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ABSTRACT 
 

End-to-end learned image and video codecs, based on auto-encoder architecture, adapt 

naturally to image resolution, thanks to their convolutional aspect. However, while coding high 

resolution images, these codecs face hardware problems such as memory saturation. This paper 

proposes a patch-based image coding solution based on an end-to-end learned model, which 

aims to remedy to the hardware limitation while maintaining the same quality as full resolution 

image coding. Our methodconsists in coding overlapping patches of the image and reconstruct 

them into a decoded image using a weighting function.This approach manages to be on par with 

the performance of full resolution image codingusing anend-to-end learned model, and even 

slightly outperform it, while being adaptable to different memory size. It is also compatible with 

any learned codec based on a conv/deconvolutional autoencoderarchitecture without having to 

retrain the model.  
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1. INTRODUCTION 
 

During the past few years, deep learning based end-to-end image and video coding field achieved 

great improvements, and performance of such algorithms can now compete with traditional 

coding systems like JPEG[1], JPEG2000[2] or BPG [3]. 
 

Their auto-encoder architecture, built with convolutional layers, enables processing different 

image resolutions, no matter the resolution used during the training step. However, with growing 

model sizes or picture and video resolutions (4K, 8K), these solutions face hardware memory 

saturation. For example, coding a standard resolution such as an HD image using a powerful 

GPU as NVIDIA GeForceRTX 2080ti with a memory capacity of 11Go, is not possible as it does 

not fit into the memory requirement. For4K resolution, it is of course worse. 
 

One way to solve this issue is to use a patch-based coding approach. The image is divided into 

patches having the same size that can be encoded independently. The patch size should be 

smaller than the image size and should fit into the memory constraints. Then, the decoded patches 

are gathered to reconstruct the decoded image, as illustrated in  

Fig.1. Moreover, this method enables to implement several forms of parallelization as well as the 

ability to access a sub-part of the image without entirely decoding it.  
 

This solution addresses the hardware limitation issues, but the reconstructed picture can have 

block artifacts in the patch boundaries, widely deteriorating the image quality ( 

Fig.2). 

http://airccse.org/cscp.html
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In this paper, the main goal is to address the hardware limitation issue of end-to-end learned 

codecs without deteriorating the decoded image quality (i.e. remove block artifacts). To do so, 

overlapping patches are encoded and then a weighting function is used to reconstruct the 

overlapped pixels. This method provides an objective and subjective quality slightly higher than 

the full image encoding approach, while leveraging the memory consumption flexibility of the 

patch-based coding solutions. However, it comes with a slight increase in complexity. 
 

 
 

Fig.1 Steps to patch-based image coding 

 

The rest of the paper is structured as follows. In section 2, the related work on end-to-end learned 

image coding as well as approaches to eliminate block artifacts are presented. Then, the patch-

based image coding using overlapping method is explained in section 3. Section 4 presents the 

results of the driven experiments. Finally, section 5 concludes the paper. 
 

 
 

Fig.2 Reconstructed image per patch using an end-to-end learned codec 

 

2. RELATED WORK 
 

2.1. End-To-End Learned Image Compression 
 

Recently, deep learning codecs have accomplished promising results in a short period of time. In 

fact, end-to-end image compression managed to achieve the state-of-the-art of traditional image 

coding in terms of coding efficiency. Authors in[4] proposed an image compression structure 

based on a conv/deconvolutional auto-encoder [5] whose role is to transform the input image into 

a latent representation. Then, a factorized entropy model is used to estimate the probability 

distribution of this representation allowing entropy coding. Balléet al.[6] replaced the factorized 

entropy model by a hyperprior auto-encoder. This mechanism enables the probability model to 
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adapt itself to the input image as well as to capture spatial dependencies in the latent 

representation.  
 

This work is considered as the reference design for numerous other state-of-the-art contributions. 

