
David C. Wyld et al. (Eds): AIAA, DPPR, DSA, ICSS, IOTE, NLPTA, WEST, CACIT, BMLI- 2022

pp. 91-108, 2022. CS & IT - CSCP 2022 DOI: 10.5121/csit.2022.122308

A SURVEY ON ARTIFICIAL INTELLIGENCE

TECHNIQUES FOR MALWARE DETECTION

Hend Faisal1,2, Hanan Hindy1, Samir Gaber2,3, Abdel-Badeeh Salem1

1Faculty of Computer and Information Sciences, Ain Shams University, Egypt

2Egyptian Computer Emergency and Readiness Team (EG-CERT), National

Telecom Regulatory Authority (NTRA)
3Faculty of Engineering in Helwan, Helwan University, Egypt

ABSTRACT

The rapid evolution of technology in the past years largely contributed to the digital

transformation, however, attackers took advantage of it to spread malicious software

(malware). Nowadays, malware has become more sophisticated, which makes it harder to be

detected with traditional techniques. Over the years, attacks became, not only limited to
computer-based operating systems, but also to that of mobile-based, which makes it even harder

for analysts. Furthermore, this increases the need for more research in this direction. The

technological evolution also gives researchers the chance to utilize Artificial Intelligence widely

and leverage its capabilities in many fields in general and in the field of malware detection in

particular. This paper provides a literature review on malware detection using Artificial

Intelligence techniques and specifically, Machine Learning and Deep Learning techniques. The

paper helps researchers to have a broad idea of the latest malware detection techniques,

available datasets, challenges, and limitations.

KEYWORDS

Malware Detection, Artificial Intelligence, Machine Learning, Deep Learning, Android

Malware

1. INTRODUCTION

Despite the significant improvement of technology and its positive impact on bringing ease to

humans’ lifestyle, and the rapid increase in the usage of internet in people’s daily life, all of that

evolution provides a great opportunity for malware authors to expand their work and expand
spreading malware. This surge was specifically evident in last two years, which were considered

record-breaking due to COVID-19 [1]. The pandemic prompted people to shift to remote work

and increase the daily usage of internet coinciding lockdown. The International
Telecommunication Union (ITU), 2021, statistics showed that at 2019, the beginning of the

pandemic, about 54% of worlds’ population used internet with about 4.1 billion people. In 2020,

the number of internet users grew by 10.2% which is considered a leap according to the statistics
reported in [2]. This number is still growing; nearly two-thirds of the world’s population uses the

internet [3].

In conjunction with this increase, Malicious Software (Malware) is considered a major threat
worldwide, which continues to expand exponentially. According to an up-to-date study by AV-

Test institute [4], about 450,000 malware instances are discovered daily. Originally, malware

authors targeted computer-based users, especially Windows users, but through the evolution of

technology, people become less dependent on computers and depend on other Operating Systems
(OS); Android, iOS. This creates a new path for malware authors to spread their malware through

http://airccse.org/cscp.html
http://airccse.org/csit/V12N23.html
https://doi.org/10.5121/csit.2022.122308

92 Computer Science & Information Technology (CS & IT)

other OS. Figure 1 illustrates how the number of Android users increase in comparison to other
OS. Malware authors expand to target more than one platform, making it more difficult to limit

malware spreading.

Figure 1: Operating System Market Share [2012-2022] [5]

Malware exist in different forms; Virus, Worm, Rootkit, Ransomware, and etc. Ransomware [6]

is considered the hardest among them as it encrypts the victim’s files and ask for ransom in
exchange to decrypt them, which make attackers head on using it widely as a business.

Furthermore, they target organizations, not only individuals [7].

Based on previous research in the field of malware detection, to analyze a malware sample there
exists two methods; static analysis and dynamic analysis. Static analysis [8][9] depends on

examining the suspicious sample without executing it. Traditionally, static analysis relied on

Heuristic-based and Signature-based methods. Heuristic-based analysis encompasses a set of
rules that are determined by experts, while signature-based depends on signatures, which are the

unique identifier for a binary file. Both methods are effective and straightforward in detecting

malware with a limited false positive ratio. However, these techniques fail in detecting any
variations of this malware, beside failing in detecting unknown malware.

On the other hand, dynamic analysis [10] comprises running the suspicious sample in a safe

environment which allows analysts to trace its behavior, for example; Application Programming
Interface (API) calls, system calls or network traffic trying to find any suspicious activity.

Dynamic analysis is more effective, compared with static [11], in its ability to detect new and

unknown malware. However, dynamic analysis is time and resource consuming, furthermore, the
existence of evasive techniques is an obstacle in dynamic analysis where sample curtail its

functionality when detecting that it run on an isolated environment [12] which makes it difficult

in detecting advanced malware.

Artificial Intelligence (AI), with all its advancement, can provide powerful detection against

advanced malware. When combining the modeling of malicious and benign behavior, it could

make it easier to pick out the malicious ones. The goal of researchers is to build models that are
capable of detecting different types of malware, including unknown and zero-day malware. In the

literature, various malware detection techniques using AI are proposed, including Machine

Learning (ML) [13][14][15] and Deep Learning (DL) [16][17][18].

This paper provides a review of the literature on malware detection using AI techniques;

specifically, ML and DL techniques on both computer-based and mobile-based malware. In

addition, this paper discusses the analysis methods, the latest datasets, limitations and challenges

that face researchers.

This paper is organized as follows; Section 2 provides a summary of recent research in the field

of malware detection using AI. It discusses malware detection pipeline including recent used

datasets in both computer and mobile based, how analysis is done and its types, what kind of

 Computer Science & Information Technology (CS & IT) 93

features could be useful in the detection phase and how feature selection impact detection
accuracy. Section 3 describes the challenges and limitations facing malware analysts. Section 4

summarizes the concluding observations of this survey.

2. RELATED WORK

This section provides a summary of academic research that addresses how malware is detected
using AI techniques.

2.1 Machine Learning

Over the past decade, ML algorithms have been used to detect and classify malware. Based on

previous studies [14][19], Malware detection based on ML provides promising results as long as

the suitable model and features are used. However, there exists some barriers as it requires large
and labeled datasets to be able to predict malware with high accuracy, also dozens of malware are

created daily [4], the computational cost that is used to periodically train and update the ML

classifier is high. Furthermore, the wide variety of platforms make it difficult as each malware is
implemented differently to target different platform. The following subsections summarize

computer and android based related work that use ML to detect malware.

