
A DISTRIBUTED ARITHMETIC BASED APPROACH

FOR THE REALIZATION OF THE SIGNED-
REGRESSOR LMS ADAPTIVE FILTER

Matcha Surya Prakash1 and Rafi Ahamed Shaik2

1Department of ECE, NITC, Kozhikode, Kerala, India

2Department of EEE, IIT Guwahati, Guwahati, Assam, India

ABSTRACT

This paper presents a distributed arithmetic (DA) based approach for the implementation of signed-

regressor LMS adaptive filter. DA, although is an efficient technique for the implementation of fixed

coefficient filters, the adaptive filter implementation using DA is not a straight-forward task as the partial-

products of the filter weights have to be updated in every iteration. This is achieved by storing the partial-

products of the signum values of the input samples in a look-up-table (LUT). It has been shown that this

LUT can be updated to accommodate the partial-products of newest set of samples in an efficient way using

the circular- shifting of its address bits. Results indicate that the proposed filter can give better throughputs

compared to multiply-and-accumulate (MAC) based implementation and can be effective when

implementing large filters. With proper choice of system parameters, the proposed architecture for a 32-

tap filter consumes around 87% less number of adder units while providing similar throughput performance

compared to most recent existing DA based architecture.

KEYWORDS

Adaptive filter, Signed Regressor-LMS, look- up-table (LUT), offset-binary coding (OBC), multiply-and-

accumulate (MAC).

1. INTRODUCTION

Many signal processing applications such as system identification, channel equalization, noise

cancellation etc use adaptive filters as the basic processing units. These filters contain finite-

impulse response (FIR) filters whose tap-weights are updated using an adaptation algorithm such

as the Least Mean Square (LMS) algorithm. Each sample of the output of FIR filter is the

weighted-sum of present and past input samples and hence such filters can be realized using

multiply-and-accumulate (MAC) units. The weight-update algorithm also demands for the

multiplication and addition operations (along with the shift operations) often and hence the same

MAC units serve the purpose of weight-adaptation. The number of MAC units used for the

realization depends on the speed and complexity requirements. Complexity reduction and high

sampling rate adaptive filters can be a good topic of research due to the growing needs for higher

order and fast processing filters.

2. LITERATURE SURVEY

Early research on adaptive filter implementations are based on pipelining of the algorithms. A

look-ahead based technique is used in [1] and the resultant filter is efficient in terms of

hardware while preserving the convergence performance. A high speed filter useful for many

signal processing application has been presented in [2]. In this work, it was shown that the ratio

pp. 181-190, 2022. CS & IT - CSCP 2022 DOI: 10.5121/csit.2022.122214
David C. Wyld et al. (Eds): SIGV, AI & FL, SESBC, MLAEDU, DSCC, NLPTT, SCOM, SCM, CEEE - 2022

http://airccse.org/cscp.html
http://airccse.org/csit/V12N22.html
https://doi.org/10.5121/csit.2022.122214

of the maximum throughput rate of the realized structure and the conventional DSP processor

based adaptive filter is twice that of the square of the filter size. Few other pipelined

architectures also exist in the literature [3]–[7] with their own merits and demerits.

One of the better ways of implementing the adaptive filters is by the use of distributed arithmetic

(DA) [8]. DA is an efficient structure for the computation of the inner product of two

vectors where one of the vectors is known prior to the implementation. The basic idea behind DA

is that the pre- computed partial-products are stored in memories and through the shift operations

they are added up for the computation of inner product. It is obvious that DA can be effective for

the implementation of FIR digital filters as they need coefficients which are constants. While

early works based on DA mainly targeted filters and transforms, few works on adaptive filter

implementations also exist in the literature [9]–[11]. The idea in [9] may not be practical as there

were approximations made in the standard algorithms. In [10], a multi-memory based structure is

presented and it was shown that the structure is more feasible for noise cancellation applications

due to its simplicity. For some architectures, the focus was upon increasing the throughput [12]–

[15]. In the recent past, several architectures have been presented by researchers for the

implementation of adaptive filter that uses LMS and other algorithms [16]-[35]. In this paper,

based on the idea used in [15], we modify the filtering and weight-update equations of the signed-

regressor LMS based filter so that the filter structure can be implemented using DA. The paper is

organized as follows. In Section III, the background of distributed arithmetic along with offset-

binary coding (OBC) technique is presented. A brief description of the signed-regressor LMS

adaptive filter is given in Section IV. The proposed DA based structure is described in detail in

Section V and the performance analysis is presented in Section VI.

3. DISTRIBUTED ARITHMETIC BACKGROUND

Consider the inner product of two vectors ‘𝒑’ and ‘𝒒’ (𝑖 = 0, 1, . . . , 𝑁 − 1) given as

𝑦 = ∑ 𝑝𝑖𝑞𝑖
𝑁−1
𝑖=0 (1)

where 𝑝𝑖 and 𝑞𝑖 are the elements of the vectors.