In the same context,[7] uses an autoregressive module to improve the entropy model. It succeeds 

in improving the coding performance compared to[6]. However, this improvement leads to an 

increase in complexity.[8] presented a model architecture based on residual blocks [9] and 

attention modules in order to extract a compact and an efficient latent representation. In addition, 

it presented an entropy model which exploits Gaussian mixture model to parameterize the latent 

distributions. This latter method achieves performances that compete with the versatile video 

coding (VVC) [10]encoder in Intra mode.  
 

Some works [11] used the ability of generative adversarial network (GAN) [12]to generate 

realistic and sharp images for image compression at low bitrate and for small resolutions, while 

[13], [14]combined adversarial loss with rate-distortion loss to include the fidelity aspect into the 

network allowing better subjective quality for high resolution images. 
 

Recurrent neural networks (RNN) are used in some approaches[15], [16]. They present 

progressive models with architectures designed on top of residuals. These approaches achieve 

results better than JPEG. However, they perform worse than conv/deconvolutional auto-encoder 

solutions with entropy models like [8], while having a higher complexity. 

 

The auto-encoder solution presented in [8] achieves the best performance among learned image 

codecs. It is competitive with VVC, the latest traditional codec. Despite the performance of this 

solutions, they require special hardware to operate effectively (GPU), which is limited in memory  

capacity. 
 

2.2. Deblocking with Neural Networks 
 

Deep learning approaches were also explored for post-processing decoded images, particularly to 

eliminate block artifacts. Some works focused on enhancing quality of images coded by 

traditional codecs. For instance, [17] provides a network architecture to remove block artifacts 

from JPEG compressed blocks using neighbouring blocks, while[18] tempted to deblock the 

whole decoded image. [19]introduced pre & post-processing networks to improve JPEG 

compression performance. In fact, [19]proposed an end-to-end framework composed of two 

convolutional neural networks (CNN) along with a handcrafted image codec such as JPEG, 

JPEG2000 or BPG. The first CNN learns an optimal and a compact representation of the image, 

which is compressed by the traditional image codec. Then, the second CNN enhances the quality 

of the decoded image. The results of[19] outperform several state-of-the-art methods of image 

deblocking and denoising. However, this work was only tested on grayscale, images with small 

resolutions, which is not compatible with real compression applications.       
 

Other works were interested in deblocking images coded by learned image codecs, especially 

progressive learned codecs. For instance,[20] proposed a patch-based image coding framework 

called BINet which uses binarize dneigh bouring patches to eliminate block artifacts. Each patch 

is reconstructed using 9 surrounding binarizedneighbours. This approach outperforms JPEG at 

low bitrates. 
 

[21] and [22] address the same problem by introducing a postprocessing network to remove 

blocking artifacts, which increases the size of the model and the complexity of the training 

process.  
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With a different objective, super resolution models, such as VDSR [23], showed promising 

results in enhancing decoded image quality.  
 

Nevertheless, all these related works are either networks which require a dependence on 

traditional image codecs, or their training process is difficult, and retraining is necessary if the 

learned codec changes, or, they are not consistent with codecs based on conv/deconvolutional 

auto-encoders architectures such as[8]. This paper proposes a patch-based image coding approach 

to address the hardware limitation of any conv/deconvolutional learned image codec without 

requiring a retraining. It achieves the same quality level as the full resolution coding and enables 

a flexible use of memory which make the method undemanding in terms of hardware material. 

However, these results are achieved at the expense of a slight increase of complexity (3%). 
 

