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ABSTRACT 

This paper presents a distributed arithmetic (DA) based approach for the implementation of signed-

regressor LMS adaptive filter. DA, although is an efficient technique for the implementation of fixed 

coefficient filters, the adaptive filter implementation using DA is not a straight-forward task as the partial-

products of the filter weights have to be updated in every iteration. This is achieved by storing the partial-

products of the signum values of the input samples in a look-up-table (LUT). It has been shown that this 

LUT can be updated to accommodate the partial-products of newest set of samples in an efficient way using 

the circular- shifting of its address bits. Results indicate that the proposed filter can give better throughputs 

compared to multiply-and-accumulate (MAC) based implementation and can be effective when 

implementing large filters. With proper choice of system parameters, the proposed architecture for a 32-

tap filter consumes around 87% less number of adder units while providing similar throughput performance 

compared to most recent existing DA based architecture. 
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1. INTRODUCTION 

Many signal processing applications such as system identification, channel equalization, noise 

cancellation etc use adaptive filters as the basic processing units. These filters contain finite- 

impulse response (FIR) filters whose tap-weights are updated using an adaptation algorithm such 

as the Least Mean Square (LMS) algorithm. Each sample of the output of FIR filter is the 

weighted-sum of present and past input samples and hence such filters can be realized using 

multiply-and-accumulate (MAC) units. The weight-update algorithm also demands for the 

multiplication and addition operations (along with the shift operations) often and hence the same 

MAC units serve the purpose of weight-adaptation. The number of MAC units used for the 

realization depends on the speed and complexity requirements. Complexity reduction and high 

sampling rate adaptive filters can be a good topic of research due to the growing needs for higher 

order and fast processing filters. 

2. LITERATURE SURVEY 

Early research on adaptive filter implementations are based on pipelining of the algorithms. A 

look-ahead based technique is used in [1] and the resultant filter is efficient in terms of 

hardware while preserving the convergence performance. A high speed filter useful for many 

signal processing application has been presented in [2]. In this work, it was shown that the ratio 
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of the maximum throughput rate of the realized structure and the conventional DSP processor 

based adaptive filter is twice that of the square of the filter size. Few other pipelined 

architectures also exist in the literature [3]–[7] with their own merits and demerits. 

One of the better ways of implementing the adaptive filters is by the use of distributed arithmetic 

(DA) [8]. DA is an efficient structure for the computation of the inner product of two 

vectors where one of the vectors is known prior to the implementation. The basic idea behind DA 

is that the pre- computed partial-products are stored in memories and through the shift operations 

they are added up for the computation of inner product. It is obvious that DA can be effective for 

the implementation of FIR digital filters as they need coefficients which are constants. While 

early works based on DA mainly targeted filters and transforms, few works on adaptive filter 

implementations also exist in the literature [9]–[11]. The idea in [9] may not be practical as there 

were approximations made in the standard algorithms. In [10], a multi-memory based structure is 

presented and it was shown that the structure is more feasible for noise cancellation applications 

due to its simplicity. For some architectures, the focus was upon increasing the throughput [12]–

[15]. In the recent past, several architectures have been presented by researchers for the 

implementation of adaptive filter that uses LMS and other algorithms [16]-[35]. In this paper, 

based on the idea used in [15], we modify the filtering and weight-update equations of the signed-

regressor LMS based filter so that the filter structure can be implemented using DA. The paper is 

organized as follows. In Section III, the background of distributed arithmetic along with offset- 

binary coding (OBC) technique is presented. A brief description of the signed-regressor LMS 

adaptive filter is given in Section IV. The proposed DA based structure is described in detail in 

Section V and the performance analysis is presented in Section VI. 

3. DISTRIBUTED ARITHMETIC BACKGROUND 

Consider the inner product of two vectors ‘𝒑’ and ‘𝒒’ (𝑖 =  0, 1, . . . , 𝑁 −  1) given as 

𝑦 = ∑ 𝑝𝑖𝑞𝑖
𝑁−1
𝑖=0       (1) 

where 𝑝𝑖 and 𝑞𝑖 are the elements of the vectors. 

Let every sample of 𝒒 i.e., 𝑞𝑖 is represented in signed two’s complement representation, given by 

𝑞𝑖 = −𝑏𝑖,𝐵−1 + ∑ 𝑏𝑖,𝐵−1−𝑗2−𝑗𝐵−1
𝑗=1      (2) 

where 𝑏𝑖 ∈ {0,1}, 𝑗 = 0,1, … , 𝐵 − 1 are the binary bits of 𝑞𝑖. 

