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ABSTRACT 
 

The rapid evolution of technology in the past years largely contributed to the digital 

transformation, however, attackers took advantage of it to spread malicious software 

(malware). Nowadays, malware has become more sophisticated, which makes it harder to be 

detected with traditional techniques. Over the years, attacks became, not only limited to 
computer-based operating systems, but also to that of mobile-based, which makes it even harder 

for analysts. Furthermore, this increases the need for more research in this direction. The 

technological evolution also gives researchers the chance to utilize Artificial Intelligence widely 

and leverage its capabilities in many fields in general and in the field of malware detection in 

particular. This paper provides a literature review on malware detection using Artificial 

Intelligence techniques and specifically, Machine Learning and Deep Learning techniques. The 

paper helps researchers to have a broad idea of the latest malware detection techniques, 

available datasets, challenges, and limitations. 
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1. INTRODUCTION 
 

Despite the significant improvement of technology and its positive impact on bringing ease to 

humans’ lifestyle, and the rapid increase in the usage of internet in people’s daily life, all of that 

evolution provides a great opportunity for malware authors to expand their work and expand 
spreading malware. This surge was specifically evident in last two years, which were considered 

record-breaking due to COVID-19 [1]. The pandemic prompted people to shift to remote work 

and increase the daily usage of internet coinciding lockdown. The International 
Telecommunication Union (ITU), 2021, statistics showed that at 2019, the beginning of the 

pandemic, about 54% of worlds’ population used internet with about 4.1 billion people. In 2020, 

the number of internet users grew by 10.2% which is considered a leap according to the statistics 
reported in [2]. This number is still growing; nearly two-thirds of the world’s population uses the 

internet [3]. 
 

In conjunction with this increase, Malicious Software (Malware) is considered a major threat 
worldwide, which continues to expand exponentially. According to an up-to-date study by AV-

Test institute [4], about 450,000 malware instances are discovered daily. Originally, malware 

authors targeted computer-based users, especially Windows users, but through the evolution of 

technology, people become less dependent on computers and depend on other Operating Systems 
(OS); Android, iOS. This creates a new path for malware authors to spread their malware through 
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other OS. Figure 1 illustrates how the number of Android users increase in comparison to other 
OS. Malware authors expand to target more than one platform, making it more difficult to limit 

malware spreading. 

 
 

Figure 1: Operating System Market Share [2012-2022] [5] 

 

Malware exist in different forms; Virus, Worm, Rootkit, Ransomware, and etc. Ransomware [6] 

is considered the hardest among them as it encrypts the victim’s files and ask for ransom in 
exchange to decrypt them, which make attackers head on using it widely as a business. 

Furthermore, they target organizations, not only individuals [7]. 
 

Based on previous research in the field of malware detection, to analyze a malware sample there 
exists two methods; static analysis and dynamic analysis. Static analysis [8][9] depends on 

examining the suspicious sample without executing it. Traditionally, static analysis relied on 

Heuristic-based and Signature-based methods. Heuristic-based analysis encompasses a set of 
rules that are determined by experts, while signature-based depends on signatures, which are the 

unique identifier for a binary file. Both methods are effective and straightforward in detecting 

malware with a limited false positive ratio. However, these techniques fail in detecting any 
variations of this malware, beside failing in detecting unknown malware. 
 

On the other hand, dynamic analysis [10] comprises running the suspicious sample in a safe 

environment which allows analysts to trace its behavior, for example; Application Programming 
Interface (API) calls, system calls or network traffic trying to find any suspicious activity. 

 

Dynamic analysis is more effective, compared with static [11], in its ability to detect new and 

unknown malware. However, dynamic analysis is time and resource consuming, furthermore, the 
existence of evasive techniques is an obstacle in dynamic analysis where sample curtail its 

functionality when detecting that it run on an isolated environment [12] which makes it difficult 

in detecting advanced malware. 
 

Artificial Intelligence (AI), with all its advancement, can provide powerful detection against 

advanced malware. When combining the modeling of malicious and benign behavior, it could 

make it easier to pick out the malicious ones. The goal of researchers is to build models that are 
capable of detecting different types of malware, including unknown and zero-day malware. In the 

literature, various malware detection techniques using AI are proposed, including Machine 

Learning (ML) [13][14][15] and Deep Learning (DL) [16][17][18]. 
 