3. PATCH-BASED IMAGE CODING USING OVERLAPPING 
 

3.1. Proposed Method 
 

In this approach, the process described in 

Fig.1 is followed. First, reflect padding is applied to the input image in order to make its size 

divisible by the patch size. While dividing the image into patches, every two consecutive patches 

must have a range of pixels in common horizontally and vertically, as it is illustrated in  

Fig.3. Then, the coding step is performed by an end-to-end learned image codec on input patches 

of size 𝑃  + 𝑁 , where 𝑃  is the size of the patch w/o overlapping and 𝑁  is the number of the 

overlapped pixels. In the next step, the image is reconstructed from the patches. The overlapping 

areas are combined by a weighting function which generates a progressive transition from one 

patch to the other. In fact, if 𝑏𝑚 and𝑏𝑚+1 are two consecutive reconstructed patches overlapping 

horizontally on𝑁 pixels, the value of the 𝑖𝑡ℎ overlapped pixel 𝑝𝑟𝑒𝑐(𝑖), for a given line in the 

reconstructed image is determined by the following equation:  
 

𝑝𝑟𝑒𝑐(𝑖) =   (1 −
𝑖

𝑁 −1
)  𝑝𝑏𝑚(𝑃 + 𝑖)  +   (

𝑖

𝑁 −1 
) 𝑝𝑏𝑚+1

(𝑖), (1) 

 

where 𝑖 € {0,   …  ,  𝑁 − 1} is the index of the overlapped pixels, P is the size of the patch w/o 

overlapping, 𝑝𝑏𝑚 and 𝑝𝑏𝑚+1 are pixels values, for a specific line, of two consecutive decoded 

patches 𝑏𝑚 and 𝑏𝑚+1 respectively.  
 

The same equation is valid for vertically overlapping patches. Once the decoded image is 

reconstructed, quality metrics can be computed. 
 

 
 

Fig.3 Method to overlap patches on N pixels 
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3.2. Training And Evaluation  
 

The end-to-end learned codec used in this paper is an implementation of the model architecture 

introduced in [8]. It is a conv/deconvolutional auto-encoder model leveraging the efficiency of 

residual blocks and attention modules, in addition to using a Gaussian Mixture model as the 

entropy engine. It was trained on 400 000 samples from the CLIC 2020 dataset [24]. For training, 

256x256 sized patches were randomly cropped from each image of the training set. The model 

was trained on a total of 500 000 steps. It was optimized using an Adam optimizer, with a batch 

size of 4. The learning rate value was set to 10−4 for the first 200 000 steps and then it was 

decreased to 10−5for the rest of the training. The loss function to be minimized is the rate-

distortion loss function formulated as : 
 

𝐽 = 𝐷 + 𝜆𝑅,     (2) 
 

where Drefers to the distortion between the original patch and the reconstructed one, measured by 

the Mean Square Error (MSE) or the Multi-Scale Structural Similarity IndexError! Reference 

source not found. (MS-SSIM) metrics, and R refers to the rate used to transmit the bitstream, 

estimated using the Shannon entropy. 𝜆 is the Lagrangian multiplier, allowing to adapt the bit rate 

targeted by the learned image coding model. The goal is the teach the model to minimize the 

distortion between the original patch and the reconstructed one while using a reasonable bit rate.  
 

Eight models have been trained, 4 for each quality metric (MSE and MS-SSIM), matching 4 

different bit rates. The corresponding Lagrangian multipliers are 𝜆  ={420, 220, 120, 64} for MS-

SSIM models and 𝜆 = {4096, 3140, 2048, 1024} for MSE models.   
 

Our method is then evaluated on Class B, C, D, E and F of the JVET Common Test Conditions 

(CTC) sequences (8 bit sequences), which have different resolutions (HD, 1280x720, 840x832 

and 416x240). For each sequence, one frame is extracted and compressed both entirely (referred 

as the full image approach) and by the proposed patch-based approach, with and without 

overlapping. We used N € {0, 2, 4, 8, 16, 32} overlapped pixels and we set 𝑃  =  256 similar to 

the training resolution. 
 

4. EXPERIMENT RESULTS 
 

4.1. Complexity And Memory Analysis 
 

Our method allows using the available GPU memory in a flexible way by coding multiple 

patches simultaneously. In fact, instead of coding the largest possible patches sequentially, we 

explored the GPU ability to parallelize processing. Therefore, the model was fed a batch of 

patches as input. The input shape becomes then [B, C, H, W] where C, H and W refer, 

respectively, to the channel number, the height, and the width of the input patch while B 

corresponds to the number of patches processed in parallel, called the batch size.  