2.1.1 Computer-Based

In recent years, researchers have widely applied ML to detect computer-based malware. Table 1

lists computer-based related work that use ML in the detection of malware. Nicola et al. [20]

proposed a malware taxonomic classification pipeline that was able to detect malicious Portable
Executable (PE) files by extracting static features and used them for the classification of

malware. In addition, the authors labeled those detected malware to their malware category.

However, the authors faced some limitations as the mislabeling of malware samples in the used
dataset, few samples were used to train classifiers and an overlap exists among different threat

types and behavior. Al-Kasassbehet al. [21] selected seven static features and used them as the

input to the classifier and out of multiple classifiers used in their experiment, J48 was the most

promising classifier. However, the highly unbalanced dataset that was used in their experiments
leads to biased results. Sanjay et al. [22] studied the frequency of Opcode occurrence to detect

unknown malware. They used multiple classifiers to compare between them in addition to

multiple feature selection methods to compare between them too. Their results showed that
Fisher Score (FS) performed better than other methods with multiple classifiers. Unlike previous

methods, Rabadiet al. [23] used dynamic features in their experiment as they execute samples in

an isolated virtual machine using Cuckoo Sandbox [24] to extract API-based features that were
used in the detection phase. Nevertheless, the authors’ work targeted only Windows 7 and as a

result of depending on Cuckoo Sandbox, their method is limited to Cuckoo’s hooked API calls

only. Muhammad et al. in [25] used Gradient Classifier on both static and dynamic features

separately and reported that the accuracy of the classifier based on static features was better than
that of dynamic features. However, their study is limited due to the small size of the used dataset.

The detection of mobile-based malware vary from that of computer-based malware, the following

subsection shows related work that use ML in the detection of Android-based malware.

94 Computer Science & Information Technology (CS & IT)

Table 1: Summary of related work on Computer-based malware detection based on ML Techniques.

Where: TPR: True Positive Rate, FPR: False Positive Rate, Acc: Accuracy

Year Algorithms Techniques Features
Measures Dataset

Metric Value Dataset Count Availability

2021

[20]
GBDT Static Raw PE

TPR

FPR

86.3 %

0.1 %

Malicious

Benign

Unlabeled

400K

400k

300k
✓

2020

[21]

Ridor, RF,

PART,

J48, and

IBk

Static

NumberOfSections,

VirtualSize2,

ResourceSize,

ExportSize,

IatRVA,

ImageVersion, and

Debug Size

TPR

FPR

98.56 %

5.68 %

Malicious

Benign

100,000

16,000
✓

2020

[23]

SVM,

XGBoost,

RF, DT, and

PA

Dynamic API calls Acc. 98 %
Malicious

Benign

7105

7774
✓

2019

[22]

RF, LMT,

J48 Graft, and

NBT
Static Opcodes Acc. 100 %

Malicious

Benign

6010

4573
✓

2019

[25]

Gradient

Classifier

Static

Dynamic

Static: DOS, PE,

Optional, and

Sections Table

Dynamic: API,

Summary

Information,

DLLs, Registry keys

changed

Acc.

Acc.

99.36 %

94.64 %

Malicious

Benign

Malicious

Benign

39,000

10,000

2200

800

Not

Mentioned

2.1.2 Android-Based

The rising number of android malware nowadays raises the need for researchers to build models

that are able to detect them. Table 2 summarizes mobile-based related work that use ML in the

detection of malware. McDonald et al. [26] investigated the effectiveness of four different ML
algorithms in conjunction with features selected from Android manifest file permissions to

classify if the inputted file was malicious or benign. The findings showed that compared to all

algorithms, Random Forest (RF) had the highest accuracy. Their paper is limited only to
permissions, while neglecting some other static features that could have been extracted from

manifest file too. Pandey et al. [27] proposed a methodology for detecting malicious android

applications. Seven static features were extracted, then they applied two feature selection
algorithms to remove irrelevant features. They worked on a balanced dataset and tried different

classifiers, but RF was the one with the best accuracy reported. Moutazet al. [28] depended on

static features as well; the authors proposed three different grouping strategies to choose the most

valuable API calls to maximize the ability to identify Android malware apps. In addition, their
approach could determine the similarities among malware families. Sangalet al. [29] extracted

android permissions and intents features to be then used as an input for the ML algorithm. Their

study showed that RF was the best classifier. However, they used an unbalanced dataset. The
benefit of Myaret al. [30] approach was that the system is platform independent so that different

versions of Android OS can benefit from it. They combined features from static and dynamic

analysis. However, the time complexity was high in real smartphone because of hardware

requirements, which makes real-time detection is not applicable with their proposed approach.

As demonstrated, permission-based features are the most commonly used feature in the

classification of an Android malware, followed by API calls features.

 Computer Science & Information Technology (CS & IT) 95

Table 2: Summary of related work on Android-based malware detection based on ML techniques.

Where: Acc: Accuracy

Year Algorithms Techniques Features
Measures Dataset

Metric Value Dataset Count Availability

2021

[26]

RF, SVM,

Gaussian

NB, and

K-Means

Static permission-based F1
75.00 % -

84.00 %

Malicious

Benign

6000

4597
✓

2021

[27]

RF, KNN,

XGBoost,

and DT

Static

permission-based,

providers, activities,

receivers,

services, and opcodes Acc.
92.50 % -

99.00 %

Malicious

Benign

15,000

15,000
✓

2020

[28]

RF, KNN,

RT, NB, and

J48
Static

permission-based

and API calls
Acc.

87.90 % -

94.30 %

Malicious

Benign

13,719

14,172
✓

2020

[29]

RF, SVM,

KNN, NB,

and DT
Static

permission-based and

intents
Acc.

88.23 % -

96.05 %

Malicious

Benign

396

1126
✓

2019

[30]

RF, NB and,

KNN Hybrid

permission-based,

API calls and

Providers
Acc.

72.00 % -

89.00 %

Malicious

Benign

113

219
✓

2.2 Deep Learning

When the amount of training data is large, DL, which is a subset from ML, is expected to perform

better. Different DL algorithms such as Recurrent Neural Networks (RNN) [31], Convolutional
Neural Networks (CNN) [32], Multilayer Perceptron (MLP) [33], Deep Belief Network (DBN)

[34], and Long Short Term Memory Network (LSTM) [35] have been applied in the process of

malware detection [36]. The following subsections summarizes computer and mobile based
related work that use DL to detect malware.

