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ABSTRACT 
 
In this paper, we investigate the use of deep learning approaches for plant classification 

(cauliflower and weeds) in smart agriculture applications. To perform this, five approaches 
were considered, two based on well-known deep learning architectures (AlexNet and 

GoogleNet), and three based on Support Vector Machine (SVM) classifiers with different 

feature sets (Bag of Words in L*a*b colour space, Bag of Words in HSV colour space, Bag of 

Words of Speeded-up Robust Features (SURF)). Two types of datasets were used in this study: 

one without Data Augmentation and the second one with Data Augmentation. Each algorithm's 

performance was tested with one data set similar to the training data, and a second data set 

acquired under challenging conditions such as various weather conditions, heavy weeds, and 

several weed species that have a similarity of colour and shape to the crops. Results show that 

the best overall performance was achieved by Deep learning models.  
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1. INTRODUCTION 
 

While machine vision technology has made great inroads in smart agriculture, according to [1], 
[2],[3],[4] it is still not fully capable of handling certain real-world issues such as weather 

variability, the presence of shadows in sunny conditions, natural similarities between the target 

object (weed or crop) and the background, and unexpected changes in camera parameters.  

 
Recent research has attempted to increase performance by applying deep learning technology, 

with promising results [5],[3]. In [6] McCool et al. applied deep convolutional neural networks 

(pre-trained model) to perform crop and weed segmentation and reported an accuracy of nearly 
94%. In [7] Milioto et al. applied the NDVI color index for vegetation detection and then used a 

Convolutional Neural Network (CNN) classifier to classify the detected plants into crops and 

weeds. The algorithm was tested on early and late (two weeks later) growth stages and achieved 
99.42 and 99.66% precision on weeds, respectively. In [8] Yalcin et al. used a pre-trained CNN to 

classify sixteen kinds of plant species. Their approach was tested on acquired images under 

natural outdoor illumination and compared with an SVM model with different features such as 

Local Binary Pattern (LAP) and Generalized Search Tree (GIST), and with different kernels such 
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as Radial Basis function (RBF) and polynomial. The CNN achieved good performance 
(classification accuracy of 97.47%) compared to the SVM model (RBF kernel with LBP and 

GIST features: 74.92 and 83.88%, respectively; polynomial kernel with LBP and GIST features: 

69.81 and 82.29%, respectively). Other researchers have implemented CNNs for plant disease 

detection and achieved excellent results. In [9] Sladojevic et al. conducted experiments to detect 
plant diseases based on leaf image classification using deep neural networks. Their model 

showed precision between 91% and 98%, for separate class tests, while the overall accuracy of 

the trained model was 96.3%. In [8] Mohanty et al. investigated the feasibility of using a deep 
convolutional neural network for the detection of plant disease. They used a public dataset of 

54,306 images of diseased and healthy plant leaves collected under controlled conditions with 14 

crop species and 26 diseases. The trained model showed an accuracy of 99.35%. They also used 
the well-known AlexNet and GoogleNet architectures on different image types (RGB color, Gray 

scale, leaf segmented), with different training approaches (transfer learning and training from 

scratch), and different choices of training-testing set distribution (train: 80%, test: 20%; train: 

60%, test: 40%; train: 50%, test: 50%). Overall, Googlenet with RGB color images, transfer 
learning, and 80% of the dataset for training and 20% for testing achieved an accuracy of 99.3% 

while Alexnet with the same conditions achieved an accuracy of 99.2%.  

 
For plant classification, in [10] Pawara et al. investigated the use of AlexNet and GoogleNet 

trained from scratch or using pre-trained weights. They used different datasets in their 

experiments, including original datasets and data-augmented image datasets for three plant 
classification problems: Folio [11], AgrilPlant [12], and the Swedish leaf dataset [13]. They also 

used six different Data-Augmentation (DA) techniques such as Rotation, Blur, Scaling, Contrast, 

Illumination, and Projective to investigate the classification performance on both pretrained and 

fully trained CNNs. The results show that data augmentation methods are important to obtain 
higher accuracies for CNN models trained from scratch. For AlexNet and GoogleNet 

architectures, the combined effects of rotation and illumination, or rotation and contrast are very 

beneficial, whereas the blur operation does not help to obtain higher accuracies. For AlexNet 
architecture refined by transfer learning, the scaling DA technique was somewhat helpful, 

whereas the transfer learning GoogleNet benefits from DA with illumination, but most other DA 

techniques are not helpful to obtain higher accuracies with the pre-trained CNN architectures.  