Let every sample of 𝒒 i.e., 𝑞𝑖 is represented in signed two’s complement representation, given by

𝑞𝑖 = −𝑏𝑖,𝐵−1 + ∑ 𝑏𝑖,𝐵−1−𝑗2−𝑗𝐵−1
𝑗=1 (2)

where 𝑏𝑖 ∈ {0,1}, 𝑗 = 0,1, … , 𝐵 − 1 are the binary bits of 𝑞𝑖.

The offset-binary coding (OBC) technique [8], can be used by using the relation 𝑞𝑖 =
(𝑞𝑖−(−𝑞𝑖))

2

with −𝑞𝑖 = −�̅�𝑖,𝐵−1 + ∑ �̅�𝑖,𝐵−1−𝑗2−𝑗𝐵−1
𝑗=1 + 2−(𝐵−1). This gives:

𝑞𝑖 = −
1

2
(𝑏𝑖,𝐵−1 − �̅�𝑖,𝐵−1) +

1

2
∑ (𝑏𝑖,𝐵−1−𝑗 − �̅�𝑖,𝐵−1−𝑗)𝐵−1

𝑗=1 2−𝑗 − 2−(𝐵−1) (3)

By using 𝑑𝑖,𝐵−1 = (1/2)(𝑏𝑖,𝐵−1 − �̅�𝑖,𝐵−1) and 𝑑𝑖,𝐵−1−𝑗 = (1/2)(𝑏𝑖,𝐵−1−𝑗 − �̅�𝑖,𝐵−1−𝑗),

𝑞𝑖 = −
1

2
𝑑𝑖,𝐵−1 +

1

2
∑ 𝑑𝑖,𝐵−1−𝑗

𝐵−1
𝑗=1 2−𝑗 − 2−(𝐵−1) (4)

Substitution of (4) in (1) and by re-arrangement, we get

𝑦 = − ∑ 𝑝𝑖𝑑𝑖,𝐵−1
𝑁−1
𝑖=0 + ∑ {∑ 𝑝𝑖𝑑𝑖,𝐵−1−𝑗

𝑁−1
𝑖=0 }2−𝑗 −

1

2
𝐵−1
𝑗=1 (∑ 𝑝𝑖

𝑁−1
𝑖=0)2−(𝐵−1) (5)

Computer Science & Information Technology (CS & IT)182

Figure 1. General Block Diagram of OBC-DA processing Unit.

Let

𝐹𝑗 = ∑ 𝑝𝑖
𝑁−1
𝑖=0 𝑑𝑖,𝐵−1−𝑗 (6)

𝐶𝐵−1−𝑗 = {
−𝐹0, 𝑗 = 0

𝐹𝑗 , 𝑗 ≠ 0 (7)

Also let

𝐶𝑒𝑥𝑡𝑟𝑎 =
1

2
∑ 𝑝𝑖

𝑁−1
𝑖=0 (8)

Hence, (5) becomes

𝑦 = ∑ 𝐶𝐵−1−𝑗
𝐵−1
𝑗=0 2−𝑗 − 𝐶𝑒𝑥𝑡𝑟𝑎2−(𝐵−1) (9)

From (6) and (7), it can be observed that, taking 𝑗-th bit from each of 𝑥𝑖, the term 𝑃𝐵−1−𝑗 can take

only one out of 2𝑁 possible combinations which are nothing but the partial products of elements

of 𝒑. Hence, if the vector 𝒑 is known prior to the implementation, these partial-products can be

stored in a look-up-table (LUT), which is typically a memory whose address bits are formed by

𝑗-th bit of every 𝑞𝑖. In this way, the output 𝑦 can be computed by shift-and-accumulate operations

on these partial-products as given by (9).

The partial-products with and without OBC scheme of the elements of vector p are shown in Fig.

2. In case of the OBC scheme, the upper and lower half of the contents of the LUT are mirror

image to each other and therefore only one half is enough for the computation of the inner product

in which case the remaining half can be generated using the MSB of the address bits and

exclusive-OR (Ex-OR) gates. The general block diagram of DA processing unit with OBC

scheme with 𝐵 = 4 is shown in Fig. 1. It has to be noted that the NOT gate in Fig. 1 may or may

not be used based on the choice of upper half or lower half of the partial-products in OBC scheme.

In DA, the size requirement of the memory will be high when N is large. In such cases, multiple

smaller LUTs may be used and the output from each of the LUTs may be added up for the

generation of the required partial-product. This is known as ROM decomposition [8] where 𝑘 (=
 𝑁/𝑚), (𝑚, 𝑘 ∈ 𝑍) decides the size of the LUTs.

Computer Science & Information Technology (CS & IT) 183

Figure 2. The partial-products stored in the

look-up-tables of DA and OBC-DA.