2.2.1 Computer-Based

Table 3 summarizes computer-based related work that use DL models to detect malware. Azeezet

al. [33] combined DL models with ML models. The initial stage classification was done by a

stacked ensemble of fully-connected MLPs and one-dimensional CNN and the second stage

classification was done by ML models. It was reported that RF achieved the best accuracy. The
proposed framework is limited to supervised learning, and that requires that samples must be

identified and labeled by experts. This raised the need for developing unsupervised ensemble

learning frameworks for malware recognition. In addition, the authors used an unbalanced
dataset, which led to biased results. In [37], Zhonget al. proposed a Multi-Level Deep Learning

System (MLDLS) for malware detection. First, Ngram analysis was applied on both static and

dynamic features so that candidate n-gram features were extracted from both. Additionally, the
dataset was partitioned into clusters using K-Means clustering algorithm. CNNs, Deep RNN, and

Deep Fully Connected Feed Forward networks (FC) models were used in the training phase and

the one with the best results was selected to classify the input sample.

Static and Dynamic features only provide information in text formats. However, researchers

started to embrace the fact that image-based features could improve the malware detection

research moving forward. As a result, they started looking for vision-based approaches to use due

to their advancement in the image field.

96 Computer Science & Information Technology (CS & IT)

Table 3: Summary of related work on Computer-based malware detection based on DL techniques.

Where: Acc: Accuracy, TPR: True Positive Rate, AUC: Area Under Curve

Year Algorithms Techniques Features
Measures Dataset

Metric Value Dataset Count Availability

2021

[38]
Dense Net

Vision

based

Gray-scale

image

Acc.

Malimg

BIG 2015

MaleVisMalicia

98.23 %

98.46 %

98.21 %

89.48 %

Malicious(Malimg,

Big2015,

MaleVis, Malicia)

Benign

9339,

21741,

14226,

9670

1043

✓

2021

[33]

Stage 1: MLP,

CNNs

Stage 2: NB,

DT, RF,

Gradient

boosting, and

AdaBoosting

Static

Number

Of

Sections,

Major

Linker

Version,

Address

Of Entry

Point,

etc..

Acc.

F1

100 %

100 %

Malicious

Benign

14955

5012
✓

2020

[39]

Stage 1: CNNs

Stage 2: Deep

Forest

Vision

based

Gray-scale

images

Acc.:

Malimg

BIG 2015

MaleVis.

98.65 %

97.2 %

97.43 %

Malicious(Malimg,

Big2015,

MaleVis Benign

9339,

21741

14226

1044

✓

2019

[37]

CNN, RNN,

FCs
Hybrid N-gram

Static:TPR

Static:AUC

Dynamic:TPR

Dynamic:AUC

72-92 %

68-85 %

68-89 %

69-90 %

Malicious

Benign

2,242,234

3,425,176
✗

Vision-based Approach In recent years, researchers started to employ visual-based approaches

in the detection of malware by converting malware source code into malware binary and then
convert binaries into either RGB images or Gray-scale images. These images were then classified

into their relative family. It has been observed that the images of malware that belongs to the

same family are quite similar in structure and texture [38]. Therefore, malware could be
converted into images and then DL algorithms are used. Hemalathaet al. [38] proposed a

visualization-based method, where malware binaries were depicted as two-dimensional images

and then classified by DenseNet model. The study was evaluated on four different

datasets;Malimg [40], Big2015 [41], MaleVis [42] and Malicia [43]. The model achieved high
accuracy, however the proposed method came with high false negative rate. In [39], images were

processed into two phases, sliding window phase and cascade layering phase. Sliding window

phase preserved the spatial relationship between raw pixels, where each input image was scanned
with parallel processing of two sliding windows. While cascade layering phase consisted of

sequential layers, with each layer consisting of four ensemble forests so that the final prediction

was obtained and the class with the highest probability was the matching class for the input
image. Having discussed computer-based malware detection using DL techniques, in the

following subsection authors proposed different DL models to detect mobile-based malware.

2.2.2 Android-Based

Table 4 summarizes Android-based related work that use DL models to detect malware. Pei et

al.[44] proposed AMalNet model that extracted static features like APIs, permissions, and

components then stored them in a database. Natural Language Processing (NLP) features were
then extracted and mapped into vectors to be the input for the proposed hybrid DL technique. The

authors combined Graph Convolutional Networks (GCN) and Independently Recurrent Neural

Network (IndRNN) in order to take full account of the semantic distribution information of
malware. Their proposed method is limited to static features, so if the sample is obfuscated, this

method would not work as expected. On the other hand, Alzaylaeeet al. [45] suggested DL-

Droid, a DL-based dynamic analysis system for Android malware detection. DL-Droid utilized a

 Computer Science & Information Technology (CS & IT) 97

state-based input generation approach, Stateful vs. Stateless input generation, and experiments
were executed four times; first based on stateful dynamic features, second based on stateless

dynamic features, third based on stateful hybrid features and last was based on stateless hybrid

features. The third one was the one with the best reported performance.

Lu et al. in [46] proposed an android malware detection algorithm which combined Deep Belief

Network (DBN) and Gate Recurrent Unit (GRU). The algorithm extracted both static features

and dynamic features. The DBN was used to process the static features, while GRU was used for

the dynamic ones. A total of 351 features were extracted, including 303 static features and 48
dynamic features. The features from both models are fed into the Back Propagation (BP) neural

network. The authors stated that the results were within an acceptable range. However, they

mentioned that their method needed to be optimized to reduce the time complexity. A two-layer
method was proposed in [47] for the detection of malicious android applications. The first layer

combined static features like permissions, intent, and component information based with fully

connected neural network. However, in the second layer a new method cascaded CNN and
AutoEncoder which was used to detect malware through network traffic features. Unlike previous

methods, Feng et al. in [48] used a pre-installed solution. By leveraging customized Deep Neural

Networks (DNN) and binary features, sample were classified as malicious or benign. Their

proposed approach combined features extracted from binary code and behavioral features. The
proposed model was tested on six different real mobile devices with high accuracy, but the

difference was in the prediction time. Due to limited training dataset, their proposed model failed

in the detection of new malware families.

Table 4: Summary of related work on Android-based malware detection based on DL techniques.
Where: Acc: Accuracy

Year Algorithms Techniques Features Measures Dataset

Metric Value Dataset Count Availability

2020

[46]

DBN, GRU and

BP Neural

Network

Hybrid

 Static: resource

features and

semantic features

Dynamic:

behavioral

features

Acc. 96.82 %
Malicious

Benign

6298

7000
✓

2020

[47]

First layer:

Neural Network

Second

layer:CNN and

AutoEncoder

Hybrid

 First layer:

permission,

intent and

component

information

based Second

layer:

Network traffic

features

Acc.:

First layer

Second layer

95.22 %

99.3 %

Malicious

Benign

4354

5065
✓

2020

[48]
RNN Hybrid

 Behavioral-

based features &

Binary code

Acc. 96.75 %
Malicious

Benign

45284

29010
✓

2020

[44]
GCN, IndRNN Static

permissions,

components and

APIs

Acc.

