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ABSTRACT 
 
Mnih’s seminal deep  reinforcement  learning  paper  that  applied  a  Deep  Q-network  to  

Atari video games demonstrated the importance of a replay buffer and a target network. 

Though the pair were required for convergence, the use of the replay buffer came at a 

significant computational cost. With each new sample generated by the system, the 

targets in the mini batch buffer were continually recomputed. We propose an alternative 

that eliminates the target recomputation called TAO-DQN (Target Accelerated 

Optimization-DQN). Our approach focuses on a new replay buffer algorithm that lowers 

the computational burden. We implemented this new approach on three experiments 

involving environments from the OpenAI gym. This resulted in convergence to better 

policies in fewer episodes and less time. Furthermore, we offer a mathematical 

justification for our improved convergence rate. 
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1. INTRODUCTION 
 
Deep Q-networks (DQN) are a fundamental component of reinforcement learning that utilize Q-

learning and deep neural networks. DQNs are applied to areas as diverse as game playing [1], 
portfolio management [2], scheduling [3], industrial control [4], robotics [5] and intrusion 
detection [6]. If a DQN is trained with samples from a problem space, they can leverage Q-
learning theory to learn by trial and error. This makes DQNs widely applicable to many domains. 
By carefully crafting a goal (called the objective), the algorithm can generate a function that will 
work towards optimizing the objective without any user feedback. For example, if a DQN is 
applied to a game like checkers, it can then learn to beat the game in as few steps as possible. A 

DQN could also be given a graph that describes the paths between cities in the U.S. and the cost 
of traveling between any two adjacent cities (i.e. the traveling salesman problem [7]). If a given 
graph has N cities, the computational complexity of this NP-complete problem is O(N 22N ). The 
DQN is tasked with learning how to generate good solutions to millions of travel problems and 
may run for hundreds or thousands of hours while performing this learning process. The point 
here is that the DQN did not need to be explicitly told what a good solution looks like. It simply 
optimizes the objective function to minimize travel time and learns by trial and error. 
 

The downside to this unassisted behavior is that learning can happen very, very slowly. It can 
take nearly 24 hours on a GPU to train a DQN to consistently beat the Atari Pong game. In this 
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case, there is a very large solution space. Q-learning theory alone is not good enough to generate 
a robust solution. The algorithm needs a better representation of the DQN so that it can do a 
better job of generalizing to problems the DQN has not seen. By adding more “neurons”, more 
layers, or more nonlinear activation functions to the network, the DQN generates a richer solution 

space. 
 
The next important improvement to a DQN comes from adding a replay buffer and a target 
network to the overall structure. The replay buffer is used to store samples, as they are generated, 
for reuse later. The target network is a clone of the prediction network. The target network is 
updated by copying the prediction network on top of it at a low frequency. This low frequency 
update reduces parameter correlations with the prediction network that inhibits convergence. 
 

This is where our research begins. We started with this approach involving the replay buffer and 
target network, and then asked the question “Is there a principled way to execute less logic and 
get better results?” In our approach we accepted the benefits of the replay buffer. What we 
rejected was the necessary information stored in the replay buffer. The replay buffer is supposed 
to make sample generation less expensive. The repeated fitting of the network to those samples is 
a necessity if you do not want your network to forget what it has learned. However, the classical 
DQN has a max() operator that is supposed to selfishly choose the next best action. This is where 

we focused our attention and then generated the following hypothesis: A DQN will converge to a 
better policy in less time when the number of max() operators is minimized. 
 
A summary of our approach follows. We begin with the classical DQN algorithm that uses a 
replay buffer and a target network. After each new sample is generated, we immedi- ately 
compute the target value for the current state, action, and next state. We then save current state, 
action and target value to the replay buffer. This will eliminate any repet- itive computation of the 

target value and reduce the number of max() operator calls to one for each sample. The result is a 
better policy in fewer episodes and less time. Finally, we present a mathematical justification for 
our approach, as well as the results from three sets of experiments that demonstrate our 
improvement over Mnih. 
 