Figure 3. Block diagram of Signed

Regressor-LMS based adaptive filter.

4. THE SIGNED-REGRESSOR LMS ALGORITHM

Consider an adaptive filter shown in Fig. 3 which processes an input sequence 𝑥(𝑛), (𝑛 ∈ 𝑍)

and generates the output sequence 𝑦(𝑛) as per the following:

𝑦(𝑛) = 𝒘𝑇𝒙 (10)

where 𝒘𝑇 = [𝑤0(𝑛), 𝑤1(𝑛), … , 𝑤𝑁−1(𝑛)] is the filter’s tap weight vector, 𝒘𝑇 = [𝑥(𝑛), 𝑥(𝑛 −
1), … , 𝑥(𝑛 − 𝑁 + 1)] is the vector containing input samples and 𝑁 is the number of filter

coefficients. When signed-regressor LMS algorithm is used, the filter weights are updated using

the following recursion.

𝒘(𝑛 + 1) = 𝒘(𝑛) + µ𝑒(𝑛)𝑠𝑖𝑔𝑛(𝒙) (11)

where 𝑠𝑖𝑔𝑛(.) represents the signum function and 𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛) is the error signal. The

parameter µ is an appropriate step size which is to be chosen as 0 < 𝜇 <
2

[𝜌𝑡𝑟𝐑]
 (where 𝐑 is the

auto-correlation matrix of vector containing input samples) for convergence of the algorithm.

5. DISTRIBUTED ARITHMETIC BASED REALIZATION

The filtering equation of the signed-regressor LMS adaptive filter with the filter weights 𝑤𝑖, 𝑖 =
0,1,2, … , 𝑁 − 1 is given by:

𝑦(𝑛) = 𝒘𝑇𝒙 = ∑ 𝑤𝑖
𝑁−1
𝑖=0 𝑥(𝑛 − 𝑖)

The above equation is similar to (1) and hence may be performed using the DA processing unit

as described in Section III. The final set of equations describing the filtering operation may be

given by

𝑃𝐵−1−𝑗 = {
−𝐹0, 𝑗 = 0

𝐹𝑗 , 𝑗 ≠ 0 (12)

𝑃𝑒𝑥𝑡𝑟𝑎 =
1

2
∑ 𝑤𝑖

𝑁−1
𝑖=0 (13)

Computer Science & Information Technology (CS & IT)184

Figure 4. Contents of LUT_weights and LUT_input-samples in the nth iteration before the

weight-update operation.

where

𝐹𝑗 = ∑ 𝑤𝑖
𝑁−1
𝑖=0 𝑑𝑖,𝐵−1−𝑗 (14)

If the upper half of the partial-products are stored in the LUT as described in Section III, then the

entry of the LUT at the address location 𝑎 can be given by

𝐴𝑗
(𝑎)

(𝑛) =
1

2
𝑤0 + ∑ 𝑤𝑖(−1)𝑐𝑁−1−𝑖

(𝑎)
+1𝑁−1

𝑖=1 (15)

where 𝑐𝑖
(𝑎)

 is the 𝑖th bit in the binary representation of 𝑎. We call this LUT as 𝐿𝑈𝑇𝑤𝑒𝑖𝑔ℎ𝑡𝑠.

Although the filtering operation may be performed using DA, the weight-update operation would

be difficult as the partial products of the filter weights have to be updated. For this purpose, we

use one more LUT where the partial-products of the 𝑠𝑖𝑔𝑛𝑢𝑚 values of the input samples are

stored, for the reason that the weight-update operation needs the 𝑠𝑖𝑔𝑛𝑢𝑚 value of the input

samples as described by (11). The contents of this LUT can be obtained by replacing the filter

weight samples with the 𝑠𝑖𝑔𝑛𝑢𝑚 values of the corresponding input samples in (15). Specifically,

if 𝑥𝑠(𝑛 − 𝑖) = 𝑠𝑖𝑔𝑛(𝑥(𝑛 − 𝑖)), then a new equation may be obtained by replacing the the 𝑤𝑖

terms with 𝑥𝑠(𝑛 − 𝑖) terms (𝑖 = 0, 1, . . . , 𝑁 − 1) which can be given as

�̅�𝑗
(𝑎)(𝑛) =

1

2
𝑥𝑠(𝑛) + ∑ 𝑥𝑠(𝑛 − 𝑖)(−1)𝑐𝑁−1−𝑖

(𝑎)
+1𝑁−1

𝑖=1 (16)

Let,

𝐶(𝑛) =
1

2
𝑥𝑠(𝑛) (17)

and

𝐵𝑗
(𝑎)(𝑛) = ∑ 𝑥𝑠(𝑛 − 𝑖)(−1)𝑐𝑁−1−𝑖

(𝑎)
+1𝑁−1

𝑖=1 (18)