The offset-binary coding (OBC) technique [8], can be used by using the relation 𝑞𝑖 =
(𝑞𝑖−(−𝑞𝑖))

2
 

with −𝑞𝑖 = −�̅�𝑖,𝐵−1 + ∑ �̅�𝑖,𝐵−1−𝑗2−𝑗𝐵−1
𝑗=1 + 2−(𝐵−1). This gives: 

𝑞𝑖 = −
1

2
(𝑏𝑖,𝐵−1 − �̅�𝑖,𝐵−1) +

1

2
∑ (𝑏𝑖,𝐵−1−𝑗 − �̅�𝑖,𝐵−1−𝑗)𝐵−1

𝑗=1 2−𝑗 − 2−(𝐵−1)  (3) 

By using 𝑑𝑖,𝐵−1 = (1/2)(𝑏𝑖,𝐵−1 − �̅�𝑖,𝐵−1) and 𝑑𝑖,𝐵−1−𝑗 = (1/2)(𝑏𝑖,𝐵−1−𝑗 − �̅�𝑖,𝐵−1−𝑗), 

𝑞𝑖 = −
1

2
𝑑𝑖,𝐵−1 +

1

2
∑ 𝑑𝑖,𝐵−1−𝑗

𝐵−1
𝑗=1 2−𝑗 − 2−(𝐵−1)   (4) 

Substitution of (4) in (1) and by re-arrangement, we get 

𝑦 = − ∑ 𝑝𝑖𝑑𝑖,𝐵−1
𝑁−1
𝑖=0 + ∑ {∑ 𝑝𝑖𝑑𝑖,𝐵−1−𝑗

𝑁−1
𝑖=0 }2−𝑗 −

1

2
𝐵−1
𝑗=1 (∑ 𝑝𝑖

𝑁−1
𝑖=0 )2−(𝐵−1) (5) 
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Figure 1. General Block Diagram of OBC-DA processing Unit. 

Let 

𝐹𝑗 = ∑ 𝑝𝑖
𝑁−1
𝑖=0 𝑑𝑖,𝐵−1−𝑗     (6) 

𝐶𝐵−1−𝑗 = {
−𝐹0, 𝑗 = 0

𝐹𝑗 , 𝑗 ≠ 0     (7) 

Also let 

𝐶𝑒𝑥𝑡𝑟𝑎 =
1

2
∑ 𝑝𝑖

𝑁−1
𝑖=0      (8) 

Hence, (5) becomes 

𝑦 = ∑ 𝐶𝐵−1−𝑗
𝐵−1
𝑗=0 2−𝑗 − 𝐶𝑒𝑥𝑡𝑟𝑎2−(𝐵−1)    (9) 

From (6) and (7), it can be observed that, taking 𝑗-th bit from each of 𝑥𝑖, the term 𝑃𝐵−1−𝑗 can take 

only one out of 2𝑁  possible combinations which are nothing but the partial products of elements 

of 𝒑. Hence, if the vector 𝒑 is known prior to the implementation, these partial-products can be 

stored in a look-up-table (LUT), which is typically a memory whose address bits are formed by 

𝑗-th bit of every 𝑞𝑖. In this way, the output 𝑦 can be computed by shift-and-accumulate operations 

on these partial-products as given by (9).  

The partial-products with and without OBC scheme of the elements of vector p are shown in Fig. 

2. In case of the OBC scheme, the upper and lower half of the contents of the LUT are mirror 

image to each other and therefore only one half is enough for the computation of the inner product 

in which case the remaining half can be generated using the MSB of the address bits and 

exclusive-OR (Ex-OR) gates. The general block diagram of DA processing unit with OBC 

scheme with 𝐵 = 4 is shown in Fig. 1. It has to be noted that the NOT gate in Fig. 1 may or may 

not be used based on the choice of upper half or lower half of the partial-products in OBC scheme. 

In DA, the size requirement of the memory will be high when N is large. In such cases, multiple 

smaller LUTs may be used and the output from each of the LUTs may be added up for the 

generation of the required partial-product. This is known as ROM decomposition [8] where 𝑘 (=
 𝑁/𝑚), (𝑚, 𝑘 ∈  𝑍) decides the size of the LUTs. 
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Figure 2. The partial-products stored in the 

look-up-tables of DA and OBC-DA. 