Our contributions now include: 
 
1. a new type of DQN that converges to an optimal policy faster than Mnih’s approach, 

2. an implementation that utilizes a new replay buffer format resulting in lower compu-               
tational burden, 

3. convergence in 21% fewer episodes and 35% less time, 
4. and a mathematical argument that justifies the accelerated convergence. 
 
This paper is organized as follows. Section 2 begins with background on reinforcement learning 
and section 3 presents related work. Our new approach, called TAO-DQN (Target Accelerated 

Optimization-DQN), is presented in section 4 along with a mathematical justification for its 
behavior. Section 5 consists of three experiments with results. Finally, section 7 presents our 
conclusions and describes our future work. 
 

2. BACKGROUND 
 
Reinforcement learning (RL) is a machine learning technique that allows an agent to interact with 
and learn from an environment to maximize the cumulative return. The goal is to learn good 
policies for sequential decision problems [8]. We can describe this with a Markov Decision 
Process (MDP) that is specified as a tuple (S, A, π, r, γ). At each time step t, the agent begins in 

state st ∈ S. After selecting an action at from a set of actions A(st)  according  to  the  policy  
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πt(st) → at,  the  environment  advances  to  state  st+1 with a reward signal of rt+1 and returns 
them to the agent. This process continues until the agent reaches a terminal state, all the while 
seeking to maximize the action value function of expected discounted return in equation 1 
 

Qπ(s, a) = E[rt+1 + γrt+2 + γ2rt+3 + . . . |s, a]                (1) 
 
for some discount factor 0 ≤ γ ≤ 1. 
 
The taxonomy of RL techniques [9] include Q-learning [10], temporal difference learning 
[11], Deep Q-networks [12,13] and Double Q-learning [14,15]. Q-learning maintains an 
estimate Q : S × A → R of the optimal value function. Given a sequence of transition tuples 

(st, at, rt, st+1), it updates Q(st, at) towards the target yt
J of 

 
 
for each t ≥ 0. With most problems being too large to learn all action-state pairs, we can 
instead learn a parameterized value function Q(s, a; θ t), in which case the target yt

JJ is 
 

 
 
Here the parameters are updated according to 
 

θt+1 = θt + α(yt
JJ − Q(st, at; θt))∇θt Q(st, at; θt)                     (4) 

 
where α is the step size. As a result, Q-learning can identify an optimal action-selection 

policy for any MDP given infinite time. An optimal policy is a policy for action 
selection that maximizes future rewards 
 

2.1. Deep Q-Networks 
 
DQNs [16,17] combine a neural network function approximation and experience replay to 

create a scalable RL algorithm. The neural network takes a representation of the state as 
input, and generates a separate output for each possible action. Each output, predicted by the 
Q-values of the individual actions, corresponds with a given input state. This optimal action 
value function behavior obeys an identity known as the Bellman equation. If the optimal 

value Q∗(sJ, aJ) of the sequence sJ at the next time step t was known for all possible actions aJ, 
then the optimal strategy is to select the action aJ that maximizes the expected value of r + 

γQ∗(sJ, aJ). 
 

The neural network function approximation to the optimal value Q∗(sJ, aJ), with weights θ, 
can be trained by minimizing a loss function L(θt) that changes with each time step t giving 
 

L(θt) = Es,a∼ρ(·)[(yt
JJJ − Q(s, a; θt))2],                                (5) 

 

where yt
JJJ  = r +γ maxa′  Q(st+1 , aJ; θ−) is the target and ρ(s, a) is a probability distribution 

over sequences and actions. This target function, yt
JJJ, uses target parameters θ−  which are 

updated every k steps with θt. The delayed update was discovered by Mnih, et al. [17] 
and proved important to convergence, along with the use of experience replay [18,19,20]. 

Stochastic gradient descent can then be used to optimize the loss function L(θt) with respect 
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to the parameters. 
 