The left hand side of (18) represent the content at address location a of an LUT storing the partial-

products of 𝑠𝑖𝑔𝑛𝑢𝑚 values of input samples excluding the term of the 𝑠𝑖𝑔𝑛𝑢𝑚 value of the most

recent input sample. We call this LUT as 𝐿𝑈𝑇𝑖𝑛𝑝𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒𝑠. The weight-update equation for the

DA based approach can now be given as

𝐴𝑗
(𝑎)(𝑛 + 1) = 𝐴𝑗

(𝑎)(𝑛) + 𝜇𝑒(𝑛) [𝐶(𝑛) + 𝐵𝑗
(𝑎)(𝑛)] (19)

Computer Science & Information Technology (CS & IT) 185

The contents of 𝐿𝑈𝑇𝑤𝑒𝑖𝑔ℎ𝑡𝑠 and 𝐿𝑈𝑇𝑖𝑛𝑝𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒𝑠 in the 𝑛th iteration is shown in Fig. 4. The

challenge now, is to update 𝐿𝑈𝑇𝑖𝑛𝑝𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒𝑠 as well as the term 𝐶(𝑛) in every iteration. For this

purpose, we use the following equation to update 𝐿𝑈𝑇𝑖𝑛𝑝𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒𝑠 based on the observation that

the oldest input sample in the current iteration is not useful in the next iteration.

𝐵𝑗
(𝑎)(𝑛 + 1) =

1

2
[𝐵

𝑗

(2⌊
𝑎

2
⌋)

(𝑛) + 𝐵
𝑗

(2⌊
𝑎

2
⌋+1)

(𝑛)] + (−1)𝑎+1𝐶(𝑛) (20)

In other words, taking the average of the pair of consecutive location of 𝐿𝑈𝑇𝑖𝑛𝑝𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒𝑠 would

generate a term that is independent of the 𝑠𝑖𝑔𝑛𝑢𝑚 value of the oldest input sample. Then by

addition and subtraction of the result with the term 𝐶(𝑛) would generate terms that can once again

be stored in the same consecutive locations. In this way, all the locations of 𝐿𝑈𝑇𝑖𝑛𝑝𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒𝑠

can be updated. The term 𝐶(𝑛) can be stored in a register which can be updated by storing the

shifted version of the new input sample i.e., the term
1

2
𝑥(𝑛 + 1) and we call it as C-register. The

resultant 𝐿𝑈𝑇𝑖𝑛𝑝𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒𝑠 and C-register terms at various time instants based on the above LUT-

update scheme is depicted in Fig 5. Using the above memory update scheme, although, the LUT

has been updated, the new partial-products containing the newest set of samples cannot be in

proper order for the weight-update operation as can be observed in Fig. 5. However, the new

partial-products are placed in those locations, the addresses of which are actually the circularly

right-shifted versions of the addresses of the locations in which they are supposed to be (in order

to preserve the pattern of the partial-products). Hence, in every iteration this can be corrected just

by circularly-left shifting of the address bits of 𝐿𝑈𝑇𝑖𝑛𝑝𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒𝑠.

The step by step procedure for the DA based approach for one complete iteration of the filter is

explained as follows. The incoming bits of input samples are stored in the buffers and one bit is

shifted per one clock cycle. In this way the filtering is done and during the same time,

𝐿𝑈𝑇𝑖𝑛𝑝𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒𝑠 and C-register are updated so that the sign term of the newest input sample is

stored while the sign term of the oldest input sample is eliminated. The error 𝑒(𝑛) is calculated

using the desired signal samples and in order to avoid any multiplication operation, 𝑒(𝑛) can be

quantized to the nearest powers of 2 so that the multiplication (for gradient estimation) becomes

a shifting operation. The partial-products of filter weights are then updated as follows. Each of

the entry of 𝐿𝑈𝑇𝑖𝑛𝑝𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is accessed and multiplied (using shift operation) with the 𝜇𝑒(𝑛),

the result is then added to the same address location entry of 𝐿𝑈𝑇𝑤𝑒𝑖𝑔ℎ𝑡𝑠 and the final result is

stored back in the same location of 𝐿𝑈𝑇𝑤𝑒𝑖𝑔ℎ𝑡𝑠. This completes the weight-update operation and

once the term 𝑃𝑒𝑥𝑡𝑟𝑎 which can be stored in a register is updated (new 𝑃𝑒𝑥𝑡𝑟𝑎 will be the entry of

the last address location of 𝐿𝑈𝑇𝑤𝑒𝑖𝑔ℎ𝑡𝑠), the system will be ready for the next iteration.