This paper provides a review of the literature on malware detection using AI techniques; 

specifically, ML and DL techniques on both computer-based and mobile-based malware. In 

addition, this paper discusses the analysis methods, the latest datasets, limitations and challenges 

that face researchers. 
 

This paper is organized as follows; Section 2 provides a summary of recent research in the field 

of malware detection using AI. It discusses malware detection pipeline including recent used 

datasets in both computer and mobile based, how analysis is done and its types, what kind of 
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features could be useful in the detection phase and how feature selection impact detection 
accuracy. Section 3 describes the challenges and limitations facing malware analysts. Section 4 

summarizes the concluding observations of this survey. 
 

2. RELATED WORK 
 

This section provides a summary of academic research that addresses how malware is detected 
using AI techniques. 

 

2.1 Machine Learning 
 

Over the past decade, ML algorithms have been used to detect and classify malware. Based on 

previous studies [14][19], Malware detection based on ML provides promising results as long as 

the suitable model and features are used. However, there exists some barriers as it requires large 
and labeled datasets to be able to predict malware with high accuracy, also dozens of malware are 

created daily [4], the computational cost that is used to periodically train and update the ML 

classifier is high. Furthermore, the wide variety of platforms make it difficult as each malware is 
implemented differently to target different platform. The following subsections summarize 

computer and android based related work that use ML to detect malware. 
 

2.1.1 Computer-Based 
 

In recent years, researchers have widely applied ML to detect computer-based malware. Table 1 

lists computer-based related work that use ML in the detection of malware. Nicola et al. [20] 

proposed a malware taxonomic classification pipeline that was able to detect malicious Portable 
Executable (PE) files by extracting static features and used them for the classification of 

malware. In addition, the authors labeled those detected malware to their malware category. 

However, the authors faced some limitations as the mislabeling of malware samples in the used 
dataset, few samples were used to train classifiers and an overlap exists among different threat 

types and behavior. Al-Kasassbehet al. [21] selected seven static features and used them as the 

input to the classifier and out of multiple classifiers used in their experiment, J48 was the most 

promising classifier. However, the highly unbalanced dataset that was used in their experiments 
leads to biased results. Sanjay et al. [22] studied the frequency of Opcode occurrence to detect 

unknown malware. They used multiple classifiers to compare between them in addition to 

multiple feature selection methods to compare between them too. Their results showed that 
Fisher Score (FS) performed better than other methods with multiple classifiers. Unlike previous 

methods, Rabadiet al. [23] used dynamic features in their experiment as they execute samples in 

an isolated virtual machine using Cuckoo Sandbox [24] to extract API-based features that were 
used in the detection phase. Nevertheless, the authors’ work targeted only Windows 7 and as a 

result of depending on Cuckoo Sandbox, their method is limited to Cuckoo’s hooked API calls 

only. Muhammad et al. in [25] used Gradient Classifier on both static and dynamic features 

separately and reported that the accuracy of the classifier based on static features was better than 
that of dynamic features. However, their study is limited due to the small size of the used dataset. 

The detection of mobile-based malware vary from that of computer-based malware, the following 

subsection shows related work that use ML in the detection of Android-based malware. 
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Table 1: Summary of related work on Computer-based malware detection based on ML Techniques. 

Where: TPR: True Positive Rate, FPR: False Positive Rate, Acc: Accuracy 

 

Year Algorithms Techniques Features 
Measures  Dataset  

Metric Value Dataset Count Availability 

2021 

[20] 
GBDT Static Raw PE 

TPR 

FPR 

86.3 % 

0.1 % 

Malicious 

Benign 

Unlabeled 

400K 

400k 

300k 
✓ 

2020 

[21] 

Ridor, RF, 

PART, 

J48, and 

IBk 

Static 

NumberOfSections, 

VirtualSize2, 

ResourceSize, 

ExportSize, 

IatRVA, 

ImageVersion, and 

Debug Size 

TPR 

FPR 

98.56 % 

5.68 % 

Malicious 

Benign 

100,000 

16,000 
✓ 

2020 

[23] 

SVM, 

XGBoost, 

RF, DT, and 

PA 

Dynamic API calls Acc. 98 % 
Malicious 

Benign 

7105 

7774 
✓ 

2019 

[22] 

RF, LMT, 

J48 Graft, and 

NBT 
Static Opcodes Acc. 100 % 

Malicious 

Benign 

6010 

4573 
✓ 

2019 

[25] 

Gradient 

Classifier 

Static 

Dynamic 

Static: DOS, PE, 

Optional, and 

Sections Table 

Dynamic: API, 

Summary 

Information, 

DLLs, Registry keys 

changed 

Acc. 