 

While fixing the patch size (W and H), the batch size value can be adapted to the available GPU 

memory. Hence, if the total number of patches to code cannot be fed to the model as one batch, 

the input patches are regrouped to smaller batches. 
 

Table 1 compares the coding time of our proposed approach using parallelization, with the coding 

time of the full resolution learned coding. For information purposes, the coding time of two more 

methods is computed: our approach without parallelization and the patch-based learned image 

coding without overlapping using parallelization. 
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To achieve this experiment, images of different resolutions were extracted from the JVET CTC 

and were coded using two machines with two powerful GPUs: Nvidia GeForce RTX 2080ti and 

Nvidia GeForce RTX 3090 with memory capacity of 11Go and 24Go respectively. 
 

Full resolution coding of an HD image is not possible on both GPUs due to Out Of Memory 

(OOM) error, while full coding an 1280x720 image, can only be run on the machine with the 

GPU RTX 3090 since it has more available memory (24Go). It is important to note that these 

resolutions are standard resolutions in practical applications of image compression. Therefore, the 

fact that they cannot be run on one of the latest GPUs is inconvenient. In this case, our method 

provides a solution that enables coding high resolution images without deteriorating quality.  

 

While our method is necessary to code high resolution images (HD, 720p, ...), it is adding more 

complexity to the system for smaller resolutions. For instance, when running the resolution 

832x480 on 2080ti GPU, patch-based coding increases the coding time by 3.63% compared with 

full resolution coding. This is expected since our method requires coding more pixels in order to 

overlap patches. Patch-based coding w/o overlapping confirms this explanation since it has 

approximately the same coding time as full resolution coding. 
 

Table 1 : Coding Time 

 

Resolution  Method  

Coding 

time GPU 

2080 

11Go 

Coding 

time GPU 

3080 

24Go 

Total 

Number of 

patches 

Batch 

size 
N 

HD Full resolutioncoding OOM* OOM* - - - 

Patch coding in parallel w/o 

overlapping 
3.40s 1.96s 40 8 - 

Patch coding in parallel 

with overlapping 
3.82s 2.05s 40 8 16 

Patchcoding sequentially 

with overlapping 
6.15s 2.86s 40 - 16 

1280x720 Full resolutioncoding OOM* 0.93s - - - 

Patch coding in parallel w/o 

overlapping 
1.75s  0.95s  15 5 - 

Patch coding in parallel 

with overlapping 
1.91s  1.01s  15 5 16 

Patch coding sequentially 

with overlapping 
2.73s 1.25s 15 - 16 

832x480 Full resolutioncoding 1.06s 0.52 - - - 

Patch coding in parallel w/o 

overlapping 
1.05s  0.54s  8 8 - 

Patch coding in parallel 

with overlapping 
1.10s  0.55s  8 8 16 

Patch coding sequentially 

with overlapping 
1.586s 0.70s 8 - 16 

 

* "OOM" stands for “Out Of Memory” 
 

To conclude this section, our approach addresses the hardware limitation problem since it allows 

coding resolutions such as HD and 720p. Moreover, it enables flexible adaptation to available 

memory. However, it increases slightly the complexity of the coding system. We believe this 

increase in complexity is worthwhile for the solution this method proposes, especially for coding 

high resolution images. 
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4.2. Rate-Distortion and Visual Results 
 

Table 2 sums up the BD-rate gain of the patch-based learned image coding with and without 

overlapping comparing to learned full image coding on CTC sequences, using an end-to-end 

model trained to minimize MS-SSIM as distortion metric. For the purpose of this evaluation,full 

image approach for resolutions such as HD and 720p,was run on CPU. It is important to note that 

using CPU to run an end-to-end leaned codec is not considered because itis severely time-

consuming. 
 