6. PERFORMANCE ANALYSIS

The proposed DA based scheme has been verified by using a system identification application. A

total of 1024 normally distributed samples have been given as input to an unknown system. The

same set of input samples have been provided as an input to the adaptive filter as well which is

used for the identification of the unknown system. The output of the unknown system is mixed

with additive white gaussian noise (AWGN) and the noisy sequence is provided as the desired

sequence to the adaptive filter. The length of impulse responses of both the unknown system and

the adaptive filter have been taken as 8. In order to compare the DA based scheme with the

traditional multiply-and-accumulate (MAC) based scheme, both have been implemented taking

the step size as 2−2. The corresponding convergence curves for both the implementations is

shown in Fig. 5. It is clear that there is only a negligible effect on the convergence performance

due the quantization of the error. A rough estimation of the number of clock cycles the system

Computer Science & Information Technology (CS & IT)186

would take for one complete iteration can be calculated as follows. The filtering operation is

performed in 𝐵 clock cycles during which 𝐿𝑈𝑇𝑖𝑛𝑝𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is also updated. When the ROM

decomposition technique is used, the adder tree would take ⌈𝑙𝑜𝑔2(𝑚)⌉ clock cycles. Hence, the

system would take 𝑚𝑎𝑥(𝐵, 2(𝑘−1)) + ⌈𝑙𝑜𝑔2(𝑚)⌉ clock cycles just for the filtering operation and

to make 𝐿𝑈𝑇𝑖𝑛𝑝𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒𝑠 for weight-update operation. The process of updating the C-register

and the computation of error would take a single clock cycle. The process of updating 𝐿𝑈𝑇𝑤𝑒𝑖𝑔ℎ𝑡𝑠

would take 2(𝑘−1) clock cycles. Hence, a total of 𝑚𝑎𝑥(𝐵, 2(𝑘−1)) + ⌈𝑙𝑜𝑔2(𝑚)⌉ + 2(𝑘−1) clock

cycles are required for one iteration of the filter. The throughput performance in case of MAC

based implementation degrade with respect to the filter order while for DA based implementation,

the curves are more horizontal which makes the DA based implementation more suitable for

higher order filters. For 𝑁 = 32 and with proper choice of 𝑚 and 𝑘, the proposed architecture

consumes around 87% less number of adder units while providing similar throughput

performance as that of [35]. Comparison of throughput and hardware resource utilization for the

proposed and different architectures is provided in Tab. I.

Figure 5. Mean Square Error plots for the DA based and MAC based implementations.

Scheme Throughput Adders Registers

[32] 1/[𝑚2(𝑇𝑅 + 𝑘𝑇𝑀𝑈𝑋 + 𝑇𝐴)]
𝑚(2𝑘−1 + 2𝑘−1) +

𝑚𝐵 − 1
𝑚(1 + 𝑘) + 3

[33] Scheme 1 2𝑘−1 + 𝐵 + ⌈𝑙𝑜𝑔2𝑚⌉ + 1
𝑚(2𝑘+1 + 1 + 𝑘) +

𝑚𝐵 − 1
𝑚(2 + 2𝑘)

[33] Scheme 2 2𝑘−1 + 𝐵 + ⌈𝑙𝑜𝑔2𝑚⌉ + 1
𝑚(2𝑘+1 + 1 + 𝑘) +

𝑚𝐵 + 1
𝑚(3 + 2𝑘)

[34] Scheme 1 1/𝑘4[𝑚𝑎𝑥(𝑎0, 𝑎1, 𝑎2)] (2𝐿 + 3)𝑀 + 1 (2𝐿 + 4)𝑀 + 7

[34] Scheme 2 1/𝑊[𝑚𝑎𝑥(𝑏0, 𝑏1, 𝑏2)] (𝐿 + 3)𝑀 + 1 (2𝐿 + 4)𝑀 + 7

[34] Scheme 3 1/𝑊[𝑚𝑎𝑥(𝑐0, 𝑐1, 𝑐2)] (𝐿 + 3)𝑀 + 1 (2𝐿 + 4)𝑀 + 7

[35] Scheme 1
1/[𝐵(2𝑇𝑎𝑑𝑑 + 𝑇𝐴𝑁𝐷 + 𝑇′𝐹𝐴

+ 𝑇𝑥𝑜𝑟 + 𝑇𝑑)]
(2 + 𝐿)𝑀 + 𝑁

(4 + 𝐿)𝑀 + 2𝑁
+ 4

[35] Scheme 2
1/[𝐵(2𝑇𝑎𝑑𝑑 + 𝑇𝑀𝑈𝑋 + 𝑇′𝐹𝐴

+ 𝑇𝑥𝑜𝑟 + 𝑇𝑑)]
(2 + 𝐿)𝑀 + 𝑁 + 1

(4 + 𝐿)𝑀 + 2𝑁
+ 4

Proposed
 𝑚𝑎𝑥(𝐵, 2(𝑘−1)) +

⌈𝑙𝑜𝑔2(𝑚)⌉ + 2(𝑘−1)
16 + 𝑚 𝑁𝐵 + 3𝐵

Computer Science & Information Technology (CS & IT) 187

𝑇𝑅 – LUT access time, 𝑇𝑀𝑈𝑋 – Multiplexer delay, 𝑁 = 𝑚 × 𝑘, 𝑀 = 𝑁/𝐿 – number of DA base units, 𝐵-

wordlength of filter weights, 𝑚2 = 2𝑘/2 + 𝑚𝑎𝑥(𝑊, 2(𝑘/2)) + 𝑙𝑜𝑔2𝑚 + 1, 𝑎0 = 𝑇𝐹𝐴′ + 2𝑇𝑋 + 2𝑇𝐷 + 𝑇𝐴,