Acc. 

99.36 % 

94.64 % 

Malicious 

Benign 

Malicious 

Benign 

39,000 

10,000 

2200 

800 

Not 

Mentioned 

 

2.1.2 Android-Based 
 

The rising number of android malware nowadays raises the need for researchers to build models 

that are able to detect them. Table 2 summarizes mobile-based related work that use ML in the 

detection of malware. McDonald et al. [26] investigated the effectiveness of four different ML 
algorithms in conjunction with features selected from Android manifest file permissions to 

classify if the inputted file was malicious or benign. The findings showed that compared to all 

algorithms, Random Forest (RF) had the highest accuracy. Their paper is limited only to 
permissions, while neglecting some other static features that could have been extracted from 

manifest file too. Pandey et al. [27] proposed a methodology for detecting malicious android 

applications. Seven static features were extracted, then they applied two feature selection 
algorithms to remove irrelevant features. They worked on a balanced dataset and tried different 

classifiers, but RF was the one with the best accuracy reported. Moutazet al. [28] depended on 

static features as well; the authors proposed three different grouping strategies to choose the most 

valuable API calls to maximize the ability to identify Android malware apps. In addition, their 
approach could determine the similarities among malware families. Sangalet al. [29] extracted 

android permissions and intents features to be then used as an input for the ML algorithm. Their 

study showed that RF was the best classifier. However, they used an unbalanced dataset. The 
benefit of Myaret al. [30] approach was that the system is platform independent so that different 

versions of Android OS can benefit from it. They combined features from static and dynamic 

analysis. However, the time complexity was high in real smartphone because of hardware 

requirements, which makes real-time detection is not applicable with their proposed approach. 
 

As demonstrated, permission-based features are the most commonly used feature in the 

classification of an Android malware, followed by API calls features. 

 



 Computer Science & Information Technology (CS & IT)                                        95 

Table 2: Summary of related work on Android-based malware detection based on ML techniques. 

Where: Acc: Accuracy 

 

Year Algorithms Techniques Features 
Measures  Dataset  

Metric Value Dataset Count Availability 

2021 

[26] 

RF, SVM, 

Gaussian 

NB, and 

K-Means 

Static permission-based F1 
75.00 % - 

84.00 % 

Malicious 

Benign 

6000 

4597 
✓ 

2021 

[27] 

RF, KNN, 

XGBoost, 

and DT 

Static 

permission-based, 

providers, activities, 

receivers, 

services, and opcodes Acc. 
92.50 % - 

99.00 % 

Malicious 

Benign 

15,000 

15,000 
✓ 

2020 

[28] 

RF, KNN, 

RT, NB, and 

J48 
Static 

permission-based 

and API calls 
Acc. 

87.90 % - 

94.30 % 

Malicious 

Benign 

13,719 

14,172 
✓ 

2020 

[29] 

RF, SVM, 

KNN, NB, 

and DT 
Static 

permission-based and 

intents 
Acc. 

88.23 % - 

96.05 % 

Malicious 

Benign 

396 

1126 
✓ 

2019 

[30] 

RF, NB and, 

KNN Hybrid 

permission-based, 

API calls and 

Providers 
Acc. 

72.00 % - 

89.00 % 

Malicious 

Benign 

113 

219 
✓ 

 

2.2 Deep Learning 
 

When the amount of training data is large, DL, which is a subset from ML, is expected to perform 

better. Different DL algorithms such as Recurrent Neural Networks (RNN) [31], Convolutional 
Neural Networks (CNN) [32], Multilayer Perceptron (MLP) [33], Deep Belief Network (DBN) 

[34], and Long Short Term Memory Network (LSTM) [35] have been applied in the process of 

malware detection [36]. The following subsections summarizes computer and mobile based 
related work that use DL to detect malware. 
 