As previously mentioned, the other critical component of a DQN is experience replay. In 
many RL algorithms an experience is discarded after it is used to compute the loss function. In 

experience replay the agent’s experiences at each time step, et = (st, at, rt, st+1) are stored in a 
data set D = e1, e2, . . . , eN and pooled over many episodes into a fixed size, circular replay 
buffer. As the DQN advances over time, a random subset of D is drawn and Q-learning 
updates are applied to these samples. This has the advantage of greater data efficiency 
because the samples are reused for training. The randomization also helps to lower the 
variance of the updates because any correlation between samples is broken.  When many 
samples within the random subset are correlated, the overall information content is low 
which slows down training 

 

3. RELATED WORK 
 

Several researchers have tried to improve or accelerate the convergence rate of reinforce- 
ment learning. With memory replay having an important role in RL, Liu and Zou [19] 
chose to generate a deeper understanding of the underlying mechanism by reformulating it 
as a dynamical system using ordinary differential equations (ODE). They were able to 
derive an analytic solution to the ODEs for a simple problem. With that example they  
showed that the amount of memory allocated to replay can affect the agent’s convergence. 
Zhang and Sutton [20] followed a similar path and introduced a new hyper parameter that  

they could study. Their resulting empirical study showed how large replay buffers can 
significantly hurt performance and then proposed a simple method to remedy the negative 
influence. 
 
Fedus et al. [18] built on Zhang’s work and introduced two new hyper parameters: the 
replay capacity and the ratio of learning updates to experience collected. Interestingly 
enough, their additive and ablative studies partially contradicted Zhang. Fedus found that  

greater capacity substantially improves the convergence of some algorithms while leaving 
others unaffected. Schaul et al. [21] took a different approach. They simply acknowledged 
that prior researchers uniformly sampled the experiences from the replay buffer. The ap- 
proach replays transitions regardless of their significance to the learning process. Their  
solution was to develop a framework that replayed important transitions more frequently 
with the goal of learning and converging more efficiently. 
 

4. OUR APPROACH 
 
We first describe our implementation of the TAO-DQN algorithm. We will then explain 
the overestimation error that our approach addresses in the context of our implementation. 

 

4.1. TAO-DQN 
 
Our approach begins with the code in algorithm 1, the basic DQN. The outer loop on line 2 
advances over every episode of training data while the inner loop on line 5 steps through time 
and processes each sample. At a high level, the agent operates on the current state s to 

generate the action a. The environment then operates on the action to advance to the next 
state of the MDP. As each sample is generated by the environment, the tuple (s, a, r, snext) 
is saved to the replay buffer, where snext  is the next state.  A collection of these tuples is 
known as a trajectory. Finally, the replay buffer itself is replayed and the prediction 
network is trained against the sampled subset. 
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Our improvement addresses the replay logic. The traditional replay logic is shown in  
algorithm 2 of Figure 1. Here the replay buffer is sampled and the target network is used to 
predict the value of the next state. The target values for each sample in the mini batch are  
generated from the (r, maxq) pair, where maxq is the maximum Q value of the next state 
across all actions. The prediction network then fits the sample using the neural network.  We 
call this the (s, a, r) approach because the target = G(s, a, r), where G is effectively the 

replay logic. 
 
Our new implementation of the DQN algorithm is shown in algorithm 4. Here we make the 
observation that the value of the next state, nextq, can be computed once in each time step 
and then its associated target value is also computed. This is shown on lines 11 and 12 
 
Instead of saving the tuple (s, a, r, snext) to the replay buffer, we save (s, a, t) where t is the 

target. This new implementation, called (s, a, t), causes the target accelerated replay logic in 
algorithm 3 to run approximately an order of magnitude faster, although it can be more 
given that it is directly related to the size of the mini batch buffer. A line by line comparison 
of the traditional replay logic in algorithm 2, with the new logic in algorithm 3, shows the 
logic that has been optimized out. 
 