𝑎1 = 𝑇𝐹𝐴′ + 2𝑇𝑋 + 2𝑇𝐷 + 3𝑇𝐴, 𝑎2 = 𝑇𝐹𝐴′ + 2𝑇𝑋 + 2𝑇𝐷 + 2𝑇𝐴, 𝑏0 = 𝑇𝐹𝐴′ + 𝑇𝑋 + 𝑇𝐷 + 𝑇𝑀 + 𝑇𝐴𝑙𝑜𝑔2𝑀,

𝑏1 = 𝑇𝐹𝐴′ + 𝑇𝑋 + 𝑇𝐷 + 𝑇𝑀 + 𝑇𝐴𝑙𝑜𝑔2𝑀, 𝑏2 = 𝑇𝐹𝐴′ + 𝑇𝑋 + 𝑇𝐷 + 𝑇𝑀 + 𝑇𝐴𝑙𝑜𝑔2𝑀, 𝑐0 = 3𝑇𝐴 + (1 +
𝑙𝑜𝑔2𝑀)𝑇𝑚, 𝑐1 = 3𝑇𝐴 + (1 + 𝑙𝑜𝑔2𝑀)𝑇𝑚, 𝑐2 = 3𝑇𝐴 + (1 + 𝑙𝑜𝑔2𝑀)𝑇𝑚, 𝑇𝐴𝐶𝐶 , 𝑇𝑀, 𝑇𝐴, 𝑇𝐹𝐴, 𝑇𝐹𝐴′ and 𝑇𝐷 are

computational delays due to LUT, multiplexer, adder, binary CSA, MMP-CSFA and D-flipflop (FF)

respectively.

Table I. Comparison of throughput and utilization of hardware resources of proposed and

existing architectures.

7. CONCLUSION

In this paper, a signed regressor LMS based adaptive filter based on distributed arithmetic is

presented. Based on the DA framework, the filtering and weight-update equations of the filter are

modified. The proposed implementation consists of two LUTs, one for filtering operation and the

other to aid the weight-adaptation process. It is shown that the LUT that stores the partial-products

of signum values of the input samples can be smartly updated using the circular shifting of its

addressing bits. The proposed architecture can operate with good throughput rates, suitable for

implementation of large filters and consumes less number of adder units compared to recently

evolved architecture.

ACKNOWLEDGEMENTS

This work is the outcome of the research work carried at Indian Institute of Technology Guwahati,

National Institute of Technology Calicut and was supported by Ministry of Education of India.

REFERENCES

[1] K. Matsubara, K. Nishikawa, and H. Kiya, “Pipelined lms adaptive filter using a new look-ahead

transformation,” IEEE Trans. Circuits Syst. II, Exp. Briefs., vol. 46, no. 1, pp. 51–55, 1999.

[2] H. K. Kwan and Q. P. Li, “High-speed realisation of adaptive linear phase fir digital filters,” IEE

Proc. F Radar and Signal Process., vol. 140, no. 1, pp. 48–54, 1993.

[3] K. Parhi and D. Messerschmitt, “Concurrent cellular vlsi adaptive filter architectures,” IEEE

Trans. Circuits Syst., vol. 34, no. 10, pp. 1141– 1151, 1987.

[4] N. R. Shanbhag and K. K. Parhi, “Relaxed look-ahead pipelined lms adaptive filters and their

application to adpcm coder,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 40, no. 12, pp. 753–

766, 1993.

[5] N. R. Shanbhag and K. K. Parhi, “A pipelined adaptive lattice filter architecture,” IEEE Trans.

Signal Process., vol. 41, no. 5, pp. 1925– 1939, 1993.

[6] Q. Zhu, S. C. Douglas, and K. F. Smith, “A pipelined architecture for lms adaptive fir filters

without adaptation delay,” in Proc. IEEE Int. Conf. on Acoust., Speech, Signal Process. ICASSP-

97, vol. 3, pp. 1933–1936, 1997.

[7] S. C. Douglas, Q. Zhu, and K. F. Smith, “A pipelined lms adaptive fir filter architecture without

adaptation delay,” IEEE Trans. Signal Process., vol. 46, no. 3, pp. 775–779, 1998.

