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ABSTRACT 
 

The non-orthogonal multiple access (NOMA) approaches have increasingly attracted much 

interest. It has also been a potential method for wireless communication systems beyond the fifth 

generation (5G). The successive interference cancellation (SIC) procedure in NOMA systems is 

often carried out at the receiver, where several users are sequentially decoded. The successful 

detection of prior users will significantly influence the detection accuracy due to the effects of 

interferences. A deep learning-based NOMA receiver is analyzed to detect signals for multiple 

users in a single application without determining channels. This paper analyzes deep learning 
(DL)- based receiver for NOMA signal detection concerning several DL-aided sequence layers-

based algorithms and optimizers by training orthogonal frequency division multiplexing 

(OFDM) symbols. The simulation outcomes illustrate the various DL-based receiver 

characteristics using the traditional SIC approach. It also demonstrates that the effect of the 

different DL-based models is more predictable than the SIC approach. 
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1. INTRODUCTION 
 

System throughput and information transmission rate requirements are getting more demanding 
as communication technology develops. The NOMA schemes have been considered a viable 

multiple-access approach for future-generation (5G) wireless networks to intensify system 

throughput and spectrum efficiency. NOMA allows several users to simultaneously utilize similar 

frequency resources by multiplexing them in the code or power domain. To effectively use 
bandwidth resources, NOMA will enable users with poor channel circumstances to 

simultaneously distribute subcarriers to users with favorable channel conditions. The core 

premise behind NOMA is to employ SIC at the receiver for detection and superposition coding at 
the transmitter to allow multiple users to transmit data simultaneously. By channel state 

information (CSI), the SIC method decodes data from several users in reducing order of signal 

power [1]-[2]. Due to the potential for pilot symbols applied in channel estimation to interfere 
with signals from other users, obtaining CSI in NOMA is difficult. The feature of OFDM is that it 

makes better use of the spectrum by utilizing the orthogonality between subcarriers. The use of 

DL for OFDM system signal identification and channel estimation is examined in [3]. Deep 

learning models are trained offline to solve channel distortion using simulation data based on 
channel characteristics. Data that has been directly transmitted online is retrieved using this 

method. Channel estimation and signal identification in wireless communications with complex 

distortions and interferences can be performed using deep learning. Additionally, a cyclic prefix 
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(CP) can be applied to reduce multi-path effect-related intersymbol interference (ISI) and 
intercarrier interference (ICI). The OFDM-based-NOMA receiver detection design has been 

continually improved. As a detector based on a channel model, SIC must initially estimate the 

channel. Still, throughout information transmission, the pilot will be disrupted by signals from 

other users, making it impossible to get accurate channel state CSI. Furthermore, SIC will 
introduce a temporal delay while decoding users at a time. There may be a considerable 

performance reduction for conventional channel estimating techniques. Recently, deep learning 

has become quite popular in the wireless communication field. It uses an end-to-end approach to 
address wireless NOMA channels [4]-[5]. Model-driven deep learning is presented in [6], which 

offered additional learnable parameters for optimizing performance. In addition, OFDM-NOMA 

transmission increases system capacity. Based on early research in OFDM systems, the NOMA 

scheme's adaptation for DL-based applications provides numerous possibilities. The NOMA 

system uses a deep neural network (DNN) for signal detection [7]-[8]. A DNN is used to 

represent the NOMA receiver based on deep learning, which employs a completed connection 
layer and simultaneously detects all users. The training data is enormous, which lowers the 

detection efficiency even when the detection impact of DL is good. The performance of the 

receiver has been analyzed by using various deep learning-based sequential layers concerning 
different algorithms, such as the gated recurrent unit (GRU), bidirectional long short-term 

memory (Bi-LSTM), and long short-term memory (LSTM), along with various deep learning-

based optimizers, such as root mean squared propagation (RMSProp), adaptive moment 

estimation (Adam), and stochastic gradient descent with momentum (SGDM). This study 
considers a DL-based NOMA receiver for an OFDM system with accessing data by several users 

to the same subchannel. DNNs are combined with the conventional SIC approach to detect 

multiple users by varying neural network parameters in a single operation. 

 
The paper is structured as follows in the remaining sections. In Section II, the recommended 

system overview is explained. The different DL-based sequence layers with optimizers are 
highlighted in Section III. Section IV presents the simulation outcomes, and the conclusion and 

proposed directions for more study are included in Section V. 