 
 
Fig. 1: The pseudo code for the traditional replay logic and the target accelerated replay logic. 
The two listings are virtually identical except for lines 5 through 14. In the traditional replay 

logic the value of the next state is calculated on line 5, every time the replay function is called, 
for every sample in the mini batch. The execution time for line 5 is proportional to the 

batch size and the complexity of the Q function. 
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hen the replay sar() function is called in the traditional approach, the target Q function will 
be called batch size times so that the value of the next state can be computed. The 
computational complexity of algorithm 1 when calling the traditional replay logic is O(M · T 
· batch size), where M is the number of episodes to iterate over, and T is the maximum number 

of time steps per episode. For comparison, our new approach, TAO- DQN, has a complexity 
of O(M · T ). Again, the difference lies in the fact that our new approach does not recompute 
the target values before fitting. 
 

4.2. Addressing Overestimation 
 

Many of the convergence properties for RL are based on empirical results. Both Bradtke 
[22] and Thrun et al. [23] derived mathematical conditions to suggest when the 
learning will fail. The key observation is that function approximators realized by DNN 

introduce 
 

 
 
generalization error into the predictions. Such a generalization error can lead to overesti- 
mation of the action values [23]. The overestimation arises from a positive bias introduced by 

Q-learning, which approximates the maximum expected action value with the maxi- mum 
action value. Here, we leverage the work of [22,23] to minimize this overestimation, and 
present the reasons that the use of a single max() operator per time step of our algorithm is 
able to find a better policy in less time than Mnih. 
 
In Watkin’s original paper on Q-learning [10], the function Q(s, a) was updated ac- cording 
to 

 
 

If the values are stored in a data structure like an array, this policy is capable of maximizing 
the expected cumulative reward precisely. However, when the function approximator  
approach is used we assume that some form of inaccuracy is introduced. We then have 
 
                  Qapprox(s, a) = Qexact(s, a) + βs,a,                                (7) 
 
where βs,a is a collection of uniformly distributed random variables with µβs,a = 0, σβs,a 
=ϵs,a and Qexact(s, a) are the exact target values. 

 
Upon subtracting the approximate and exact forms we get a random variable Z with positive 
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mean, which was generated from zero mean error βs,a. This represents the target 
approximation error. 
 

 
 
The reasoning behind this positive mean for Z follows. Assume a single step of equation 6, 

and five actions to choose from as shown in Figure 2a. This shows an exact set of Q-values and 
their actions. In Figure 2b we see how the inaccuracies of a function approximator causes the 
Q-values to fluctuate about their exact values. The application of the max() operator, 
however, will always pick the largest Q-value. The result of equation 10 is that the max() 
operator generates overestimation because it does not preserve the zero-mean property, 
µβs,a = 0. 

 
In order to compare the error between Mnih’s approach and ours, we look first at the 

underlying Markov decision process. Table 1 shows the Q-value for each state and the 
 

 
 
Fig. 2: Figure 2a is an example of actions and their respective Q-values. Since these are error 
free the max(a1 . . . a5) will return the correct value V for action a4. In Figure 2b there 
are error bars now present because of the use of the function approximator. We now see how 
the correct value V can be overestimated when performing max (a1 . . . a5) where the value 
V’ is returned for action a2. 

 
Table 1: Table of Q values and target approximation errors 

 

 
 
target approximation error as the agent advances to a new state st as a result of taking action 
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n+1 

at. 
Thrun et al. [23] showed that the average overestimation can be as large as γϵn−1 , and this 
overestimation bounds the target approximation error as 
 

                               
 

where n is the number of actions to choose from and ϵ is the variance for a time step. In the 
context of Mnih’s et al. [12] DQNs used to train Atari games, the overestimation for one 
episode of T time steps is shown in equation 12. Here the batch size is a constant.  
 