[8] K. Parhi, VLSI Digital Signal Processing Systems: Design And Implementation. Wiley India Pvt.

Limited, 2007.

[9] C. F. N. Cowan and J. Mavor, “New digital adaptive-filter implementation using distributed-

arithmetic techniques,” Proc. Inst. Elect. Eng., vol. 128, pp. 225–230, Aug. 1981.

Computer Science & Information Technology (CS & IT)188

[10] C.-H. Wei and J.-J. Lou, “Multimemory block structure for implementing a digital adaptive filter

using distributed arithmetic,” Proc. Inst. Elect. Eng., vol. 133, pp. 19 –26, Feb. 1986.

[11] G. Sicuranza and G. Ramponi, “Adaptive nonlinear digital filters using distributed arithmetic,”

IEEE Trans. Acoust., Speech, Signal Process., vol. 34, pp. 518–526, Jun. 1986.

[12] D. J. Allred, H. Yoo, V. Krishnan, W. Huang, and D. V. Anderson, “LMS adaptive filters using

distributed arithmetic for high throughput,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52,

pp. 1327 –1337, Jul. 2005.

[13] R. Guo and L. S. DeBrunner, “Two high-performance adaptive filter implementation schemes

using distributed arithmetic,” IEEE Trans. Circuits Syst. II, Exp. Briefs., vol. 58, pp. 600–604,

Sept. 2011.

[14] M. Surya Prakash and R. Shaik, “High performance architecture for LMS based adaptive filter

using distributed arithmetic,” in 2012 Int. Conf. on Information and Computer Applications

(ICICA 2012),, vol. 24, pp. 18–22, Mar. 2012.

[15] M. S. Prakash and R. A. Shaik, “Low-Area and High-Throughput Architecture for an Adaptive

Filter Using Distributed Arithmetic,” in IEEE Trans. on Circ. and Sys. II: Exp. Briefs, vol. 60, no.

11, pp. 781-785, Nov. 2013, doi: 10.1109/TCSII.2013.2281747.

[16] Reddy, S. Raghunadha, and P. JayaKrishnan, “ASIC implementation of

distributed arithmetic in adaptive FIR filter,” In 2017 Int. Conf. Circuit,

Power and Computing Technologies (ICCPCT), pp. 1-4. IEEE, 2017.

[17] S. R. B, G. S. L and N. C K, "FPGA based Optimized LMS Adaptive Filter using Distributed

Arithmetic," 2018 3rd IEEE International Conference on Recent Trends in Electronics,

Information & Communication Technology (RTEICT), 2018, pp. 1863-1867, doi:

10.1109/RTEICT42901.2018.9012288.

[18] A. A. Chandekar and M. Pawar, "Delay and power optimized adaptive filter using distributed

arithmetic," 2017 International conference of Electronics, Communication and Aerospace

Technology (ICECA), 2017, pp. 256-261, doi: 10.1109/ICECA.2017.8203682.

[19] C. S. Vinitha and R. K. Sharma, "Area and Energy-efficient Approximate Distributive Arithmetic

architecture for LMS Adaptive FIR Filter," 2020 International Conference for Emerging

Technology (INCET), 2020, pp. 1-5, doi: 10.1109/INCET49848.2020.9154125.

[20] A. Changavi and T. Ogunfunmi, "On the performance of the BLMS adaptive filter based on

distributed arithmetic," 2017 IEEE AFRICON, 2017, pp. 377-383, doi:

10.1109/AFRCON.2017.8095512.

[21] M. T. Khan and S. R. Ahamed, "Area and Power Efficient VLSI Architecture of Distributed

Arithmetic Based LMS Adaptive Filter," 2018 31st International Conference on VLSI Design and

2018 17th International Conference on Embedded Systems (VLSID), 2018, pp. 283-288, doi:

10.1109/VLSID.2018.77.

[22] S. Ahmad, S. G. Khawaja, N. Amjad and M. Usman, "A Novel Multiplier-Less LMS Adaptive

Filter Design Based on Offset Binary Coded Distributed Arithmetic," in IEEE Access, vol. 9, pp.

78138-78152, 2021, doi: 10.1109/ACCESS.2021.3083282.

[23] M. Saritha et al., "Pipelined Distributive Arithmetic-based FIR Filter Using Carry Save and Ripple

Carry Adder," 2021 2nd International Conference on Communication, Computing and Industry

4.0 (C2I4), 2021, pp. 1-6, doi: 10.1109/C2I454156.2021.9689396.

[24] M. T. Khan and S. Rafi Ahamed, "Enhanced Convergence Distributed Arithmetic based LMS

Adaptive Filter using Convex Combination," 2018 Twenty Fourth National Conference on

Communications (NCC), 2018, pp. 1-6, doi: 10.1109/NCC.2018.8600171.