 

 

 

Figure 3. Block diagram of Signed 

Regressor-LMS based adaptive filter.                                

4. THE SIGNED-REGRESSOR LMS ALGORITHM 

Consider an adaptive filter shown in Fig. 3 which processes an input sequence 𝑥(𝑛), (𝑛 ∈  𝑍) 

and generates the output sequence 𝑦(𝑛) as per the following: 

𝑦(𝑛) = 𝒘𝑇𝒙     (10) 

where 𝒘𝑇 = [𝑤0(𝑛), 𝑤1(𝑛), … , 𝑤𝑁−1(𝑛)] is the filter’s tap weight vector, 𝒘𝑇 = [𝑥(𝑛), 𝑥(𝑛 −
1), … , 𝑥(𝑛 − 𝑁 + 1)] is the vector containing input samples and 𝑁 is the number of filter 

coefficients. When signed-regressor LMS algorithm is used, the filter weights are updated using 

the following recursion. 

𝒘(𝑛 + 1) = 𝒘(𝑛) + µ𝑒(𝑛)𝑠𝑖𝑔𝑛(𝒙)    (11) 

where 𝑠𝑖𝑔𝑛(. ) represents the signum function and 𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛) is the error signal. The 

parameter µ is an appropriate step size which is to be chosen as 0 < 𝜇 <
2

[𝜌𝑡𝑟𝐑]
 (where 𝐑 is the 

auto-correlation matrix of vector containing input samples) for convergence of the algorithm. 

5. DISTRIBUTED ARITHMETIC BASED REALIZATION 

The filtering equation of the signed-regressor LMS adaptive filter with the filter weights 𝑤𝑖, 𝑖 =
0,1,2, … , 𝑁 − 1 is given by: 

𝑦(𝑛) = 𝒘𝑇𝒙 = ∑ 𝑤𝑖
𝑁−1
𝑖=0 𝑥(𝑛 − 𝑖)     

The above equation is similar to (1) and hence may be performed using the DA processing unit 

as described in Section III. The final set of equations describing the filtering operation may be 

given by 

𝑃𝐵−1−𝑗 = {
−𝐹0, 𝑗 = 0

𝐹𝑗 , 𝑗 ≠ 0     (12) 

𝑃𝑒𝑥𝑡𝑟𝑎 =
1

2
∑ 𝑤𝑖

𝑁−1
𝑖=0      (13) 

Computer Science & Information Technology (CS & IT)184



 

Figure 4. Contents of LUT_weights and LUT_input-samples in the nth iteration before the 

weight-update operation. 

 

where 

𝐹𝑗 = ∑ 𝑤𝑖
𝑁−1
𝑖=0 𝑑𝑖,𝐵−1−𝑗     (14) 

If the upper half of the partial-products are stored in the LUT as described in Section III, then the 

entry of the LUT at the address location 𝑎 can be given by 

𝐴𝑗
(𝑎)

(𝑛) =
1

2
𝑤0 + ∑ 𝑤𝑖(−1)𝑐𝑁−1−𝑖

(𝑎)
+1𝑁−1

𝑖=1     (15) 

where 𝑐𝑖
(𝑎)

 is the 𝑖th bit in the binary representation of 𝑎. We call this LUT as 𝐿𝑈𝑇𝑤𝑒𝑖𝑔ℎ𝑡𝑠. 

Although the filtering operation may be performed using DA, the weight-update operation would 

be difficult as the partial products of the filter weights have to be updated. For this purpose, we 

use one more LUT where the partial-products of the 𝑠𝑖𝑔𝑛𝑢𝑚 values of the input samples are 

stored, for the reason that the weight-update operation needs the 𝑠𝑖𝑔𝑛𝑢𝑚 value of the input 

samples as described by (11). The contents of this LUT can be obtained by replacing the filter 

weight samples with the 𝑠𝑖𝑔𝑛𝑢𝑚 values of the corresponding input samples in (15). Specifically, 

if 𝑥𝑠(𝑛 − 𝑖) = 𝑠𝑖𝑔𝑛(𝑥(𝑛 − 𝑖)), then a new equation may be obtained by replacing the the 𝑤𝑖 

terms with 𝑥𝑠(𝑛 − 𝑖) terms (𝑖 =  0, 1, . . . , 𝑁 −  1) which can be given as 

�̅�𝑗
(𝑎)(𝑛) =

1

2
𝑥𝑠(𝑛) + ∑ 𝑥𝑠(𝑛 − 𝑖)(−1)𝑐𝑁−1−𝑖

(𝑎)
+1𝑁−1

𝑖=1    (16) 