 
 

The overestimation for our approach shown in equation 13 has introduced the adjustable  
parameter K, where 1 ≤ K ≤ batch size. Therefore, our (s, a, t) based approach is mod- eled 
optimally by equation 13 with K = 1, and this is where we derive our reduced  
computational complexity from. With batch sizes on modern DQNs (in conjunction with the 
learning rate) getting larger to better control the variance in the results and improve  training 
time, it is easy to see the merit in minimizing the number of max() operators used during 
training of a DQN that uses experience replay and a target network [24,25,26]. 
 

5. EXPERIMENTAL RESULTS 
 
In the previous section we described our (s, a, t) approach, compared it to (s, a, r) and 

analyzed their overestimation error. In this section, we show how we perform three exper- 
iments where our target accelerated approach was compared to the traditional approach of 
Mnih. The results follow. 
 

5.1. Mountain Car Results 
 

A MountainCar is positioned between two mountains on a one dimensional track. The goal is 
to drive up the mountain on the right where the flag is located. However, the car’s engine does 
not have enough power to achieve this in a single pass. Therefore, the solution is to drive 
forward and backward, slowly building more momentum, until the goal is achieved or you 
run out of time. 
 
In Figure 3 we show the results of running the MountainCar-v0 environment 24 times for 

both (s, a, t) and (s, a, r). Each run takes approximately 5 hours on an Nvidia V100 
GPU. When (s, a, t) has reached a score of 100, (s, a, r) is less than half away to its goal 
 (    →    ).It then takes 32% more episodes for (s, a, r) to generate a solution equivalent 
to  (s, a, t)  (    →    ).  The  pink  and  light  blue  envelopes  around  the  (s,a,r)  and  (s,a,t) 
approaches show how minimizing the number of max() operators can affect the variability 
[27] of the solution. 
 
Figure 4 shows the graph of the run time. Here (s, a, t) executes in 68% of the time of (s, 
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a, r). By removing the relatively expensive recalculation of the target values in the target 
network, we train nearly twice as fast. 
 
Figure 5 demonstrates how changing the value of K in equation 13 shifts the graph from 

right to left. As the number of max() operators are reduced, the policy is generated with less 
work and in less time. 
 

 
 

 
 
 
 

5.2. Acrobot  Results 
 
The Acrobot is a planar two link robotic arm where the joint between the two links is  
actuated. Initially the links are hanging downward. The goal is to swing the end of the lower 
link up to a given height. 
 

In Figure 6 we show the results of running the Acrobot-v1 environment 20 times for both (s, 
a, t) and (s, a, r). Each run takes approximately 1.5 hours on an Nvidia V100 
 
 
 

 
Fig. 5: MountainCar-v0 results for different K values. (s, a, r) is K=32 and (s, a, t) is K=1. 

 

GPU. When (s, a, t) has reached a score of 100, (s, a, r) is still 44% from its goal (  →  ). 
It then takes 21% more episodes for (s, a, r) to generate a solution equivalent to (s, a, t)  
(   →   ).Once again, the pink and light blue envelopes around (s,a,r) and (s,a,t) show 

how the variance in the solutions can be controlled. 
 
Figure 7 shows the graph of the run time. Here (s, a, t) executes in 76% of the time of (s, 
a, r). Figure 8 demonstrates how changing the value of K in equation 13 shifts the graph 

Fig. 3: The results are obtained by run- ning 

(s, a, t) and (s, a, r) with 24 differ- ent 

random seeds for MountainCar. 

Fig. 4: Average run time across 24 runs 

for MountainCar. (s, a, t) finishes in ap- 

proximately 68% of the time for (s, a, 

r). 
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from right to left. As the number of max() operators are reduced, the policy is again 
generated with less work and in less time. 
 

 
 

Fig. 6: The results are obtained by run- ning 

(s,a,t) and (s,a,r) with 20 different random 

seeds for Acrobot. 

Fig. 7: Average run time across 20 runs for 

Acrobot. (s, a, t) finishes in approxi- mately 

76% of the time for (s, a, r). 