 
In most previous work, the dataset used generally contains a single class such as fruit (apple, 

banana, grape, jack fruit, orange, papaya, persimmon, pineapple, sunflower, and tulip) or a single 

plant leaf. In this work, more challenging problems with more than one class, and with images 
under different illuminations, are investigated. In addition, two well know deep neural networks 

(AlexNet [14] and GoogleNet [15]) are compared with an SVM model with Bag of Words feature 

sets based on different approaches: L*a*b colour space, HSV color space, and Speeded-up 
Robust Features (SURF) were applied and investigated their impact on the classification results 

as well as compared with AlexNet and GoogleNet. 

 

The rest of the paper is organized as follows: Section 2 gives details on the SVM model with the 
different features and the used deep neural networks. Section 3 describes the testing framework 

and performance metrics. The results and discussion are given in Section 4. Finally, Section 5 

gives the conclusion of this work. 
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2. MACHINE LEARNING ALGORITHMS AND FEATURES  

 

2.1. SVM model 
 

Support Vector Machines (SVMs) [16], and [17] are supervised learning models with associated 
learning algorithms that analyze data and recognize patterns. They are used for classification and 

regression analysis. SVM can perform both linear classification and non-linear classification. 

SVMs are used with features extracted from the input data; in this work, the Bag of Words 
(BoWs) approach is used with different base features. 

 

2.2. Bag of Words (BoWs) 
 

The BoWs [18]features of images can be obtained by using the K-Means clustering algorithm on 

features extracted from those images. The features may be shape or structure features, or colour 

features. The algorithm iteratively groups the descriptors into k mutually exclusive clusters. The 
resulting clusters are compact and separated by similar characteristics. Each cluster center 

represents a feature or visual word. Three separate features are considered here to create 

individual BoWs representations: one based on feature descriptors (SURF [19]) and two colour 
features (L*a*b and HSV colour spaces). To create Bag of Words features from the colour 

information, the following steps are used. 

 
1.  Convert RGB images to the L*a*b* or HSV colour space.  

2.  Compute the “average” L*a*b* or HSV colour within 16-by-16-pixel blocks. The average 

value is used as the colour portion of the image feature. 

3. Reshape L*a*b* or HSV average values (features) into a Kx3 matrix, where K is the number 
of features. 

4. Normalize each channel to the root mean squared value of the channel. 

5. Augment the colour feature by appending the [x y] location within the image from which the 
colour feature was extracted. This technique is known as spatial augmentation. Spatial 

augmentation incorporates the spatial layout of the features within an image as part of the 

extracted feature vectors. Therefore, for two images to have similar colour features, both the 
colour and the spatial distribution must be similar.  

6. Normalize pixel coordinates to handle different image sizes. 

7. Concatenate the spatial locations and colour features.  

8. Add the variance of each channel as an additional feature. 
 

2.3. Deep learning approaches 
 

In this work, two common deep-learning approaches were used for plant classification: Alex Net 

[14], GoogleNet [15]. These were applied individually on raw images (RGB colour images), and 

the ones that had preprocessing. 
 

2.3.1. AlexNet 

 
AlexNet [14] is a neural network model with 60 million parameters in 8 layers and is available 

pre-trained on the Image net database which contains more than a million images in 1000 

categories. Specifically, it consists of five convolutional layers followed by three fully connected 

layers as illustrated in Figure 1.  



18         Computer Science & Information Technology (CS & IT) 

 
Figure 1. An illustration of the architecture of AlexNet [14]. 

 
The main purpose of the convolutional layer is to extract features from the input images while the 

fully connected layers are used to classify the extracted features to the desired class. 

 

2.3.2. GoogleNet 

 

GoogleNet [15] has 22 layers, with fewer parameters than AlexNet (about 7 million) [20]. 

GoogleNet has a different architecture to AlexNet, and uses combinations of inception modules, 
each including some pooling, convolutions at different scales and concatenation operations. It 

also uses 1x1 feature convolutions that work like feature selectors. The advantage of using 1x1 

convolutions is to reduce the number of parameters. These components are shown in Figure 2. 
 

 
 

Figure 2. The inception module of GoogleNet [15] with dimension reduction. 