2.2.1 Computer-Based 
 

Table 3 summarizes computer-based related work that use DL models to detect malware. Azeezet 

al. [33] combined DL models with ML models. The initial stage classification was done by a 

stacked ensemble of fully-connected MLPs and one-dimensional CNN and the second stage 

classification was done by ML models. It was reported that RF achieved the best accuracy. The 
proposed framework is limited to supervised learning, and that requires that samples must be 

identified and labeled by experts. This raised the need for developing unsupervised ensemble 

learning frameworks for malware recognition. In addition, the authors used an unbalanced 
dataset, which led to biased results. In [37], Zhonget al. proposed a Multi-Level Deep Learning 

System (MLDLS) for malware detection. First, Ngram analysis was applied on both static and 

dynamic features so that candidate n-gram features were extracted from both. Additionally, the 
dataset was partitioned into clusters using K-Means clustering algorithm. CNNs, Deep RNN, and 

Deep Fully Connected Feed Forward networks (FC) models were used in the training phase and 

the one with the best results was selected to classify the input sample. 
 

Static and Dynamic features only provide information in text formats. However, researchers 

started to embrace the fact that image-based features could improve the malware detection 

research moving forward. As a result, they started looking for vision-based approaches to use due 

to their advancement in the image field. 
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Table 3: Summary of related work on Computer-based malware detection based on DL techniques. 

Where: Acc: Accuracy, TPR: True Positive Rate, AUC: Area Under Curve 

 

Year Algorithms Techniques Features 
Measures  Dataset  

Metric Value Dataset Count Availability 

2021 

[38] 
Dense Net 

Vision  

based 

Gray-scale 

image 

Acc. 

Malimg 

BIG 2015 

MaleVisMalicia 

98.23 % 

98.46 % 

98.21 % 

89.48 % 

Malicious(Malimg, 

Big2015, 

MaleVis, Malicia) 

Benign 

9339, 

21741, 

14226, 

9670 

1043 

✓ 

2021 

[33] 

Stage 1: MLP, 

CNNs 

Stage 2: NB, 

DT, RF, 

Gradient 

boosting, and 

AdaBoosting 

Static 

Number 

Of 

Sections, 

Major 

Linker 

Version, 

Address 

Of Entry 

Point, 

etc.. 

Acc. 

F1 

100 % 

100 % 

Malicious 

Benign 

14955 

5012 
✓ 

2020 

[39] 

Stage 1: CNNs 

Stage 2: Deep 

Forest 

Vision 

based 

Gray-scale 

images 

Acc.: 

Malimg 

BIG 2015 

MaleVis. 

98.65 % 

97.2 % 

97.43 % 

Malicious(Malimg, 

Big2015, 

MaleVis Benign 

9339, 

21741 

14226 

1044 

✓ 

2019 

[37] 

CNN, RNN, 

FCs 
Hybrid N-gram 

Static:TPR 

Static:AUC 

Dynamic:TPR 

Dynamic:AUC 

72-92 % 

68-85 % 

68-89 % 

69-90 % 

Malicious 

Benign 

2,242,234 

3,425,176 
✗ 

 

Vision-based Approach In recent years, researchers started to employ visual-based approaches 

in the detection of malware by converting malware source code into malware binary and then 
convert binaries into either RGB images or Gray-scale images. These images were then classified 

into their relative family. It has been observed that the images of malware that belongs to the 

same family are quite similar in structure and texture [38]. Therefore, malware could be 
converted into images and then DL algorithms are used. Hemalathaet al. [38] proposed a 

visualization-based method, where malware binaries were depicted as two-dimensional images 

and then classified by DenseNet model. The study was evaluated on four different 

datasets;Malimg [40], Big2015 [41], MaleVis [42] and Malicia [43]. The model achieved high 
accuracy, however the proposed method came with high false negative rate. In [39], images were 

processed into two phases, sliding window phase and cascade layering phase. Sliding window 

phase preserved the spatial relationship between raw pixels, where each input image was scanned 
with parallel processing of two sliding windows. While cascade layering phase consisted of 

sequential layers, with each layer consisting of four ensemble forests so that the final prediction 

was obtained and the class with the highest probability was the matching class for the input 
image. Having discussed computer-based malware detection using DL techniques, in the 

following subsection authors proposed different DL models to detect mobile-based malware. 
 

2.2.2 Android-Based 
 

Table 4 summarizes Android-based related work that use DL models to detect malware. Pei et 

al.[44] proposed AMalNet model that extracted static features like APIs, permissions, and 

components then stored them in a database. Natural Language Processing (NLP) features were 
then extracted and mapped into vectors to be the input for the proposed hybrid DL technique. The 

authors combined Graph Convolutional Networks (GCN) and Independently Recurrent Neural 

Network (IndRNN) in order to take full account of the semantic distribution information of 
malware. Their proposed method is limited to static features, so if the sample is obfuscated, this 

method would not work as expected. On the other hand, Alzaylaeeet al. [45] suggested DL-

Droid, a DL-based dynamic analysis system for Android malware detection. DL-Droid utilized a 
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state-based input generation approach, Stateful vs. Stateless input generation, and experiments 
were executed four times; first based on stateful dynamic features, second based on stateless 

dynamic features, third based on stateful hybrid features and last was based on stateless hybrid 

features. The third one was the one with the best reported performance. 
 