 

2. SYSTEM OVERVIEW 
 

A two-user NOMA model based on an OFDM system is considered, and then the DL-based 

OFDM based-NOMA receiver, along with the different DL-network layers, is demonstrated. 

 

2.1. System Model 
 

NOMA is a multi-access technique for next-generation technology. NOMA technology allows 
users to transmit data across wireless channels while significantly conserving frequency 

resources. The multi-user uplink NOMA scenario in the OFDM system is considered, as depicted 

in Figure 1. 

 

 
 

Figure 1.  Two user uplink NOMA network 
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Here, all users use the same frequency resources simultaneously when they send data in this 
NOMA scenario. In addition to channel interference noise, the base station receives two users' 

superposition of data symbols. Multi-path propagation refers to the process by which signals 

travel along several pathways to reach the receiving end of a transmission that is influenced by 

many external factors. The power distribution is carried out under the assumption that both the 
transmitter and the receiver are aware of the CSI. The idea of power distribution is to give 

numerous users a reasonable signal to interference plus noised ratio (SINR) for cooperative 

decoding at the receiver [9]. 
 

By considering an Nth 
 number of subcarriers OFDM systems with L users per subcarrier, the 

received signal on subcarrier t is illustrated as (1) 
 

V(t) =  Ps(t)

L

s=1

 Hs(t) Us(t) + n(t)           (1)  

 
 
where V(t) is the received signal, Us(t) is the transmitted symbol, and n(t) is the additive white 

Gaussian noise (AWGN).  

 
Ps(t) is the transmitted power and the summation of all power coefficients is unity. 

 

2.2. OFDM based-NOMA receiver with DNN 
 

 
 

Figure 2. Receiver structure diagram based on DNN 

 

The DNN implemented by the DL-based NOMA receiver is used to extract the transmitted 
symbols for both users in a single operation. In this paper, Figure 2 displays the receiver structure 

of the DL-based NOMA receiver for user detection, and Figure 3 shows the different layers of 

DNN. The DNN consists of 9 layers. The layers are an input layer, DL-based sequence layers 
(GRU, LSTM, Bi-LSTM), utility layers (dropout), activation layer (ReLU), softmax layer, and 

classification layer. In deep learning network layers, the DL-based sequence layer is the prime 

layer of the network. A network receives sequence data from the sequence input layer. GRU, 

LSTM, and Bi-LSTM are used as sequence layers to create a sequence input layer and set the 
input size property. The dropout layer is used for reducing overfitting in models. The Rectified 

Linear Unit (ReLU), followed by a softmax function, regulates neuron activity. 

 
The receiver structure of the DNN based on an OFDM packet is also shown in Figure 2, where a 

and b stand for pilot and data symbols, respectively. The transmitted signals from two users are 

superimposed to form the OFDM symbol. Random symbols are produced in each simulation to 
create the OFDM packet with predetermined pilot sequences. A cyclic prefix (CP), which serves 

as the guard interval after the inverse DFT, is introduced between successive time domain OFDM 

signals. The CP must not be less than the channel impulse response to successfully prevent 
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ISI. The OFDM packet is then sent across the available wireless channel. The base station will 
get the OFDM packets sent by the two users together with receiver noise. As a training sample 

for the DL-based network, this received OFDM packet is obtained by generating a feature vector. 

The DNN can be trained to extract data from any subcarrier during training. 

 

 
 

Figure 3. Deep learning network layers 

 

3. DL-BASED SEQUENCE LAYERS WITH OPTIMIZERS 
 

3.1. DL-based sequence layers 
 

Machine learning and deep learning techniques are the most efficient methods for time series 
prediction using statistical data. In terms of accuracy, these algorithms are comparable to 

traditional regression-based methods. The deep learning-based sequence layer outperforms 

conventional prediction techniques. These layer-based models are equipped with more "gates" so 

that they will take into consideration input data from longer sequences. Significant sequence 
layers for time series prediction include the gated-recurrent unit (GRU), long short-term memory 

(LSTM), and bidirectional long short-term memory (Bi-LSTM) [10]-[12]. 
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3.1.1. Gated recurrent unit (GRU) 

 

 
 

Figure 4. GRU sequence layer 

 

Figure 4 demonstrates the GRU sequence layer. DL-based neural networks use the GRU layer as 
their gating mechanism. Since the GRU layer has no output gate, it has fewer features than an 

LSTM, but it is comparable to an LSTM with a forget gate. It consists of reset, update, and 

candidate state. The performance of GRU in many applications is comparable to LSTM. On some 
smaller, less frequently used datasets, GRUs have been proven to perform better. A unique aspect 

of GRU's architecture is that it combines input and forget gates into a single gate called an update 

gate. With certain adjustments, it also incorporates the secret state and cell state. Compared to 

LSTM, GRU has the advantage that it has fewer parameters without compromising accuracy, 
causing the model to converge more quickly. 