Let, 

𝐶(𝑛) =
1

2
𝑥𝑠(𝑛)      (17) 

and 

𝐵𝑗
(𝑎)(𝑛) = ∑ 𝑥𝑠(𝑛 − 𝑖)(−1)𝑐𝑁−1−𝑖

(𝑎)
+1𝑁−1

𝑖=1     (18) 

The left hand side of (18) represent the content at address location a of an LUT storing the partial-

products of 𝑠𝑖𝑔𝑛𝑢𝑚 values of input samples excluding the term of the 𝑠𝑖𝑔𝑛𝑢𝑚 value of the most 

recent input sample. We call this LUT as 𝐿𝑈𝑇𝑖𝑛𝑝𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒𝑠. The weight-update equation for the 

DA based approach can now be given as 

𝐴𝑗
(𝑎)(𝑛 + 1) = 𝐴𝑗

(𝑎)(𝑛) + 𝜇𝑒(𝑛) [𝐶(𝑛) + 𝐵𝑗
(𝑎)(𝑛)]   (19) 
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The contents of 𝐿𝑈𝑇𝑤𝑒𝑖𝑔ℎ𝑡𝑠 and 𝐿𝑈𝑇𝑖𝑛𝑝𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒𝑠 in the 𝑛th iteration is shown in Fig. 4. The 

challenge now, is to update 𝐿𝑈𝑇𝑖𝑛𝑝𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒𝑠 as well as the term 𝐶(𝑛) in every iteration. For this 

purpose, we use the following equation to update 𝐿𝑈𝑇𝑖𝑛𝑝𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒𝑠 based on the observation that 

the oldest input sample in the current iteration is not useful in the next iteration. 

𝐵𝑗
(𝑎)(𝑛 + 1) =

1

2
[𝐵

𝑗

(2⌊
𝑎

2
⌋)

(𝑛) + 𝐵
𝑗

(2⌊
𝑎

2
⌋+1)

(𝑛)] + (−1)𝑎+1𝐶(𝑛)  (20) 

In other words, taking the average of the pair of consecutive location of 𝐿𝑈𝑇𝑖𝑛𝑝𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒𝑠 would 

generate a term that is independent of the 𝑠𝑖𝑔𝑛𝑢𝑚 value of the oldest input sample. Then by 

addition and subtraction of the result with the term 𝐶(𝑛) would generate terms that can once again 

be stored in the same consecutive locations. In this way, all the locations of 𝐿𝑈𝑇𝑖𝑛𝑝𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

can be updated. The term 𝐶(𝑛) can be stored in a register which can be updated by storing the 

shifted version of the new input sample i.e., the term 
1

2
𝑥(𝑛 + 1) and we call it as C-register. The 

resultant 𝐿𝑈𝑇𝑖𝑛𝑝𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒𝑠 and C-register terms at various time instants based on the above LUT-

update scheme is depicted in Fig 5. Using the above memory update scheme, although, the LUT 

has been updated, the new partial-products containing the newest set of samples cannot be in 

proper order for the weight-update operation as can be observed in Fig. 5. However, the new 

partial-products are placed in those locations, the addresses of which are actually the circularly 

right-shifted versions of the addresses of the locations in which they are supposed to be (in order 

to preserve the pattern of the partial-products). Hence, in every iteration this can be corrected just 

by circularly-left shifting of the address bits of 𝐿𝑈𝑇𝑖𝑛𝑝𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒𝑠. 

The step by step procedure for the DA based approach for one complete iteration of the filter is 

explained as follows. The incoming bits of input samples are stored in the buffers and one bit is 

shifted per one clock cycle. In this way the filtering is done and during the same time, 