F1

99.69 %

99.7 %

Malicious(DREBIN,

AMD, lab-built,

AndroZoo and

Praguard)

Benign

5560,

24553, 4664,

50000 and

1497 50000
✓

2020

[45]

First phase:

MLP

Second

phase:

SVM, PART,

NB, RF, and

J48

Dynamic(D

Hybrid(H)

)

API calls, action,

and events

Acc.:

D (stateful)

D (stateless)

H (stateful)

H (stateless)

95.21 %

94.95 %

98.5 %

94.95 %

Malicious

Benign

11505

19620
✓

98 Computer Science & Information Technology (CS & IT)

Other than conventional ML and DL techniques, there are other algorithms that are adopted from
other domains that are used to detect malware, NLP was considered to be one of them. As shown

in Table 5, Mimura et al. [49] extracted all printable strings from dataset of malicious and benign

samples and split strings into word then used Doc2vec or LSI, which are common NLP methods

used in representing input as vectors. Hence, a classifier was trained with labeled feature vectors.
The accuracy ratio of their proposed method was high, however, they stated that their method

might not be applicable to sophisticated packed samples. In addition, Dovomet al. in [50]

employed fuzzy and fast fuzzy pattern trees for edge malware detection by using the opcodes of
Internet of Things (IoT) applications. The authors mentioned that their proposed model

performed better than other ML classifiers. On the other hand, Ameret al. [51] depended on

dynamic analysis. They used a technique in NLP called Word2Vec in their initial phase, which
was used to produce word vectors from large corpus of text. The input used in their proposed

method was a sequence of API calls. Next, they computed the similarity between API calls and

for the final step they used K-means to cluster the similarity matrix to either benign or malware.

The authors relied on pre-processed API call sequence datasets and did not mention any
evaluation on real-life samples testing. Pre-processed API samples could lead to misleading

interpretations of the proposed model.

Table 5: Summary of related work on malware detection based on AI Techniques from other domains.

Where: Acc: Accuracy, DS: Dataset

Year Algorithms Techniques Features
Measures Dataset

MetricValue Dataset Count Availability

2021

[49]

NLP, SVM,

CNN, MLP.

XGB and RF
Static Strings

98.8 % -

Acc.

99.7 %

Malicious(DS1)

Benign(DS1)

Malicious(DS2)

287,375

250,000

28,488
✓

2020

[51] NLP Dynamic
API call sequence

n-gram

F1 99 %

Acc.99.7 %

Malicious

Benign

30,658

21,422 ✓

2019

[50]

Fuzzy Pattern

Tree Static OpCodes

86 % -

Acc.

100 %

Malicious &

Benign 33,363 ✓

Following the discussion about malware detection techniques in the literature, the following
section outlines the most recent datasets used in malware research. Moreover, it discusses the

different features’ categorization which influence building any AI-based model for malware

analysis.

2.3 Malware Detection Contextual Map

Figure 2 summarizes the pipeline that is used in the detection of malware using AI, whether it is
Computer-based or Mobile-based. Each phase in the pipeline affects the detection accuracy,

starting from the samples collected, and the importance of using a balanced dataset. Passing by

analysis approaches and features extraction which differs according to the platform as each

platform consists of its own features and ending by feature selection and classification where the
sample is classified as malware or benign one. Since that most targeted platform are Windows-

based and Android-based, this paper focuses on them.

The following subsections discuss each phase in the contextual map in detail.

 Computer Science & Information Technology (CS & IT) 99

2.3.1 Datasets

ML and DL both require large datasets for training before being used to detect malware [52].

However, finding a ready to use an up-to-date dataset is a challenging task that faces most of the

researchers. Table 6 summarizes datasets that were most used by researchers in recent years.

Figure 2: Malware Detection Contextual Map

100 Computer Science & Information Technology (CS & IT)

Table 6: List of Prominent Malware Datasets

Name Year Platform Description

CCCS-CIC-

AndMal-2020 [53]
2020 Android-based

The dataset includes 200,000 malware and

200,000 benign samples.

MaleVis [42] 2019 Computer-based
An open-set image malware dataset. It

contains 9100 training and 5126 validation

RGB images.

CIC-

InvesAndMal2019

[54]

2019 Android-based

The dataset consists of static features of 1522

applications which consists of 396 malware

and 1126 benign application.

Benign &

Malicious PE Files

Kaggle [55]

2018 Computer-based

The dataset is a collection of malicious and

benign data from PE

Files.

EMBER [56] 2017 Computer-based

The dataset is a collection of features

calculated from 1.1 million PE file samples

(400K malware, 400K benign, 300K

unlabeled).

Malimg [40] 2017 Computer-based
The dataset contains 9,339 malware images

from 25 families.

CICAndMal2017

[57]
2017 Android-based

The dataset includes 10,854 samples (4,354

malware and 6,500 benign).

AMD [58] 2017 Android-based
The dataset contains 24,553 malware

samples ranging from 2010 to 2016.

AndroZoo [57] 2016 Android-based
The dataset contains 18,215,449 different

APKs.

BIG 2015 [41] 2015 Computer-based

The dataset contains a set of known malware

files representing a mix of 9 different

families.

APIMDS [59] 2015 Computer-based
The dataset contains a full list of malicious

API sequences, hash information.

PRAGuard [60] 2014 Android-based

The dataset contains 10,479 malicious
samples, obtained by

obfuscating the MalGenome and

theContagioMinidump datasets with seven

different obfuscation techniques.

DREBIN [61] 2014 Android-based
The dataset contains 5560 malware and

123453 benign samples.

FFRI [62]
From

2013
Computer-based

The dataset was generated by

Cuckoo Sandbox and FFRI yarai analyzer

Professional, It contains dynamic logs.

Malicia [43] 2013 Computer-based
The dataset contains 11,688 malware
binaries collected over a period of 11

months.

2.3.2 Analysis

To understand the behavior of an input file, it must be analyzed. There are two techniques that

help in the process of analyzing samples [52]; Static analysis and Dynamic analysis. Static
analysis is the process of analyzing a sample without running it. Dynamic analysis, unlike static,

means that a sample has to be running to be able to understand its behavior and functionality

 Computer Science & Information Technology (CS & IT) 101

[63]. Analysts use hybrid analysis techniques; which are a combination of both static and
dynamic analysis. Analysis plays an important role in extracting features from the files so that

these features can then be used as the input for the classifier that labels samples into either

malware or benign.