 

3.1.2. Long short-term memory (LSTM) sequence layer 

 

The LSTM sequence layer is shown in Figure 5. The primary purpose of employing neural 

networks is to store the information learned from previous data. However, owing to the minimal 
amount of information retained in memory, vanishing gradient problems are challenging. This 

issue is addressed with the introduction of LSTM. 

 

 
 

Figure 5. LSTM sequence layer 

 
The LSTM models give the neural networks more memory to maintain and become aware of 

long-term input relationships. They can detect values, access information for a more extended 

period, and eliminate information from their memories due to this memory extension. The 
"gated" cells in LSTM memory are hence referred to as "gate" to specify whether memory 

material is to be retained or destroyed. The LSTM model accumulates the input characteristics 

and keeps them in memory for a long time. The weight values determined regarding the 

information are included throughout the training phase. The model learns whether data, facts, or 
statistics are vital to maintain or ignore because of predicting time series data. The model also 

comprises the input, forget, and output gates. The forget gate regulates whether existing 
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information should be kept or erased, and the input gate determines the information to be added 
to memory. A final output gate decides whether the cell's current value is incorporated into the 

output. 

 

3.1.3. Bidirectional long short-term memory (Bi-LSTM) sequence layer 

 

Bidirectional LSTMs, one of the LSTM models' extensions, can be used to process input files 

utilizing two LSTM models as shown in Figure 6. The sequence is supplied into the first forward 
layer of the LSTM model, and the second reverse layer of the LSTM model receives the input 

sequence in the opposite direction. After being used twice, the LSTM enhances the model's 

accuracy and the long-run training dependencies. 

 

 
 

Figure 6. Bi-LSTM sequence layer 

 

3.2. DL-based optimizers 
 

The deep learning model comprises an input layer, activation, hidden layers, output layer, loss, 

etc. In DL-based models, different datasets are used to make predictions, and a different 
algorithm is used to normalize the data. The optimization method determines the weights or 

parameters whose values minimize the error in the input-to-output mapping. These optimization 

methods or optimizers significantly impact the effectiveness of the deep learning model. The 
weights for each epoch must be changed throughout the deep learning model's training process to 

reduce the loss function. An optimizer is a process or a technique that modifies the weights and 

learning rates of neural networks. This reduces overall loss and improves accuracy. Choosing the 

proper weights for a deep learning model might be challenging because these models can include 
millions of parameters. It illustrates the necessity of choosing appropriate optimization 

techniques for each operation [13]-[15]. The summary of various optimizers used in simulation 

work is listed below. 
 

3.2.1. Stochastic Gradient Descent with Momentum (SGDM) 

 
Gradient descent is an optimization technique that locates the minimal of an objective function by 

observing the negative gradient of the process. It has the drawback of bouncing around the search 

space on optimization problems with lots of curvature or unpredictable gradients and being stuck 

in flat regions of the search space with no gradient. Momentum is an addition to the gradient 
descent optimization process that enables the search to develop inertia in a direction in the search 

space, get around unpredictable gradient oscillations, and cruise over flat areas of the search 

space. Following the process's negative gradient may also find the minimum of an objective 
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function. Gradient descent with momentum is the expansion of the gradient descent optimization 
technique. This method aims to speed up the optimization process by reducing the number of 

function evaluations to reach an optimal result or to improve the functionality of the optimization 

algorithm to achieve a better outcome. 

 

3.2.2. Root Mean Squared Propagation (RMSProp) 

 

Root Mean Squared Propagation or RMSProp modifies gradient descent. A descending average 
of partial gradients is used in the Adagrad variant of gradient descent to adjust the step size for 

each parameter. Instead of considering the learning rate as a hyperparameter, RMSprop employs 

an adaptive learning rate. This implies that the degree of learning varies throughout time. The 
Adagrad principles are modified to allow the gradient to be accumulated. An exponentially 

weighted average is created from the gradients. RMSProp keeps only the most current gradient 

data and ignores the previous data. It also divides the learning rate by the average of the squared 

gradients, which decays exponentially. 
 