Lu et al. in [46] proposed an android malware detection algorithm which combined Deep Belief 

Network (DBN) and Gate Recurrent Unit (GRU). The algorithm extracted both static features 

and dynamic features. The DBN was used to process the static features, while GRU was used for 

the dynamic ones. A total of 351 features were extracted, including 303 static features and 48 
dynamic features. The features from both models are fed into the Back Propagation (BP) neural 

network. The authors stated that the results were within an acceptable range. However, they 

mentioned that their method needed to be optimized to reduce the time complexity. A two-layer 
method was proposed in [47] for the detection of malicious android applications. The first layer 

combined static features like permissions, intent, and component information based with fully 

connected neural network. However, in the second layer a new method cascaded CNN and 
AutoEncoder which was used to detect malware through network traffic features. Unlike previous 

methods, Feng et al. in [48] used a pre-installed solution. By leveraging customized Deep Neural 

Networks (DNN) and binary features, sample were classified as malicious or benign. Their 

proposed approach combined features extracted from binary code and behavioral features. The 
proposed model was tested on six different real mobile devices with high accuracy, but the 

difference was in the prediction time. Due to limited training dataset, their proposed model failed 

in the detection of new malware families. 
 

Table 4: Summary of related work on Android-based malware detection based on DL techniques. 
Where: Acc: Accuracy 

 
Year Algorithms Techniques  Features Measures  Dataset  

Metric Value Dataset Count Availability 

2020 

[46] 

DBN, GRU and 

BP Neural 

Network 

Hybrid 

 Static: resource 

features and 

semantic features 

Dynamic: 

behavioral 

features 

Acc. 96.82 % 
Malicious 

Benign 

6298 

7000 
✓ 

2020 

[47] 

First layer: 

Neural Network 

Second 

layer:CNN and 

AutoEncoder 

Hybrid 

 First layer: 

permission, 

intent and 

component 

information 

based Second 

layer: 

Network traffic 

features 

Acc.: 

First layer 

Second layer 

95.22 % 

99.3 % 

Malicious 

Benign 

4354 

5065 
✓ 

2020 

[48] 
RNN Hybrid 

 Behavioral-

based features & 

Binary code 

Acc. 96.75 % 
Malicious 

Benign 

45284 

29010 
✓ 

2020 

[44] 
GCN, IndRNN Static 

 

permissions, 

components and 

APIs 

Acc. 

F1 

99.69 % 

99.7 % 

Malicious(DREBIN, 

AMD, lab-built, 

AndroZoo and 

Praguard) 

Benign 

5560, 

24553, 4664, 

50000 and 

1497 50000 
✓ 

2020 

[45] 

First phase: 

MLP 

Second 

phase: 

SVM, PART, 

NB, RF, and 

J48 

Dynamic(D 

Hybrid(H) 

) 

API calls, action, 

and events 

Acc.: 

D (stateful) 

D (stateless) 

H (stateful) 

H (stateless) 

95.21 % 

94.95 % 

98.5 % 

94.95 % 

Malicious 

Benign 

11505 

19620 
✓ 
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Other than conventional ML and DL techniques, there are other algorithms that are adopted from 
other domains that are used to detect malware, NLP was considered to be one of them. As shown 

in Table 5, Mimura et al. [49] extracted all printable strings from dataset of malicious and benign 

samples and split strings into word then used Doc2vec or LSI, which are common NLP methods 

used in representing input as vectors. Hence, a classifier was trained with labeled feature vectors. 
The accuracy ratio of their proposed method was high, however, they stated that their method 

might not be applicable to sophisticated packed samples. In addition, Dovomet al. in [50] 

employed fuzzy and fast fuzzy pattern trees for edge malware detection by using the opcodes of 
Internet of Things (IoT) applications. The authors mentioned that their proposed model 

performed better than other ML classifiers. On the other hand, Ameret al. [51] depended on 

dynamic analysis. They used a technique in NLP called Word2Vec in their initial phase, which 
was used to produce word vectors from large corpus of text. The input used in their proposed 

method was a sequence of API calls. Next, they computed the similarity between API calls and 

for the final step they used K-means to cluster the similarity matrix to either benign or malware. 