2.3.3 Feature Extraction

This process is where features are extracted from samples. They provide an abstraction view of

the file so that it can be later classified into either malicious or benign. This process plays a vital
role and highly influence the accuracy and efficiency of any model [52]. Features can be

classified into either static or dynamic features, which differ based on the analysis technique used

as explained in the previous section. It is important to mention that features extracted from
computer-based files vary from that of those of mobile-based as explained below.

Windows-based Features A taxonomy of features is provided in Figure 2; Windows based
features could be derived by extracting (a) Windows API calls. API calls are used to describe the

behavior of the executable. API call could be extracted statically or dynamically. In static, API

calls could be extracted from source code, while in dynamic, API call sequences are extracted

while running the sample. Liu et al. [64] extracted API call sequence after running samples on
Cuckoo sandbox. The authors conducted an experiment and their accuracy reached 97.85%. (b)

Control Flow Graph (CFG) features could be extracted from static analysis. These covers all

possible paths during execution of a sample. Behera et al. in [65] used CFG to detect obfuscated
programs by getting a basic executable before and after obfuscation, then decompiling both

executables to an assembly code. Additionally, the authors made a basic block of codes and

constructed CFGs from those basic block of codes. Finally, the authors compared both CFGs

using a graph matching algorithm and if the CFG of the original executable is found to be
isomorphic to that of obfuscated CFG, then the executable is classified as obfuscated.

Recently, researchers turned into using (c) Images; binaries are transformed into grayscale/ RGB

images. Kancherlaet al. [66] extracted different image-based features like Intensity based,
Wavelet based and Gabor based features to be the input for ML models to classify samples as

malware or benign relying on their image. The accuracy of used method reached 95.95%. (d)

Strings also could be an indicator for a malware sample. Ito et al. in [67] used ASCII strings and
converted them into words, then used NLP techniques to convert the words to a feature vector.

On the other hand, (e) system calls traces, which are the way for programs to interact with the

kernel of the OS, could be used to detect malware. Kim. in [68] extracted system calls traces. The
author used API tracer to collect system call traces and implemented N-grams, where the features

are sequences of system calls instead of a single system call, then applied ML technique on

preprocessed traces. The accuracy of the proposed method reaches 96%. (f) Registry, where low-

level settings for the Microsoft Windows OS and for applications are stored, was also considered
by researchers as a feature that could help in the detection of malware. Tajoddinet al. [69]

extracted registry accesses by running samples in Cuckoo sandbox and searched for anomalous

registry accesses.

Android-based Features Android-based features described in Figure 2 differ from that of

windows-based. Features are extracted from the corresponding application package (APK) where

each APK consists of Meta-Inf folder, assets, Manifest file, classes.dex, lib, and resources.
Manifest file describes information about the app. (a) Permissions, which are one of the most

used features in the field of android malware detection as it identifies the privileges that any

android app need. (b) intents, defined as “A messaging object you can use to request an action

from another app component.” [70] and more features like (c) services, (d) providers and (e)
activities are stored in that manifest file. Khariwalet al. [71] chose permissions and intents

102 Computer Science & Information Technology (CS & IT)

features in their experiments. Then, the authors extended their features by using NLP word
embedding technique to create Bag-of-Words and applied three different ML algorithms. (f)

Network traffic could also be an indicator for any suspicious activity on the mobile device. Wang

et al. [72] combined network traffic analysis with ML in their method. The authors specifically

used HTTP requests and TCP Flows as their feature set, and at last they applied ML to classify
whether mobile application is malicious or not. Mobile device statistics like (g) memory usage,

(h) battery usage, (i) process reports, and network usage could also be an indicator for suspicious

behavior. Authors in [73] extracted previous features using Mal-warehouse Information
Extraction Tool (MIET), and by using ML algorithms on the exported features, the sample is

categorized into rather malicious or benign.

There are common features between Windows-based and Android-based, but represented in
different forms. API calls are considered one of them. Peiravianet al. [74] proved that by

combining API calls and permissions, accuracy can be improved. The authors compared thier

results of combining both features and each feature separately, they found that by combining both
features the accuracy raised to more than 2%. Images also could be used in the detection of

Android malware as it is used in that of Windows-based; Ding et al. [75] extracted bytecode file

from Android APK file, and converted that bytecode stream into a 2D bytecode image to be the

input to CNN model to classify them. Zhao et al. [76] made a Android malware detection system
based on CNN using Opcode sequences. The Opcode features are derived from Dalvik

instruction, which is a set that contains operational information about the app.

2.3.4 Feature Selection

To improve model performance and reduce computational cost, not all extracted features are used

for classification. Feature selection is the process that reduces the number of input
variables/features before being used in the malware prediction classifier.Babaagbaet al. [77]

highlighted the importance of feature selection. The authors experimented different ML

algorithms without using any feature selection method, and the accuracy of the algorithms varied

from 68.45% to 77.18%. However, after employing Information gain algorithms, the results were
improved according to more than one algorithm.

3. CHALLENGES AND LIMITATIONS

With the wide development of malware, detecting it become a challenge to researchers. Based on

the previous discussion and mentioned limitations in section 2, the most common obstacles

encountered are listed below.

• Anti-analysis Techniques: In order to dynamically analyze a sample, it must be run on an

isolated environment, for example Virtual Machines (VM) or sandboxes [23]. As a result,

Malware developers began to use methods to evade from being run on a VM, sandbox, by

detecting whether there exists analysis tools on the system and in addition check if the
system is on debug mode or not. In case of existence of the previously mentioned methods,

malware avoid running correctly on the system, thus bypass from being analyzed and

detected.
• Obfuscation and Packing: Another technique malware authors uses to evade from basic

static analysis, is to either pack their malware or obfuscate it. Obfuscation [78] is a

technique of making a piece of code unreadable while packing is considered a subset of
obfuscation, where malware is compressed or encrypted.

• Dataset: Finding a dataset is an essential step for building any ML/DL model, which is

considered a challenge for malware researchers. Not only finding any dataset is the solution

 Computer Science & Information Technology (CS & IT) 103

for the problem also the dataset must be up-to-date, large, well labeled and updated
periodically so that a model could be used in the detection of malware.

• Evolution of malware: There exists sophisticated malware and undetected malware. To

evade from signature-based detection, malware authors develop their malware to bypass

basic detection techniques. Sen. et al. citesen explained the idea about malware developers
who used Genetic Programming (GP) in order to create new variants of malware

automatically.

• AI Obstacles: AI, as mentioned before, is an effective field for malware detection but as
any technology it has some limitations. It requires high computing resources, time and

labeled dataset. Furthermore, any model is expected to have a percentage of false positives

and the challenge is to reach a tolerable ratio of false positives and true positives.