 

 
Fig. 8: Acrobot-v1 results for different K values. (s, a, r) is K=32 and (s, a, t) is K=1. 

 

5.3. Cartpole Results 
 
Cartpole is the classic inverted pendulum from control theory. The goal is to balance the pole 
for as long as possible by moving the base to the right or left. 

 
In Figure 9 we show the results of running the Cartpole-v1 environment 20 times for both (s, 
a, t) and (s, a, r). Each run takes approximately 20 minutes on an Nvidia V100 GPU. 
When (s, a, t) has reached a score of 200, (s, a, r) is still 50% away from its goal ( →  
 ).  Similarly, it takes 35% more episodes for (s, a, r) to generate a solution equivalent 
to (s, a, t) (     →   ). Since the goal of the previous two experiments is to minimize the time 
to achieve the goal, we collected and plotted the run time vs episode. Cartpole, on the 

other hand, is trying to balance the pole for as long as possible. In this case, it does not  make 
sense to generate the run time graph. Since reporting some form of execution time generates 
insight into the behavior of TAO-DQN, we included three run times at points (a), (b), 
and (c) on Figure 9. These time points demonstrate the time improvement of (s, a, t) 
over (s, a, r). Once again, Figure 10 demonstrates how changing the value of K in equation 
13 shifts the graph from right to left, improves the policy and causes cartpole to balance for 
a longer period of time. 
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Fig. 9: Cartpole-v1 results with 20 random 

seeds. 

Fig. 10: Cartpole-v1 results for 

different K values. (s, a, r) is K=32 
and (s, a, t) is K=1. 

 
Table 2: Results for the MountainCar, Acrobot and Cartpole experiments. The episode ratio and 

time ratio columns demonstrate how inexpensive our (s, a, t) approach is when compared to the (s, a, r). 

Note: Smaller ratios are better. 

 
Experiment (s,a,t) 

episodes 

to goal 

(s,a,r) 

episodes 

to goal 

episode 

ratio 

(s,a,t) 

time to 

goal 

(sec) 

(s,a,r) 

time to 

goal (sec) 

time 

ratio 

MountainCar 1,000 1,450 0.68 14,200 25,000 0.57 

Acrobot 375 475 0.79 4,500 6,900 0.65 

Cartpole 260 340 0.76 531 1065 0.50 

 

6. DISCUSSION 
 

The behavior of (s,a,t) versus (s,a,r) is summarized in table 2. We reduced the number of 
episodes required by at least 21% (up to 32%). We also reduced execution time by at least  
35% (up to 50%). These reductions are consistent with our hypothesis. It is gratifying to 
demonstrate that these improvements follow the prediction of the K parameter in equation 
[13]  As K gets smaller, the overestimation get smaller and the algorithm executes faster.  
Figures 3, 6 and 9 further demonstrate how the pink envelope that describes the variance in 
the (s,a,r) approach shrinks to the tighter blue variance envelope of the (s,a,t) approach.  
Again, this is attributed to the K parameter that governs the number of max() operators 

applied during replay. 
 

7. CONCLUSIONS AND FUTURE WORK 
 
This paper introduced a new target accelerated approach to the implementation of DQNs for 
reinforcement learning. We demonstrated that our approach is faster than the classical 
approach of Mnih where the state, action and reward are stored in the replay buffer. Our 
TAO-DQN algorithm is based on the observation that the state, action and target can be  
saved to the replay buffer, thereby minimizing the overestimation error. 
 

Our experiments and our mathematical justification confirm our hypothesis. A DQN will 
converge to a better policy in less time when the number of max() operators is minimized.  
 
Our future work will involve graph neural networks. We are interested in applying our 
new TAO-DQN algorithm to NP-hard graph based optimization problems that lie at the 
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intersection of reinforcement learning and combinatorial optimization. The literature is 
already suggesting that these NP-hard problems can be solved with reinforcement learning. 
We plan to show we can solve those problems in less time with fewer resources. 
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