Patch-based image coding without overlapping and with 2 overlapped pixels (N = 2) presents a 

loss in BD-rate, comparing to full image coding. The first observation confirms the block 

artifacts issue caused by patch-based approaches. The second one is explained by the fact that 

two overlapped pixels are not enough to recover from these artifacts. Yet, it did eliminate most of 

them since the BD-rate loss of our proposed method with N=2 is decreased significantly 

compared to patch-based coding without overlapping. As the number of overlapped pixels 

increases, the loss in BD-rate decreases which indicates that the block artifacts are removed 

efficiently. Hence, our method has managed to be on par with the performance of full image 

coding. 
 

In fact, with N = 8 and N = 16, marginal gains are observed compared to full image coding. As 

the end-to-end coding model was trained on 256x256 cropped images, it performs better on 

coding patches of similar size than coding the full resolution image, which explains the gain in 

BD-rate. For N > 16, BD-rate gains saturation is observed. 
 

Table 2 : BD-rate (MS-SSIM) gains (%) of patch-based coding schemes compared to full image coding 

system for CTC sequences. 

 

 

Rate-distortion curves for MS-SSIM models are reported in Fig.5(a) and confirm previous 

observations. The patch-based coding approach with overlapping allows to fill the gap with the 

full image coding one. While reaching a better quality, the proposed method increases slightly the 

rate comparing to patch-based coding without overlapping, which is expected as more pixels are 

  

Sequence 

Patch w/o 

Overlapping 

Patch with Overlapping 

N = 2 N =  4 N =  8 N =  16 N =  32 

Class B Cactus 0.573 -0.0003 -0.033 -0.066 -0.083 -0.079 

BasketballDrive 0.630 0.062 0.024 -0.013 -0.032 -0.030 

BQTerrace 0.744 0.025 -0.020 -0.060 -0.083 -0.090 

Class C RaceHorses 0.503 0.013 -0.014 -0.041 -0.052 -0.048 

BasketballDrill 0.484 0.022 -0.004 -0.034 -0.049 -0.051 

BQMall 0.732 0.056 0.014 -0.023 -0.044 -0.038 

PartyScene 0.428 0.032 0.005 -0.020 -0.032 -0.027 

Class D BasketballPass 0.286 0.025 0.010 -0.012 -0.015 -0.009 

BlowingBubbles 0.146 0.019 0.006 -0.008 -0.016 -0.012 

BQSquare 0.214 0.020 0.008 -0.005 -0.011 -0.012 

RaceHorses 0.281 0.026 0.009 -0.011 -0.022 -0.022 

Class E Johnny 1.240 0.081 0.041 -0.004 -0.026 -0.029 

FourPeople 0.643 0.030 -0.012 -0.046 -0.068 -0.072 

KristenAndSara 0.991 0.062 0.021 -0.015 -0.043 -0.043 

Class F BasketballDrillTex

t 
0.506 0.035 0.010 -0.019 -0.035 -0.035 

SlideShow 1.018 0.081 0.028 -0.006 -0.031 -0.031 

SlideEditing 0.533 0.019 -0.006 -0.030 -0.035 -0.031 
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encoded. We can also conclude that the overlapping method with 8 overlapped pixels provides 

the best results. In fact, the decoded images of the methods mentioned before are visualized in 

Fig.4.Overlapping with N = 2 (Fig.4.d) and N = 4 (Fig.4.e) reduces the block artifacts while 

overlapping with 8 pixels (Fig.4.f) eliminates them entirely. 
 

 
 

Fig.4 Visual results for BasketballDrill using MS-SSIM model with  λ = 420 

 

 
 

(a) MS-SSIM Rate-Distortion results 

 
(b) PSNR Rate-Distortion results 

 

Fig.5 Rate-Distortion results of the proposed approach compared to Full Image coding and patch-

based image coding without overlapping for Basket ball Drill and Four People sequences. 
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The BD-rate results with distortion measured with Peak Signal to Noise Ratio (PSNR) are 

provided in Table 3,for the end-to-end learned codec trained to optimize the MSE metric. 