The authors relied on pre-processed API call sequence datasets and did not mention any 
evaluation on real-life samples testing. Pre-processed API samples could lead to misleading 

interpretations of the proposed model. 
 

Table 5: Summary of related work on malware detection based on AI Techniques from other domains. 

Where: Acc: Accuracy, DS: Dataset 

 

Year Algorithms Techniques Features 
Measures  Dataset  

MetricValue Dataset Count Availability 

2021 

[49] 

NLP, SVM, 

CNN, MLP. 

XGB and RF 
Static Strings 

98.8 % - 

Acc. 

99.7 % 

Malicious(DS1) 

Benign(DS1) 

Malicious(DS2) 

287,375 

250,000 

28,488 
✓ 

2020 

[51] NLP Dynamic 
API call sequence 

n-gram 

F1 99 % 

Acc.99.7 % 

Malicious 

Benign 

30,658 

21,422 ✓ 

2019 

[50] 

Fuzzy Pattern 

Tree Static OpCodes 

86 % - 

Acc. 

100 % 

Malicious & 

Benign 33,363 ✓ 

 

Following the discussion about malware detection techniques in the literature, the following 
section outlines the most recent datasets used in malware research. Moreover, it discusses the 

different features’ categorization which influence building any AI-based model for malware 

analysis. 
 

2.3 Malware Detection Contextual Map 
 

Figure 2 summarizes the pipeline that is used in the detection of malware using AI, whether it is 
Computer-based or Mobile-based. Each phase in the pipeline affects the detection accuracy, 

starting from the samples collected, and the importance of using a balanced dataset. Passing by 

analysis approaches and features extraction which differs according to the platform as each 

platform consists of its own features and ending by feature selection and classification where the 
sample is classified as malware or benign one. Since that most targeted platform are Windows-

based and Android-based, this paper focuses on them. 
 

The following subsections discuss each phase in the contextual map in detail. 
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2.3.1 Datasets 
 

ML and DL both require large datasets for training before being used to detect malware [52]. 

However, finding a ready to use an up-to-date dataset is a challenging task that faces most of the 

researchers. Table 6 summarizes datasets that were most used by researchers in recent years. 

 
Figure 2: Malware Detection Contextual Map 
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Table 6: List of Prominent Malware Datasets 

 

Name Year Platform Description 

CCCS-CIC- 

AndMal-2020 [53] 
2020 Android-based 

The dataset includes 200,000 malware and 

200,000 benign samples. 

MaleVis [42] 2019 Computer-based 
An open-set image malware dataset. It 

contains 9100 training and 5126 validation 

RGB images. 

CIC- 

InvesAndMal2019 

[54] 

2019 Android-based 

The dataset consists of static features of 1522 

applications which consists of 396 malware 

and 1126 benign application. 

Benign & 

Malicious PE Files 

Kaggle [55] 

2018 Computer-based 

The dataset is a collection of malicious and 

benign data from PE 

Files. 

EMBER [56] 2017 Computer-based 

The dataset is a collection of features 

calculated from 1.1 million PE file samples 

(400K malware, 400K benign, 300K 

unlabeled). 

Malimg [40] 2017 Computer-based 
The dataset contains 9,339 malware images 

from 25 families. 

CICAndMal2017 

[57] 
2017 Android-based 

The dataset includes 10,854 samples (4,354 

malware and 6,500 benign). 

AMD [58] 2017 Android-based 
The dataset contains 24,553 malware 

samples ranging from 2010 to 2016. 

AndroZoo [57] 2016 Android-based 
The dataset contains 18,215,449 different 

APKs. 

BIG 2015 [41] 2015 Computer-based 

The dataset contains a set of known malware 

files representing a mix of 9 different 

families. 

APIMDS [59] 2015 Computer-based 
The dataset contains a full list of malicious 

API sequences, hash information. 

PRAGuard [60] 2014 Android-based 

The dataset contains 10,479 malicious 
samples, obtained by 

obfuscating the MalGenome and 

theContagioMinidump datasets with seven 

different obfuscation techniques. 

DREBIN [61] 2014 Android-based 
The dataset contains 5560 malware and 

123453 benign samples. 