𝐿𝑈𝑇𝑖𝑛𝑝𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒𝑠 and C-register are updated so that the sign term of the newest input sample is 

stored while the sign term of the oldest input sample is eliminated. The error 𝑒(𝑛) is calculated 

using the desired signal samples and in order to avoid any multiplication operation, 𝑒(𝑛) can be 

quantized to the nearest powers of 2 so that the multiplication (for gradient estimation) becomes 

a shifting operation. The partial-products of filter weights are then updated as follows. Each of 

the entry of 𝐿𝑈𝑇𝑖𝑛𝑝𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is accessed and multiplied (using shift operation) with the 𝜇𝑒(𝑛), 

the result is then added to the same address location entry of 𝐿𝑈𝑇𝑤𝑒𝑖𝑔ℎ𝑡𝑠 and the final result is 

stored back in the same location of 𝐿𝑈𝑇𝑤𝑒𝑖𝑔ℎ𝑡𝑠. This completes the weight-update operation and 

once the term 𝑃𝑒𝑥𝑡𝑟𝑎 which can be stored in a register is updated (new 𝑃𝑒𝑥𝑡𝑟𝑎 will be the entry of 

the last address location of 𝐿𝑈𝑇𝑤𝑒𝑖𝑔ℎ𝑡𝑠), the system will be ready for the next iteration. 

6. PERFORMANCE ANALYSIS 

The proposed DA based scheme has been verified by using a system identification application. A 

total of 1024 normally distributed samples have been given as input to an unknown system. The 

same set of input samples have been provided as an input to the adaptive filter as well which is 

used for the identification of the unknown system. The output of the unknown system is mixed 

with additive white gaussian noise (AWGN) and the noisy sequence is provided as the desired 

sequence to the adaptive filter. The length of impulse responses of both the unknown system and 

the adaptive filter have been taken as 8. In order to compare the DA based scheme with the 

traditional multiply-and-accumulate (MAC) based scheme, both have been implemented taking 

the step size as 2−2. The corresponding convergence curves for both the implementations is 

shown in Fig. 5. It is clear that there is only a negligible effect on the convergence performance 

due the quantization of the error. A rough estimation of the number of clock cycles the system 
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would take for one complete iteration can be calculated as follows. The filtering operation is 

performed in 𝐵 clock cycles during which 𝐿𝑈𝑇𝑖𝑛𝑝𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is also updated. When the ROM 

decomposition technique is used, the adder tree would take ⌈𝑙𝑜𝑔2(𝑚)⌉ clock cycles. Hence, the 

system would take 𝑚𝑎𝑥(𝐵, 2(𝑘−1)) + ⌈𝑙𝑜𝑔2(𝑚)⌉ clock cycles just for the filtering operation and 

to make 𝐿𝑈𝑇𝑖𝑛𝑝𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒𝑠 for weight-update operation. The process of updating the C-register 

and the computation of error would take a single clock cycle. The process of updating 𝐿𝑈𝑇𝑤𝑒𝑖𝑔ℎ𝑡𝑠 

would take 2(𝑘−1) clock cycles. Hence, a total of 𝑚𝑎𝑥(𝐵, 2(𝑘−1)) + ⌈𝑙𝑜𝑔2(𝑚)⌉ + 2(𝑘−1) clock 

cycles are required for one iteration of the filter. The throughput performance in case of MAC 

based implementation degrade with respect to the filter order while for DA based implementation, 

the curves are more horizontal which makes the DA based implementation more suitable for 

higher order filters. For 𝑁 = 32 and with proper choice of 𝑚 and 𝑘, the proposed architecture 

consumes around 87% less number of adder units while providing similar throughput 

performance as that of [35]. Comparison of throughput and hardware resource utilization for the 

proposed and different architectures is provided in Tab. I. 

    

Figure 5. Mean Square Error plots for the DA based and MAC based implementations. 

Scheme Throughput Adders Registers 

[32] 1/[𝑚2(𝑇𝑅 + 𝑘𝑇𝑀𝑈𝑋 + 𝑇𝐴)] 
𝑚(2𝑘−1 + 2𝑘−1) +

𝑚𝐵 − 1  
𝑚(1 + 𝑘) + 3 

[33] Scheme 1 2𝑘−1 + 𝐵 + ⌈𝑙𝑜𝑔2𝑚⌉ + 1 
𝑚(2𝑘+1 + 1 + 𝑘) +

𝑚𝐵 − 1  
𝑚(2 + 2𝑘) 

[33] Scheme 2 2𝑘−1 + 𝐵 + ⌈𝑙𝑜𝑔2𝑚⌉ + 1 
𝑚(2𝑘+1 + 1 + 𝑘) +

𝑚𝐵 + 1  
𝑚(3 + 2𝑘) 