Compared with full image coding, patch-based image coding without overlapping showed a BD-

rate loss for PSNR metric (Table 3) less important than the BD-rate loss for MS-SSIM metric 

(Table 2).This is also illustrated in Fig.5(b) as the quality gap between image coding per patch 

without overlapping and the full image coding has narrowed. Furthermore, although block 

artifacts existin the decoded image (Fig.6.c), they are less visible than the decoded image 

resulting from the MS-SSIM end-to-end codec (Fig.4.c). This behavior may be because MS-

SSIM is computed using a sliding window while MSE is a pixel-based metric. In any case, the 

proposed approach improves the BD-rate performance, the rate-distortion curves (Fig.5)  and the 

perceptual quality of the decoded image (Fig.6 and Fig.4). 
 

Table 3 : BD-rate (PSNR) gains (%) of patch-based coding schemes compared to full image coding system 

for CTC sequences. 

 

 Sequence Patch w/o 

Overlapping 

Patch with Overlapping 

N = 2 N = 4 N = 8 N = 16 N = 32 

Class B Cactus -0.022 -0.073 -0.080 -0.086 -0.096 -0.089 

BasketballDrive 0.042 -0.010 -0.010 -0.010 -0.013 -0.010 

BQTerrace -0.040 -0.100 -0.113 -0.121 -0.132 -0.123 

Class C RaceHorses 0.010 -0.033 -0.037 -0.045 -0.046 -0.040 

BasketballDrill -0.030 -0.071 -0.077 -0.078 -0.079 -0.070 

BQMall 0.013 -0.018 -0.023 -0.020 -0.021 -0.010 

PartyScene 0.033 -0.001 -0.006 -0.010 -0.016 -0.020 

Class D BasketballPass -0.014 -0.047 -0.046 -0.050 -0.040 -0.022 

BlowingBubbles 0.005 0.001 0.002 -0.008 -0.014 -0.012 

BQSquare 0.017 0.008 0.007 0.014 0.015 0.020 

RaceHorses 0.009 -0.005 -0.010 -0.013 -0.017 -0.017 

Class E Johnny 0.049 0.016 -0.002 -0.013 -0.023 -0.010 

FourPeople 0.016 -0.023 -0.031 -0.045 -0.070 -0.070 

KristenAndSara 0.042 -0.001 -0.011 -0.026 -0.058 -0.030 

Class F BasketballDrillT

ext 
0.011 -0.031 -0.036 -0.040 -0.042 -0.040 

SlideShow 0.051 -0.030 -0.032 -0.026 -0.034 -0.020 

SlideEditing 0.029 -0.006 -0.009 -0.016 -0.016 -0.010 

 

 
 

Fig.6. Visual results for Four People using MSE  model with λ = 4096 
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5. CONCLUSION 
 

This work proposes a solution to the memory saturation problem that end-to-end learned codecs 

face while coding high resolution images such as HD. This solution consists in patch-based 

image coding while removing block artifacts using overlapping. This method benefits from 

flexible memory consumption and manage not only to achieve full image coding performance, 

but also to improve it slightly (-0.034% for MSE models and -0.024% for MS-SSIM models), 

even though it increases lightly the complexity (3%). Results are provided on JVET CTC 

sequences with MSE and MS-SSIM based models. The network architecture of[8] is used as our 

baseline end-to-end learned codec, but this method is compatible with any learned codec based 

on a conv/deconvolutional auto-encoder architecture. Furthermore, the proposed method also 

applies to other image processing tasks, such as denoising, thus enabling patch-based processing 

for a wide range of CNN based applications. 

 

In our future works, we aim to remedy to the increase in complexity, caused by coding additional 

overlapped pixels, by training an end-to-end image coding model to smooth the patch borders and 

hence remove the border artifacts automatically. 
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