 

3. TESTING FRAMEWORK AND PERFORMANCE METRICS 
 

3.1. Image acquisition 
 
A digital camera (GoPro Hero 4 Silver with maximum video resolution of 3840 2160 pixels, 

Effective Photo Resolution of 12.0 MP, and memory card max supported size of 64 GB) was 

used to acquire cauliflower images under a variety of illuminations: cloudy, partially cloudy, and 

sunny days for different stages of growth (from June until the end of September 2015). 
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Additionally, various circumstances such as partial occlusion between crop and weeds light 
changes, motion caused by the wind, different types of shadows, and various backgrounds (soil, 

nylon, stones, and other residues) were included. The images were captured in the west of 

Ireland. A top-view camera position was adopted to capture the images with a resolution of 2704 

x1520 pixels. A standard desktop computer with an Intel i7-4790 CPU running 64-bit Windows 7 
and 32 GB of RAM with Matlab installed was used for developing and executing each given 

algorithm. 

 
In this paper, there are two types of training data: One is the original dataset (raw images) and the 

second data is Data augmentation (preprocessing images). 

 

3.2. Training set 
 

The datasets used in this work consisted of images converted to size 227x227 for training and 
testing purposes; the size conversion is necessary to match the expected input size of the neural 

networks employed for classification. A set of 800 cauliflowers images and a set of 1000 weed 

images were used. 80% of the dataset (randomly chosen) was used for training [21](referred to as 
the training set), and the remaining (20%) for testing (referred to as the test set). The 

characteristics of the training and testing sets were broadly similar. Figure 3 shows examples of 

the training set. 

 

 
 

Figure 3. Sample images from training set. Figure (a) represent the positive set (cauliflowers),while figure 

(b) represents the negative set (weeds). 

 

3.3. Data Augmentation (DA) 
 

Since there is a relativity small original dataset and to perform better classification accuracy, this 
dataset needs to increase. That can be achieved by augmenting the original images via several 

random transformations (pre-processing) to generate new training samples (more data) without 

changing the class labels. This process is called Data augmentation. In this project, seven image 
transformations are done on the original dataset. These operations are: 

 

1. The rotation range is a value in degrees (0-180), a range within which to randomly rotate 
pictures. The used value is 40. 

2. Width-shift and height-shift are ranges (as a fraction of total width or height) within which 

to randomly translate pictures vertically or horizontally. The value of 0.2 is used for both 

shifts. 
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3. Rescale is a value which is used to multiply the data before any other processing. The used 
value is 1/255. 

4. Shear-range is for randomly applying shearing transformations. The used value is 0.2 

5. The zoom range is for randomly zooming inside pictures. The used value is 0.2. 

6. Horizontal flip is for randomly flipping half of the images horizontally. 
7. Fill mode is the strategy used for filling in newly created pixels, which can appear after a 

rotation or a width/height shift. 

 
Thus, the total generated data is 12600 images (5600 images for cauliflower and 7000 for weeds). 

80% of the DA (randomly chosen) was used for training and the remaining (20%) for testing. 

 

3.4. Challenge set 
 

In addition to the test set described above, a further 200 images (100 images for cauliflowers and 
another 100 images for weeds) were selected for evaluating the algorithms. These images were 

selected carefully with more challenging conditions than used in the original training and test 

sets, and include cauliflowers surrounded by heavy weeds, leaves of cauliflowers turned over or 
otherwise distorted, shadows, sunshine, weeds with similar colour and shape to cauliflowers, and 

blurred images etc. This data set is referred to as the challenge set. Figure 4 shows examples from 

this set. 

 

 
 

Figure 4. Sample images of the Evaluation set. Figure (a) represents the positive set (cauliflowers), while 

figure (b) represents the negative set (weeds). 

 

3.5. Performance evaluation 
 
To evaluate the crop vs. weed accuracy of the given algorithms, the primary metric used is 

classification accuracy, defined as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                                                                     (1)   

 

where 𝑇𝑃  is True Positive, 𝑇𝑁 is True Negative, 𝐹𝑃 is False Positive, and 𝐹𝑁 is False Negative. 
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For precision agriculture, it is important to keep the number of False Negatives small, which 
means keeping the number of crops classified as weeds (and thereby removed) as small as 

possible. 

  

4. RESULTS AND DISCUSSION 
 

4.1. Parameter Selection 
 
For GoogleNet (144 layers) and AlexNet (25 layers), pre-trained networks were used, with 

transfer learning using the training set to retrain the output layers. To retrain GoogleNet to 

classify new images, the last three layers of the original network was retrained to produce three 

new layers (a fully connected layer, a softmax layer, and a classification output layer). A similar 
approach was taken to apply transfer learning with AlexNet. The AlexNet training parameters 

were as follows: Number of iterations: 1400, train batch size: 10, base learning: 0.00001, Epoch: 

10. The GoogleNet training parameters were as follows: Number of iterations: 890, train batch 
size: 10, base learning: 0.00001, Epoch: 10. In adaptation, a new layer was added to the layer 

graph in GoogleNet: a dropout layer with a probability of 60% dropout. The advantage of this 

layer is that it can prevent Neural Networks from overfitting and improve the quality of features 

[9], [1]. 
 