[34] Scheme 1 1/𝑘4[𝑚𝑎𝑥(𝑎0, 𝑎1, 𝑎2)] (2𝐿 + 3)𝑀 + 1  (2𝐿 + 4)𝑀 + 7  

[34] Scheme 2 1/𝑊[𝑚𝑎𝑥(𝑏0, 𝑏1, 𝑏2)] (𝐿 + 3)𝑀 + 1  (2𝐿 + 4)𝑀 + 7  

[34] Scheme 3 1/𝑊[𝑚𝑎𝑥(𝑐0, 𝑐1, 𝑐2)] (𝐿 + 3)𝑀 + 1  (2𝐿 + 4)𝑀 + 7  

[35] Scheme 1 
1/[𝐵(2𝑇𝑎𝑑𝑑 + 𝑇𝐴𝑁𝐷 + 𝑇′𝐹𝐴

+ 𝑇𝑥𝑜𝑟 + 𝑇𝑑)] 
(2 + 𝐿)𝑀 + 𝑁 

(4 + 𝐿)𝑀 + 2𝑁
+ 4 

[35] Scheme 2 
1/[𝐵(2𝑇𝑎𝑑𝑑 + 𝑇𝑀𝑈𝑋 + 𝑇′𝐹𝐴

+ 𝑇𝑥𝑜𝑟 + 𝑇𝑑)] 
(2 + 𝐿)𝑀 + 𝑁 + 1 

(4 + 𝐿)𝑀 + 2𝑁
+ 4 

Proposed 
 𝑚𝑎𝑥(𝐵, 2(𝑘−1)) +

⌈𝑙𝑜𝑔2(𝑚)⌉ + 2(𝑘−1) 
16 + 𝑚 𝑁𝐵 + 3𝐵 
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𝑇𝑅 – LUT access time, 𝑇𝑀𝑈𝑋  – Multiplexer delay, 𝑁 = 𝑚 × 𝑘, 𝑀 = 𝑁/𝐿 – number of DA base units, 𝐵-

wordlength of filter weights, 𝑚2 = 2𝑘/2 + 𝑚𝑎𝑥(𝑊, 2(𝑘/2)) + 𝑙𝑜𝑔2𝑚 + 1, 𝑎0 = 𝑇𝐹𝐴′ + 2𝑇𝑋 + 2𝑇𝐷 + 𝑇𝐴, 

𝑎1 = 𝑇𝐹𝐴′ + 2𝑇𝑋 + 2𝑇𝐷 + 3𝑇𝐴, 𝑎2 = 𝑇𝐹𝐴′ + 2𝑇𝑋 + 2𝑇𝐷 + 2𝑇𝐴, 𝑏0 = 𝑇𝐹𝐴′ + 𝑇𝑋 + 𝑇𝐷 + 𝑇𝑀 + 𝑇𝐴𝑙𝑜𝑔2𝑀, 

𝑏1 = 𝑇𝐹𝐴′ + 𝑇𝑋 + 𝑇𝐷 + 𝑇𝑀 + 𝑇𝐴𝑙𝑜𝑔2𝑀, 𝑏2 = 𝑇𝐹𝐴′ + 𝑇𝑋 + 𝑇𝐷 + 𝑇𝑀 + 𝑇𝐴𝑙𝑜𝑔2𝑀, 𝑐0 = 3𝑇𝐴 + (1 +
𝑙𝑜𝑔2𝑀)𝑇𝑚, 𝑐1 = 3𝑇𝐴 + (1 + 𝑙𝑜𝑔2𝑀)𝑇𝑚, 𝑐2 = 3𝑇𝐴 + (1 + 𝑙𝑜𝑔2𝑀)𝑇𝑚, 𝑇𝐴𝐶𝐶 , 𝑇𝑀, 𝑇𝐴, 𝑇𝐹𝐴, 𝑇𝐹𝐴′ and 𝑇𝐷 are 

computational delays due to LUT, multiplexer, adder, binary CSA, MMP-CSFA and D-flipflop (FF) 

respectively. 

Table I. Comparison of throughput and utilization of hardware resources of proposed and 

existing architectures. 

7. CONCLUSION 

In this paper, a signed regressor LMS based adaptive filter based on distributed arithmetic is 

presented. Based on the DA framework, the filtering and weight-update equations of the filter are 

modified. The proposed implementation consists of two LUTs, one for filtering operation and the 

other to aid the weight-adaptation process. It is shown that the LUT that stores the partial-products 

of signum values of the input samples can be smartly updated using the circular shifting of its 

addressing bits. The proposed architecture can operate with good throughput rates, suitable for 

implementation of large filters and consumes less number of adder units compared to recently 

evolved architecture. 
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