4. CONCLUSION

The struggle between malware analysts and malware threat actors is a never-ending battle.

Therefore, there is a constant need to find new robust ways to detect malware. Furthermore, AI is

used widely in many research fields, including Malware detection. This paper presented a
literature review of malware detection using different AI approaches, mainly ML and DL.

Reviewed papers were categorized into Computer-based and Android-based platforms due to the

astonishing rapid evolution in malware. Papers are compared according to the used approaches,

classification algorithms, datasets, and techniques. Furthermore, the paper shows how feature
extraction and selection processes affect the detection model accuracy and how ML and DL

could be effective in detecting malware. Furthermore, the paper highlights and discusses the

different challenges and limitations that face malware detection research. Even though different
approaches have been proposed to help in detecting malware, none of them is said to detect all

never-ending evolution of malware. As a future work, new approaches need to be proposed to

increase the detection rate and face sophisticated malware.

REFERENCES

[1] N. A. Khan, S. N. Brohi, and N. Zaman, “Ten deadly cyber security threats amid COVID-19

pandemic,” 2020. TechRxiv, doi: 10.36227/techrxiv.12278792.v1.
[2] Facts and figures, “Internet use,” 2021. Available:

https://www.itu.int/itud/reports/statistics/2021/11/15/internet-use/ Accessed: (10 June 2022).

[3] DataReportal, “Digital around the world - datareportal – global digital insights,” 2022. Available:

https://datareportal.com/global-digital-overview Accessed: (10 June 2022).

[4] AV-TEST, “Test: Antivirus & security software & antimalware reviews,” 2022. Available:

https://www.av-test.org/ Accessed: (10 June 2022).

[5] S. G. Stats, “Operating system market share worldwide,” 2022. Available:

https://gs.statcounter.com/os-market-share Accessed: (10 June 2022).

[6] P. O’Kane, S. Sezer, and D. Carlin, “Evolution of ransomware,” Iet Networks, vol. 7, no. 5, pp. 321–

327, 2018.

[7] B. A. S. Al-rimy, M. A. Maarof, and S. Z. M. Shaid, “Ransomware threat success factors, taxonomy,
and countermeasures: A survey and research directions,” Computers & Security, vol. 74, pp. 144–

166, 2018.

[8] A. Shalaginov, S. Banin, A. Dehghantanha, and K. Franke, “Machine learning aided static malware

analysis: A survey and tutorial,” in Cyber threat intelligence, pp. 7–45, Springer, 2018.

[9] A. Fed´ak and J. Stulrajter, “Fundamentals of static malware analysis: Principles,ˇ methods and

tools,” Science & Military Journal, vol. 15, no. 1, pp. 45–53, 2020.

[10] O. Or-Meir, N. Nissim, Y. Elovici, and L. Rokach, “Dynamic malware analysis in the modern era—a

state of the art survey,” ACM Computing Surveys (CSUR), vol. 52, no. 5, pp. 1–48, 2019.

[11] D. Gibert, C. Mateu, and J. Planes, “The rise of machine learning for detection and classification of

malware: Research developments, trends and challenges,” Journal of Network and Computer

Applications, vol. 153, p. 102526, 2020.

104 Computer Science & Information Technology (CS & IT)

[12] A. Afianian, S. Niksefat, B. Sadeghiyan, and D. Baptiste, “Malware dynamic analysis evasion

techniques: A survey,” ACM Comput. Surv., vol. 52, nov 2019.

[13] V. Kouliaridis and G. Kambourakis, “A comprehensive survey on machine learning techniques for

android malware detection,” Information, vol. 12, no. 5, p. 185, 2021.

[14] S. Saad, W. Briguglio, and H. Elmiligi, “The curious case of machine learning in malware detection,”
arXiv preprint arXiv:1905.07573, 2019.

[15] A. Mahindruand A. Sangal, “Mldroid—framework for Android malware detection using machine

learning techniques,” Neural Computing and Applications, vol. 33, no. 10, pp. 5183–5240, 2021.

[16] H. Rathore, S. Agarwal, S. K. Sahay, and M. Sewak, “Malware detection using machine learning and

deep learning,” in International Conference on Big Data Analytics, pp. 402–411, Springer, 2018.

[17] A. Naway and Y. Li, “A review on the use of deep learning in android malware detection,” arXiv

preprint arXiv:1812.10360, 2018.

[18] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A multimodal deep learning method for Android

malware detection using various features,” IEEE Transactions on Information Forensics and Security,

vol. 14, no. 3, pp. 773–788, 2018.

[19] J. Singh and J. Singh, “A survey on machine learning-based malware detection in executable files,”

Journal of Systems Architecture, vol. 112, p. 101861, 2021.
[20] N. Loi, C. Borile, and D. Ucci, “Towards an automated pipeline for detecting and classifying

malware through machine learning,” CoRR, vol. abs/2106.05625, 2021.

[21] M. Al-Kasassbeh, S. Mohammed, M. Alauthman, and A. Almomani, Feature Selection Using a

Machine Learning to Classify a Malware, pp. 889–904. Cham: Springer International Publishing,

2020.

[22] S. Sharma, C. Rama Krishna, and S. K. Sahay, “Detection of advanced malware by machine learning

techniques,” in Soft Computing: Theories and Applications (K. Ray, T. K. Sharma, S. Rawat, R. K.

Saini, and A. Bandyopadhyay, eds.), (Singapore), pp. 333–342, Springer Singapore, 2019.

[23] D. Rabadi and S. G. Teo, “Advanced windows methods on malware detection and classification,” in

Annual Computer Security Applications Conference, ACSAC ’20, (New York, NY, USA), p. 54–68,

Association for Computing Machinery, 2020.
[24] Cuckoo Sandbox - Automated Malware Analysis, “Automated malware analysis,” 2017. Available:

https://cuckoosandbox.org/ Accessed: (10 June 2022).

[25] M. Ijaz, M. H. Durad, and M. Ismail, “Static and dynamic malware analysis using machine learning,”

in 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp.

687–691, 2019.

[26] J. Mcdonald, N. Herron, W. Glisson, and R. Benton, “Machine learning-based Android malware

detection using manifest permissions,” 01 2021.

[27] S. Pandey, C. Rama Krishna, A. Sharma, and S. Sharma, “Detection of Android malware using

machine learning techniques,” in Innovations in Computer Science and Engineering (H. S. Saini, R.

Sayal, A. Govardhan, and R. Buyya, eds.), (Singapore), pp. 663–675, Springer Singapore, 2021.