For all of the SVM+BoWs feature combinations, the parameters were set to the same values. The 

features from the training images were processed by K-Means clustering to create a 500-word 
visual vocabulary. Once the features are extracted, the SVM classifier is applied. SVM 

parameters were empirically optimized to obtain the best performance, with the following 

parameters used: the SVM kernel was chosen as ’RBF’, the cost parameter (c) is set to 1.8, and 
Gamma (the kernel width) is set to 0.09. 

 

4.2. Results From the Test Set 
 

Table 1 illustrates the accuracy of each algorithm for the test set on the test dataset. Two versions 

of the test set were used for evaluation: the original test set, and a version of the test set to which 
data augmentation techniques were applied. Data augmentation  [22], [23], [24] is commonly 

used in deep learning applications and involves increasing the size and variability of a dataset 

through transformations of the original data. These transformations typically include e.g. 

blurring, rotation and translation operations. These transformations generated 12600 images 
(5600 images for cauliflower and 7000 for weeds). The columns marked “Cauliflower” and 

“Weed” give the detection rate on those subsets of the test set, while “Overall” accuracy is the 

overall performance on the database. 
 

Table 1. Average test accuracy on test set. 

 

 

Model 

Without Data Augmentation With Data Augmentation 

Cauliflower Weed Test 
accuracy 

Cauliflower Weed Test 
accuracy 

AlexNet 100% 99.44% 99.72% 100% 99.58% 99.79% 

GoogleNet 97.62% 100% 98.81% 100% 99.66% 99.83% 

SVM+BoWs(HSV) 96.00% 99.00% 97.50% 99.00% 99.00% 99.00% 

SVM+BoWs (L*a*b) 97.00% 99.00% 98.00% 99.00% 100% 99.50% 

SVM+BoWs (SURF) 97.00% 86.00% 91.50% 94.00% 92.00% 93.00% 
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From Table 1, it can be seen that the deep learning approaches gave the highest average test 

accuracy for dataset without Data Augmentation (99.72% and 98.81% for AlexNet and 

GoogleNet, respectively) and for dataset with Data Augmentation (99.79% and 99.83% for 

AlexNet and GoogleNet, respectively), whereas the SVM+BoWs of SURF features has the 
lowest performance at 91.50% and 93.00% for dataset without Data Augmentation and dataset 

with Data Augmentation, respectively. The SVM+BoWs of HSV and L*a*b colour features show 

good performance (97.5 and 98.0%, respectively) for dataset without Data Augmentation, and 
(99 and 99.5%, respectively) for dataset without Data Augmentation. 

 

In total, all models achieved higher classification accuracy when they applied on the test set of 
the dataset with Data Augmentation than the one without Data Augmentation. The next sub-

section discusses performance on the more difficult challenge set. From Table 1, it can be seen 

that the deep learning approaches gave the highest average test accuracy (99.72% and 98.81% for 

AlexNet and GoogleNet, respectively), whereas the SVM+BoWs of SURF features has the 
lowest performance at 91.50%. The SVM+BoWs of HSV and L*a*b colour features show good 

performance (98.0%). In total, all models achieved high classification accuracy on the test set. 

The next sub-section discusses performance on the more difficult challenge set. 
 

4.3. Results From the Challenge Set 
 
Table 2 summarises the performance of each algorithm and the overall test accuracy on the 

Challenge Set by using the output of the training phase for both variants of the challenge dataset 

(without and with Data Augmentation) for all models tested.  
 

Table 2. Overall results on the challenge set. 