[25] M. T. Khan and S. R. Ahamed, "A New High Performance VLSI Architecture for LMS Adaptive

Filter Using Distributed Arithmetic," 2017 IEEE Computer Society Annual Symposium on VLSI

(ISVLSI), 2017, pp. 219-224, doi: 10.1109/ISVLSI.2017.46.

Computer Science & Information Technology (CS & IT) 189

[26] M. T. Khan and R. A. Shaik, "Analysis and Implementation of Block Least Mean Square Adaptive

Filter using Offset Binary Coding," 2018 IEEE International Symposium on Circuits and Systems

(ISCAS), 2018, pp. 1-5, doi: 10.1109/ISCAS.2018.8350946.

[27] M. T. Khan and R. A. Shaik, "High-Performance Hardware Design of Block LMS Adaptive Noise

Canceller for In-Ear Headphones," in IEEE Consumer Electronics Magazine, vol. 9, no. 3, pp.

105-113, 1 May 2020, doi: 10.1109/MCE.2020.2976418.

[28] M. T. Khan, R. A. Shaik and M. A. Alhartomi, "An Efficient Scheme for Acoustic Echo Canceller

Implementation Using Offset Binary Coding," in IEEE Transactions on Instrumentation and

Measurement, vol. 71, pp. 1-14, 2022, Art no. 2001114, doi: 10.1109/TIM.2021.3132087.

[29] H. B. Kundhu Prabakaran and A. Yada, "High Throughput Parallelized Realization Of Adaptive

FIR Filter Based On Distributive Arithmetic Using Offset Binary Coding," 2019 10th

International Conference on Computing, Communication and Networking Technologies

(ICCCNT), 2019, pp. 1-6, doi: 10.1109/ICCCNT45670.2019.8944681.

[30] M. T. Khan and R. A. Shaik, "High-Performance VLSI Architecture of DLMS Adaptive Filter for

Fast-Convergence and Low-MSE," in IEEE Transactions on Circuits and Systems II: Express

Briefs, vol. 69, no. 4, pp. 2106-2110, April 2022, doi: 10.1109/TCSII.2022.3141687.

[31] M. T. Khan, J. Kumar, S. R. Ahamed and J. Faridi, "Partial-LUT Designs for Low-Complexity

Realization of DA-Based BLMS Adaptive Filter," in IEEE Transactions on Circuits and Systems

II: Express Briefs, vol. 68, no. 4, pp. 1188-1192, April 2021, doi: 10.1109/TCSII.2020.3035693.

[32] M. T. Khan, S. R. Ahamed and F. Brewer, "Low Complexity and Critical Path Based VLSI

Architecture for LMS Adaptive Filter Using Distributed Arithmetic," 2017 30th International

Conference on VLSI Design and 2017 16th International Conference on Embedded Systems

(VLSID), 2017, pp. 127-132, doi: 10.1109/VLSID.2017.16.

[33] M. T. Khan, M. A. Alhartomi, S. Alzahrani, R. A. Shaik and R. Alsulami, "Two Distributed

Arithmetic Based High Throughput Architectures of Non-Pipelined LMS Adaptive Filters," in

IEEE Access, vol. 10, pp. 76693-76706, 2022, doi: 10.1109/ACCESS.2022.3192619.

[34] M. T. Khan and R. A. Shaik, "Optimal Complexity Architectures for Pipelined Distributed

Arithmetic-Based LMS Adaptive Filter," in IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 66, no. 2, pp. 630-642, Feb. 2019, doi: 10.1109/TCSI.2018.2867291.

[35] M. T. Khan and S. R. Ahamed, "VLSI realization of low complexity pipelined LMS filter using

distributed arithmetic," TENCON 2017 - 2017 IEEE Region 10 Conference, 2017, pp. 433-438,

doi: 10.1109/TENCON.2017.8227903.

Authors

Dr. Matcha Surya Prakash is working as Assitant Professor in the department

of ECE at National Institute of Technology Calicut, Kerala, India. He

obtained his B. Tech degree from JNTU Kakinada, Andhra Pradesh, India

and Ph.D degree from Indian Institute of Technology Guwahati, Assam,

India. His research interests include Signal Processing algorithms and VLSI

Architectures, VLSI for communications, VLSI for multimedia, ASIC

design, design of consumer electronics products.

Dr. Shaik Rafi Ahamed received the B. Tech and M. Tech degrees in

Electronics and Communication Engineering from Sri Venkateswara

University, Tirupati, India in 1991 and 1993 respectively and Ph.D degree

from IIT Kharagpur, India, in 2008. He is currently a Professor in the

Department of EEE, IIT Guwahati, Assam, India. His research interests

include digital, adaptive, biomedical and VLSI Signal Processing.

Computer Science & Information Technology (CS & IT)190

© 2022 By AIRCC Publishing Corporation. This article is published under the Creative
Commons Attribution (CC BY) license.