[28] M. Alazab, M. Alazab, A. Shalaginov, A. Mesleh, and A. Awajan, “Intelligent mobile malware

detection using permission requests and api calls,” Future Generation Computer Systems, vol. 107,
pp. 509–521, 2020.

[29] A. Sangal and H. Verma, “A static feature selection-based Android malware detection using machine

learning techniques,” 10 2020.

[30] S. Myat, “Feature extraction using hybrid analysis for Android malware detection framework,”

International Journal of Engineering Research and, vol. V8, 07 2019.

[31] R. Vinayakumar, K. Soman, and P. Poornachandran, “Evaluation of recurrent neural network and its

variants for intrusion detection system (ids),” International Journal of Information System Modeling

and Design (IJISMD), vol. 8, no. 3, pp. 43–63, 2017.

[32] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural networks: an overview

and application in radiology,” Insights into imaging, vol. 9, no. 4, pp. 611–629, 2018.

[33] N. A. Azeez, O. E. Odufuwa, S. Misra, J.Oluranti, and R. Damaˇseviˇcius, “Windows pe malware
detection using ensemble learning,” Informatics, vol. 8, no. 1, 2021.

[34] I. Sohn, “Deep belief network based intrusion detection techniques: A survey,” Expert Systems with

Applications, vol. 167, p. 114170, 2021.

[35] G. Van Houdt, C. Mosquera, and G. N´apoles, “A review on the long short-term memory model,”

Artificial Intelligence Review, vol. 53, no. 8, pp. 5929–5955, 2020.

 Computer Science & Information Technology (CS & IT) 105

[36] B. Yadav and S. Tokekar, “Recent innovations and comparison of deep learning techniques in

malware classification: a review,” International Journal of Information Security Science, vol. 9, no. 4,

pp. 230–247, 2021.

[37] W. Zhong and F. Gu, “A multi-level deep learning system for malware detection,” Expert Systems

with Applications, vol. 133, pp. 151–162, 2019.
[38] J. Hemalatha, S. A. Roseline, S. Geetha, S. Kadry, and R. Damaˇseviˇcius, “An efficient densenet-

based deep learning model for malware detection,” Entropy, vol. 23, no. 3, 2021.

[39] S. A. Roseline, S. Geetha, S. Kadry, and Y. Nam, “Intelligent vision-based malware detection and

classification using deep random forest paradigm,” IEEE Access, vol. 8, pp. 206303–206324, 2020.

[40] Vision Research Lab, “Malware classification on malimg dataset,” 2017. Available:

https://paperswithcode.com/sota/malware-classification-on-malimg-dataset Accessed: (10 June

2022).

[41] Kaggle, “Microsoft malware classification challenge (big 2015),” 2015. Available:

https://www.kaggle.com/c/malware-classification Accessed: (10 June 2022).

[42] A. Bozkir, A. Cankaya, and M. Aydos, “Utilization and comparision of convolutional neural

networks in malware recognition,” 03 2019.

[43] A. Nappa, M. Z. Rafique, and J. Caballero, “The malicia dataset: identification and analysis of drive-
by download operations,” International Journal of Information Security, vol. 14, 02 2014.

[44] X. Pei, L. Yu, and S. Tian, “Amalnet: A deep learning framework based on graph convolutional

networks for malware detection,” Computers & Security, vol. 93, p. 101792, 03 2020.

[45] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “Dl-droid: Deep learning based Android malware

detection using real devices,” Computers & Security, vol. 89, p. 101663, 2020.

[46] T. Lu, Y. Du, L. Ouyang, Q. Chen, and X. Wang, “Android malware detection based on a hybrid

deep learning model,” Security and Communication Networks, vol. 2020, p. 8863617, 8 2020.

[47] J. Feng, L. Shen, Z. Chen, Y. Wang, and H. Li, “A two-layer deep learning method for Android

malware detection using network traffic,” IEEE Access, vol. 8, pp. 125786– 125796, 2020.

[48] R. Feng, S. Chen, X. Xie, G. Meng, S.-W. Lin, and Y. Liu, “A performance-sensitive malware

detection system using deep learning on mobile devices,” IEEE Transactions on Information
Forensics and Security, vol. 16, pp. 1563–1578, 2021.

[49] M. Mimura and R. Ito, “Applying nlp techniques to malware detection in a practical environment,”

International Journal of Information Security, 6 2021.

[50] E. Dovom, A. Azmoodeh, A. Dehghantanha, D. Newton, R. Parizi, and H. Karimipour, “Fuzzy

pattern tree for edge malware detection and categorization in iot,” Journal of Systems Architecture,

vol. 97, 03 2019.

[51] E. Amer and I. Zelinka, “A dynamic windows malware detection and prediction method based on

contextual understanding of api call sequence,” Computers & Security, vol. 92, p. 101760, 2020.

[52] D. Ucci, L. Aniello, and R. Baldoni, “Survey of machine learning techniques for malware analysis,”

Computers & Security, vol. 81, pp. 123–147, 2019.

[53] A. Rahali, A. H. Lashkari, G. Kaur, L. Taheri, F. GAGNON, and F. Massicotte, “Didroid: Android

malware classification and characterization using deep image learning,” in 2020 the 10th
International Conference on Communication and Network Security, ICCNS 2020, (New York, NY,

USA), p. 70–82, Association for Computing Machinery, 2020.

[54] L. Taheri, A. F. A. Kadir, and A. H. Lashkari, “Extensible Android malware detection and family

classification using network-flows and api-calls,” in 2019 International Carnahan Conference on

Security Technology (ICCST), pp. 1–8, 2019.

[55] Kaggle, “Benign & malicious PE files,” 2018. Available: https://www.kaggle.com/amauricio/pe-files-

malwares Accessed: (10 June 2022).

[56] H. S. Anderson and P. Roth, “Ember: An open dataset for training static pe malware machine

learning models,” 2018.

[57] A. H. Lashkari, A. F. A. Kadir, L. Taheri, and A. A. Ghorbani, “Toward developing a systematic

approach to generate benchmark Android malware datasets and classification,” in 2018 International
Carnahan Conference on Security Technology (ICCST), pp. 1–7, 2018.

[58] Y. Li, J. Jang, X. Hu, and X. Ou, “Android malware clustering through malicious payload mining,”

2017. Available: https://arxiv.org/abs/1707.04795.

[59] Y. Ki, E. Kim, and H. K. Kim, “A novel approach to detect malware based on api call sequence

analysis,” International Journal of Distributed Sensor Networks, vol. 11, p. 659101, 6 2015.