3.2.3. Adaptive Moment Estimation (Adam) 

 
An approach to gradient descent optimization is referred to as adaptive moment estimation. The 

method is incredibly effective when solving challenging problems requiring a lot of factors and 

data. It is practical and needs minimal memory. It also combines the "gradient descent with 
momentum" technique and the "RMSProp" algorithm by generating discrete learning rates for 

different parameters as an adaptive learning rate method. 

 

4. SIMULATION RESULTS 
 
The performance of the OFDM-based-NOMA receiver on different neural networks with 

different deep learning sequence layers is analyzed in this section.   

 
The simulation parameters are listed in Table 1. 

 
Table 1. Simulation Parameters 

 

Parameters Value 

No. of Subcarriers 64 

Length of cyclic prefix 16, 8 

Number of users 2 

DNN layer 1 (9x1 Layer) 

Batch size 2000 

Epochs 100 

Learning rate 0.01 

Training data 320000 

DL-based sequence layer GRU, LSTM, Bi-LSTM 

DL-based optimizers Adam, RMSProp, SGDM 

 
The OFDM symbols are generated using the simulation parameters as per Table 1. It has assumed 

the cyclic prefixes (CP) as 16 and 8. Figure 7 and Figure 8 represent the BER performance for 

User 1 (U1) and User 2 (U2) for cyclic prefixes 16, respectively. The simulations also indicate 
the various deep learning-based sequence layer applications with DL-based optimizers 

concerning BER performance.  
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Figure 7. BER performance with cyclic prefix 16 for User 1 

 

 
 

Figure 8. BER performance with cyclic prefix 16 for User 2 

 
Similarly, it has considered a less cyclic prefix 8 for the simulation to analyze the performance of 

BER for different users. Figure 9 and Figure 10 show the BER performance of U1 and U2 for 

cyclic prefix 8 with varying layers of sequence and optimizers. The simulation curves show the 
BER performance of the conventional SIC- MMSE method with the different deep learning-

based receiver approaches. The results indicate that the DL-based method is more robust to signal 

detection than the traditional SIC method.  

 

 
 

Figure 9. BER performance with cyclic prefix 8 for User 1 
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Figure 10. BER performance with cyclic prefix 8 for User 2 

 

Here, Table 2 indicates the BER performance for a particular SNR 15 dB by assuming different 
sequence layers with different DL-based optimizers.  

 
Table 2. BER performance for SNR 15 dB concerning different sequence layers with optimizers 

 

Bit Error Rate (BER) 

User U1 U1 U2 U2 

Cyclic Prefix 16 8 16 8 

SIC (MMSE) 0.101 0.177 0.335 0.347 

SGDM (GRU) 0.078 0.169 0.322 0.338 

SGDM (LSTM) 0.065 0.158 0.311 0.328 

RMSProp (GRU) 0.0232 0.134 0.28 0.309 

RMSProp (LSTM) 0.0194 0.122 0.265 0.301 

RMSProp  
(Bi-LSTM) 

0.0158 0.115 0.252 0.297 

Adam (GRU) 0.013 0.109 0.245 0.288 

Adam (LSTM) 0.01 0.101 0.236 0.279 

Adam (Bi-LSTM) 0.0082 0.092 0.22 0.272 

 
It illustrates that the DL-based receiver provides better BER performance than the traditional SIC 

receiver approach and that the Bi-LSTM with Adam sequence performs better than other 

sequence layers. 
 

5. CONCLUSION 
 

A preliminary analysis of DL for signal detection and channel estimation in a two-user OFDM-

based NOMA system is presented in this work. It demonstrates the usage of several DL-based 
sequence layers with various optimizers. A deep learning-based NOMA receiver with a distinct 

neural network layer is considered to retrieve transmitted symbols for both users. Two cyclic 

prefixes (16, 8) have been considered in this work. Also, it is evaluated against three different DL 
optimization techniques, namely SGDM, RMSProp, and Adam, with various sequence 

algorithms, including GRU, LSTM, and Bi-LSTM. When BER is compared with Adam using Bi-

LSTM models, it performs better than other models. Even with a short CP and severe ISI effects, 

the DL-based receiver performs better and can be superior to the MMSE-SIC receiver for the 
users. By learning channel properties, the DNN becomes more resilient to ISI-induced signal 

distortion. Additionally, it offers superior signal detection capability compared to the MMSE-SIC 
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receiver. Further study and analysis will be done for more advanced system models, such as 
massive MIMO and heterogeneous NOMA network applications. 
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