 0.35]       [0; 15]            [0; 5]                 [0; 80] 

 
Table 4. Transition state energy consumption 

 
                   Rx (mW)    Tx  (mW)     Sleep (mW)      Idle 

 Rx                    -                62             62                  - 

     Tx                   62               -               62                  -      
Sleep             1.4              1.4              -                  1.4 

    Idle                 -               -                  1.4                 - 

 

5. RESULTS AND DISCUSSIONS 
 
This section is aimed to analyse and explain results we have obtained from experiments we have 

described in the previous sections. 

 

5.1. Average end-to-end delay 
 

Figure 3 depicts the effect of number of nodes on packets delivery delay. Indeed, delays increase 
according to network size regardless of the evaluated protocol, for networks with less than 500 

sensors then decrease.  

 

 
 

Figure 3. Number of sensors vs.  End-to-end delay 
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Figure 4. Number of sensors vs.  PDR 

 

However, one can notice that MSCP provides the best results. This is due to the delay-based 

route selection process of MSCP. Indeed, sensors always choose the nearest sink considering 
lowest transmission and queuing delays. Unlike, DMS-RP, to make decisions MSCP leverages 

the interference (via the SINR metric) and the level of congestion of the intermediary nodes, 

especially in dense networks (number of sensors > 500) with high levels of interference.  
 

5.2. Packet Delivery Ratio 
 
Figure 4 suggests that both protocols yield ratios higher than 90%. However, the values obtained 

by MSCP are around 98% despite the number of sensors. This is also due to its path update 

policy and to its SINR + congestion level-based link quality estimation scheme. Indeed, during 
the route selection phase, MSCP strives to keep only the links with the lowest transmission and 

queuing delays in both intra and inter-cluster topologies. This results in the minimization of 

packets losses. 

 

5.3. Network lifetime 
 
Figures 5 show that irrespective of the protocol used, network lifetime increases with its size; 

since high node degrees help to provide more alternative routes. However, MSCP yields the best 

results. This is mainly due to packet losses hence the retransmissions reduction scheme used 
during link selection phase (as discussed above); then to CHs’ re-elections and sinks’ duty-cycle 

scheduling. Furthermore, unlike DMS-RP, MSCP significantly mitigates message overhead 

hence energy waste, by reducing the range of its signaling messages and their number thanks to 

the forwarding rules applied. Additionally, the path-vectors piggybacking scheme used for 
CAST-ACK and TREE-REQ messages, helps avoid energy-consuming broadcasts. 
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a) 

 

 
 

b) 
 

Figure 5. Number of sensors vs.  Network lifetime: 

a) Until a node dies b) Until a sink dies 

 
Using MSCP, only TREE-REQ and HELLO messages are respectively used to update the intra-

cluster and inter-cluster routes. DMS-RP instead, uses messages that can unnecessary flood the 

network and are unable to prevent loops. 
 

6. CONCLUSIONS 
 

In this paper we presented MSCP, a convergecast protocol for large-scale multi-sink WSNs. We 

combined clustering technique to path vector-based routing and both sensor and sink scheduling 
schemes. The Sink-As-CH scheme is applied to save sinks’ neighbours from being involved 

clustering elections. The resulting fully-distributed and proactive strategy helped balance the load 

between sinks, and mitigate message complexity. Unlike many state-of-the-art contributions, 
during route selection phase, transmission and queuing delays are estimated, considering 

interferences through a SINR (Signal-to-Interference-plus-Noise-Ratio)-based metric and nodes’ 

level of congestion. Simulations show that MSCP provides high packet delivery ratios, lowest 
latencies and enhances network lifetime. 

 

As a future work, we will formally focus on the impact of mobility of both sensors and sinks on 

the performance of MSCP.  We also plan to provide this solution with security, data aggregation 
tree construction and traffic scheduling schemes.  
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