106 Computer Science & Information Technology (CS & IT)

[60]D.Maiorca, D. Ariu, I. Corona, M. Aresu, and G. Giacinto, “Stealth attacks: An extended insight into

the obfuscation effects on Android malware,” Computers & Security, vol. 51, pp. 16–31, 2015.

[61] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. Siemens, “Drebin effective and

explainable detection of Android malware in your pocket,” in Ndss, vol. 14, pp. 23–26, 2014.

[62] FFRI, “FFRI dataset 2017,” 2013. Available:
https://www.iwsec.org/mws/2017/20170606/FFRI Dataset 2017.pdf Accessed: (10 June 2022).

[63] E. Gandotra, D. Bansal, and S. Sofat, “Malware analysis and classification: A survey,” Journal of

Information Security, vol. 05No.02, p. 9, 2014.

[64] Y. Liu and Y. Wang, “A robust malware detection system using deep learning on api calls,” in 2019

IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference

(ITNEC), pp. 1456–1460, 2019.

[65] C. K. Behera, G. Sanjog, and D. LalithaBhaskari, “Control flow graph matching for detecting

obfuscated programs,” in Software Engineering (M. N. Hoda, N. Chauhan, S. M. K. Quadri, and P. R.

Srivastava, eds.), (Singapore), pp. 267–275, Springer Singapore, 2019.

[66] K. Kancherla and S. Mukkamala, “Image visualization based malware detection,” in 2013 IEEE

Symposium on Computational Intelligence in Cyber Security (CICS), pp. 40–44, 2013.

[67] R. Ito and M. Mimura, “Detecting unknown malware from ascii strings with natural language
processing techniques,” in 2019 14th Asia Joint Conference on Information Security (AsiaJCIS), pp.

1–8, 2019.

[68] C. W. Kim, “Ntmaldetect: A machine learning approach to malware detection using native API

system calls,” CoRR, vol. abs/1802.05412, 2018.

[69] A. Tajoddin and M. Abadi, “Ramd: registry-based anomaly malware detection using one-class

ensemble classifiers,” Applied Intelligence, vol. 49, pp. 2641–2658, 7 2019.

[70] Android Developers, “Intents and intent filters.” Available:

https://developer.android.com/guide/components/intents-filters Accessed: (10 June 2022).

[71] K. Khariwal, J. Singh, and A. Arora, “Ipdroid: Android malware detection using intents and

permissions,” in 2020 Fourth World Conference on Smart Trends in Systems, Security and

Sustainability (WorldS4), pp. 197–202, 2020.
[72] S. Wang, Z. Chen, Q. Yan, B. Yang, L. Peng, and Z. Jia, “A mobile malware detection method using

behavior features in network traffic,” Journal of Network and Computer Applications, vol. 133, pp.

15–25, 2019.

[73] V. Kouliaridis, K. Barmpatsalou, G. Kambourakis, and G. Wang, “Mal-warehouse: A data collection-

as-a-service of mobile malware behavioral patterns,” 10 2018.

[74] N. Peiravian and X. Zhu, “Machine learning for Android malware detection using permission and api

calls,” in 2013 IEEE 25th International Conference on Tools with Artificial Intelligence, pp. 300–

305, 2013.

[75] Y. Ding, X. Zhang, J. Hu, and W. Xu, “Android malware detection method based on bytecode

image,” Journal of Ambient Intelligence and Humanized Computing, 6 2020.

[76] L. Zhao, D. Li, G. Zheng, and W. Shi, “Deep neural network based on Android mobile malware

detection system using opcode sequences,” in 2018 IEEE 18th International Conference on
Communication Technology (ICCT), pp. 1141–1147, 2018.

[77] K. O. Babaagba and S. O. Adesanya, “A study on the effect of feature selection on malware analysis

using machine learning,” ICEIT 2019, (New York, NY, USA), p. 51–55, Association for Computing

Machinery, 2019.

[78] J. Singh and J. Singh, “Challenge of malware analysis: malware obfuscation techniques,”

International Journal of Information Security Science, vol. 7, no. 3, pp. 100– 110, 2018.

AUTHORS

Hend Faisal is a MSc researcher at the Faculty of Computer and Information

Sciences at Ain Shams University, Cairo, Egypt. Hend works as a senior Anti-

Malware Software Development Engineer at Egyptian Computer Emergency and

Readiness Team (EG-CERT). She received her bachelor degree (2019) in Software

Engineering from the Faculty of Computer and Information Sciences at Ain Shams

University, Cairo, Egypt. Her research interests include Malware Detection and

Machine Learning

 Computer Science & Information Technology (CS & IT) 107

Hanan Hindy is a Lecturer at the Computer Science department at the Faculty of

Computer and Information Sciences at Ain Shams University, Cairo, Egypt. Hanan

did her PhD at the Division of Cyber-Security at Abertay University, Scotland, UK.

Hanan received her bachelor degree with honours (2012) and a masters (2016)
degrees in Computer Science from the Faculty of Computer and Information

Sciences at Ain Shams University, Cairo, Egypt. Her research interests include

Intrusion Detection Systems, Machine Learning, and Cyber Security.

Samir Gaber received the B.S. and M.Sc. degrees from the Department of

Electronics and Engineering, Helwan University, Egypt, in 1996 and 2003,

respectively, the Ph.D. degree in electronic and electrical engineering from the

University College London (UCL), U.K., in 2010. Since 2014, he has been an

Honorary Lecturer with UCL. Since 2021, he has been the Executive Director of

Cyber-attacks Monitoring and Early warning Systems, Egyptian Computer

Emergency and Readiness Team (EG-CERT). His research interests include cyber

security, malware analysis, and wireless networks.

Abdel-Badeeh Salem is a professor emeritus of Computer Science since September

2007 till now. He was a former Vice Dean of the Faculty of Computer and

Information Sciences at Ain Shams University, Cairo-Egypt (1996-2007). He was a

professor of Computer Science at Faculty of Science, Ain Shams University from

1989 to 1996. He was a Director of Scientific Computing Center attain Shams

University (1984-1990). His research includes intelligent computing, expert

systems, medical informatics, and intelligent e-learning technologies.

	1. Introduction
	2. Related Work
	2.1 Machine Learning
	2.1.1 Computer-Based
	2.1.2 Android-Based

	2.2 Deep Learning
	2.2.1 Computer-Based
	2.2.2 Android-Based

	2.3 Malware Detection Contextual Map
	2.3.1 Datasets
	2.3.2 Analysis
	2.3.3 Feature Extraction
	2.3.4 Feature Selection

	3. Challenges and Limitations
	4. Conclusion
	References