FFRI [62] 
From 

2013 
Computer-based 

The dataset was generated by 

Cuckoo Sandbox and FFRI yarai analyzer 

Professional, It contains dynamic logs. 

Malicia [43] 2013 Computer-based 
The dataset contains 11,688 malware 
binaries collected over a period of 11 

months. 

 

2.3.2 Analysis 
 

To understand the behavior of an input file, it must be analyzed. There are two techniques that 

help in the process of analyzing samples [52]; Static analysis and Dynamic analysis. Static 
analysis is the process of analyzing a sample without running it. Dynamic analysis, unlike static, 

means that a sample has to be running to be able to understand its behavior and functionality 
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[63]. Analysts use hybrid analysis techniques; which are a combination of both static and 
dynamic analysis. Analysis plays an important role in extracting features from the files so that 

these features can then be used as the input for the classifier that labels samples into either 

malware or benign. 
 

2.3.3 Feature Extraction 
 

This process is where features are extracted from samples. They provide an abstraction view of 

the file so that it can be later classified into either malicious or benign. This process plays a vital 
role and highly influence the accuracy and efficiency of any model [52]. Features can be 

classified into either static or dynamic features, which differ based on the analysis technique used 

as explained in the previous section. It is important to mention that features extracted from 
computer-based files vary from that of those of mobile-based as explained below. 

 

Windows-based Features A taxonomy of features is provided in Figure 2; Windows based 
features could be derived by extracting (a) Windows API calls. API calls are used to describe the 

behavior of the executable. API call could be extracted statically or dynamically. In static, API 

calls could be extracted from source code, while in dynamic, API call sequences are extracted 

while running the sample. Liu et al. [64] extracted API call sequence after running samples on 
Cuckoo sandbox. The authors conducted an experiment and their accuracy reached 97.85%. (b) 

Control Flow Graph (CFG) features could be extracted from static analysis. These covers all 

possible paths during execution of a sample. Behera et al. in [65] used CFG to detect obfuscated 
programs by getting a basic executable before and after obfuscation, then decompiling both 

executables to an assembly code. Additionally, the authors made a basic block of codes and 

constructed CFGs from those basic block of codes. Finally, the authors compared both CFGs 

using a graph matching algorithm and if the CFG of the original executable is found to be 
isomorphic to that of obfuscated CFG, then the executable is classified as obfuscated. 
 

Recently, researchers turned into using (c) Images; binaries are transformed into grayscale/ RGB 

images. Kancherlaet al. [66] extracted different image-based features like Intensity based, 
Wavelet based and Gabor based features to be the input for ML models to classify samples as 

malware or benign relying on their image. The accuracy of used method reached 95.95%. (d) 

Strings also could be an indicator for a malware sample. Ito et al. in [67] used ASCII strings and 
converted them into words, then used NLP techniques to convert the words to a feature vector. 

On the other hand, (e) system calls traces, which are the way for programs to interact with the 

kernel of the OS, could be used to detect malware. Kim. in [68] extracted system calls traces. The 
author used API tracer to collect system call traces and implemented N-grams, where the features 

are sequences of system calls instead of a single system call, then applied ML technique on 

preprocessed traces. The accuracy of the proposed method reaches 96%. (f) Registry, where low-

level settings for the Microsoft Windows OS and for applications are stored, was also considered 
by researchers as a feature that could help in the detection of malware. Tajoddinet al. [69] 

extracted registry accesses by running samples in Cuckoo sandbox and searched for anomalous 

registry accesses. 
 

Android-based Features Android-based features described in Figure 2 differ from that of 

windows-based. Features are extracted from the corresponding application package (APK) where 

each APK consists of Meta-Inf folder, assets, Manifest file, classes.dex, lib, and resources. 
Manifest file describes information about the app. (a) Permissions, which are one of the most 

used features in the field of android malware detection as it identifies the privileges that any 

android app need. (b) intents, defined as “A messaging object you can use to request an action 

from another app component.” [70] and more features like (c) services, (d) providers and (e) 
activities are stored in that manifest file. Khariwalet al. [71] chose permissions and intents 
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features in their experiments. Then, the authors extended their features by using NLP word 
embedding technique to create Bag-of-Words and applied three different ML algorithms. (f) 

Network traffic could also be an indicator for any suspicious activity on the mobile device. Wang 

et al. [72] combined network traffic analysis with ML in their method. The authors specifically 

used HTTP requests and TCP Flows as their feature set, and at last they applied ML to classify 
whether mobile application is malicious or not. Mobile device statistics like (g) memory usage, 

(h) battery usage, (i) process reports, and network usage could also be an indicator for suspicious 

behavior. Authors in [73] extracted previous features using Mal-warehouse Information 
Extraction Tool (MIET), and by using ML algorithms on the exported features, the sample is 

categorized into rather malicious or benign. 
 