                                                            

Model 

Without Data Augmentation With Data Augmentation 

Cauliflower Weed Test 

accuracy 

Caulifl

ower 

Weed Test 

accuracy 

AlexNet 95.00% 100% 97.50% 100% 98.80% 99.40% 

GoogleNet 96.00% 99% 97.50% 100% 97.62% 98.81% 

SVM+BoWs(HSV) 94.00% 93.00% 93.50% 97.00% 94.00% 95.50% 

SVM+BoWs (L*a*b) 89.00% 98.00% 93.50% 95.00% 98.00% 96.50% 

SVM+BoWs (SURF) 82.00% 95.00% 88.50% 88.00% 95.00% 91.50% 

 

According to the results in Table 2, all of the models without Data Augmentation have higher 

accuracy on the weed images than cauliflower images, except for the SVM+BoWs based on the 
HSV colour space. For images correctly classified as cauliflowers, GoogleNet demonstrated the 

highest classification accuracy without Data Augmentation and GoogleNet and AlexNet 

demonstrated the highest classification accuracy with Data Augmentation, whereas the 
SVM+BoWs of SURF gave the lowest classification accuracy in both types of dataset. AlexNet 

demonstrated the second highest classification accuracy for the dataset without Data 

Augmentation. The SVM+BoWs of HSV colour space achieved the third highest classification 

accuracy for the dataset without Data Augmentation, whereas the SVM+BoWs of L*a*b colour 
achieved the third highest classification accuracy when the dataset with Data Augmentation was 

used. The SVM+BoWs of L*a*b and HSV colour gave similar classification accuracy when they 

used the dataset without Data Augmentation and with Data Augmentation. 
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In terms of overall test accuracy (the last column in Table 2), AlexNet demonstrated the highest 
overall accuracy results (99.40%) and GoogleNet demonstrated the second-highest overall 

accuracy results (98.81%) with Data Augmentation, whereas AlexNet and GoogleNet 

demonstrated the highest overall accuracy results (97.5%) without Data Augmentation. The 

SVM+BoWs of SURF features gave the lowest performance at 88.5% and 91.50% for the dataset 
without and with Data Augmentation, respectively. The SVM+BoWs of HSV and L*a*b colour 

features achieved a performance of 93.5% on the dataset without Data Augmentation, whereas 

when the dataset with Data Augmentation was used, the SVM+BoWs of L*a*b demonstrated 
higher classification accuracy (96.5%) than SVM+BoWs of HSV (95.5%). 

 

In conclusion, deep learning approaches outperformed the other systems in terms of accuracy on 
the two types of datasets. Although both used deep learning approaches with different network 

architectures (AlexNet has 25 network layers and a greater number of parameters, while 

GoogleNet has greater network layers and fewer parameters), they demonstrated similar 

classification accuracy on the dataset without Data Augmentation. However, when the dataset 
increased, AlexNet demonstrated higher classification accuracy than GoogleNet. 

 

The SVM classifier has shown results that are competitive with the more sophisticated methods 
like AlexNet, especially with BoW of L*a*b and HSV colour spaces for the two types of 

datasets. Moreover, SVM+BoWs of HSV colour space gave the highest correct classification of 

cauliflower (as can be seen in Table 2) for the two types of datasets. This may be because HSV is 
an intuitive colour space that is aligned with the human colour perception [25] and is somewhat 

robust to the illumination variation [26]. The SVM+ BoWs of SURF features exhibited lower 

accuracy than other features with SVM for the two types of datasets. One reason for this may be 

that SURF is not robust to illumination variation [27]. 
 

In total, all models achieved higher classification accuracy when they were applied to the 

challenge set of the dataset, especially when trained on the dataset with Data Augmentation. 

 

5. CONCLUSIONS 
 

In this paper, a number of approaches were applied to the task of plant classification to 

distinguish between cauliflowers and weeds. Two types of datasets were used in this project, one 
without Data Augmentation and the other with Data Augmentation. In addition, the approaches 

were tested on two different test data sets, one with similar characteristics to the training data, 

and one with more challenging characteristics (the challenge set). The results show that most of 
the systems tested are capable of achieving good performance on the challenge set. In addition, 

with help of Data Augmentation, all systems increased their classification accuracy compared to 

the ones without Data Augmentation. AlexNet, based on deep learning, demonstrated the highest 

plant segmentation accuracy (97.50% and 99.40%) on the dataset without Data Augmentation 
and with Data Augmentation, respectively. The SVM+BoWs of L*a*b and HSV colour space 

also demonstrated good performance, comparable to the more sophisticated CNN-based AlexNet 

and GoogleNet.  
 

In conclusion, deep learning-based approaches are the better choice for plant classification. Thus, 

a high plant classification performance is required for smart agriculture applications, particularly 
precision chemical applications, and with good performance, the volume of herbicides that are 

applied to the fields can be minimised. 

 

Overall, this study demonstrated the utility of a range of approaches for plant and weed 
classification. Future work will include further testing with a larger database with more plant 
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species, in similarly challenging conditions, and comparison with other deep learning 
architectures. 
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