There are common features between Windows-based and Android-based, but represented in 
different forms. API calls are considered one of them. Peiravianet al. [74] proved that by 

combining API calls and permissions, accuracy can be improved. The authors compared thier 

results of combining both features and each feature separately, they found that by combining both 
features the accuracy raised to more than 2%. Images also could be used in the detection of 

Android malware as it is used in that of Windows-based; Ding et al. [75] extracted bytecode file 

from Android APK file, and converted that bytecode stream into a 2D bytecode image to be the 

input to CNN model to classify them. Zhao et al. [76] made a Android malware detection system 
based on CNN using Opcode sequences. The Opcode features are derived from Dalvik 

instruction, which is a set that contains operational information about the app. 
 

2.3.4 Feature Selection 
 

To improve model performance and reduce computational cost, not all extracted features are used 

for classification. Feature selection is the process that reduces the number of input 
variables/features before being used in the malware prediction classifier.Babaagbaet al. [77] 

highlighted the importance of feature selection. The authors experimented different ML 

algorithms without using any feature selection method, and the accuracy of the algorithms varied 

from 68.45% to 77.18%. However, after employing Information gain algorithms, the results were 
improved according to more than one algorithm. 

 

3. CHALLENGES AND LIMITATIONS 
 
With the wide development of malware, detecting it become a challenge to researchers. Based on 

the previous discussion and mentioned limitations in section 2, the most common obstacles 

encountered are listed below. 
 

• Anti-analysis Techniques: In order to dynamically analyze a sample, it must be run on an 

isolated environment, for example Virtual Machines (VM) or sandboxes [23]. As a result, 

Malware developers began to use methods to evade from being run on a VM, sandbox, by 

detecting whether there exists analysis tools on the system and in addition check if the 
system is on debug mode or not. In case of existence of the previously mentioned methods, 

malware avoid running correctly on the system, thus bypass from being analyzed and 

detected. 
• Obfuscation and Packing: Another technique malware authors uses to evade from basic 

static analysis, is to either pack their malware or obfuscate it. Obfuscation [78] is a 

technique of making a piece of code unreadable while packing is considered a subset of 
obfuscation, where malware is compressed or encrypted. 

• Dataset: Finding a dataset is an essential step for building any ML/DL model, which is 

considered a challenge for malware researchers. Not only finding any dataset is the solution 
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for the problem also the dataset must be up-to-date, large, well labeled and updated 
periodically so that a model could be used in the detection of malware. 

• Evolution of malware: There exists sophisticated malware and undetected malware. To 

evade from signature-based detection, malware authors develop their malware to bypass 

basic detection techniques. Sen. et al. citesen explained the idea about malware developers 
who used Genetic Programming (GP) in order to create new variants of malware 

automatically. 

• AI Obstacles: AI, as mentioned before, is an effective field for malware detection but as 
any technology it has some limitations. It requires high computing resources, time and 

labeled dataset. Furthermore, any model is expected to have a percentage of false positives 

and the challenge is to reach a tolerable ratio of false positives and true positives. 
 

4. CONCLUSION 
 

The struggle between malware analysts and malware threat actors is a never-ending battle. 

Therefore, there is a constant need to find new robust ways to detect malware. Furthermore, AI is 

used widely in many research fields, including Malware detection. This paper presented a 
literature review of malware detection using different AI approaches, mainly ML and DL. 

Reviewed papers were categorized into Computer-based and Android-based platforms due to the 

astonishing rapid evolution in malware. Papers are compared according to the used approaches, 

classification algorithms, datasets, and techniques. Furthermore, the paper shows how feature 
extraction and selection processes affect the detection model accuracy and how ML and DL 

could be effective in detecting malware. Furthermore, the paper highlights and discusses the 

different challenges and limitations that face malware detection research. Even though different 
approaches have been proposed to help in detecting malware, none of them is said to detect all 

never-ending evolution of malware. As a future work, new approaches need to be proposed to 

increase the detection rate and face sophisticated malware. 
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