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ABSTRACT 
 
Reinforcement learning (RL) has received significant interest in recent years, primarily because 

of the success of deep RL in solving many challenging tasks, such as playing chess, Go, and 

online computer games. However, with the increasing focus on RL, applications outside gaming 

and simulated environments require an understanding of the robustness, stability, and resilience 

of RL methods. To this end, we conducted a comprehensive literature review to characterize the 

available literature on these three behaviors as they pertain to RL. We classified the 

quantitative and theoretical approaches used to indicate or measure robustness, stability, and 

resilience behaviors. In addition, we identified the actions or events to which the quantitative 

approaches attempted to be stable, robust, or resilient. Finally, we provide a decision tree that 
is useful for selecting metrics to quantify behavior. We believe that this is the first 

comprehensive review of stability, robustness, and resilience, specifically geared toward RL. 
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1. INTRODUCTION 
 

Recent literature on the robustness of machine-learning models has focused almost entirely on the 

robustness of deep neural networks for imaging applications. However, at the time of this study, 

there were no published surveys on the robustness of reinforcement learning (RL). We pursued this 
review because of the increasing use of RL, particularly in control systems. Along with robustness, 

stability and resilience are included. Stability was included because the term has been used 

interchangeably with robustness, and resilience was included because the term has been used as a 
state beyond robustness. 

 

RL involves agents that act in an environment and experience a reward for their actions. The 
agent learns the policy that maximizes the cumulative reward. Formally, consider an agent 

operating at time t∈{1, … , 𝑇}. At time t, the agent is in environment state st and produces an 

action 𝑎𝑡 ∈ 𝐴. The agent then observes a new state st+1 and receives reward 𝑟𝑡 ∈ 𝑅. A set of 

possible actions A can be discrete or continuous. The goal of reinforcement learning is to find a 

policy 𝜋(𝑎𝑡|𝑠𝑡) for choosing an action in state st to maximize the utility function or (expected 

return). [252] 
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𝐽(𝜋) = 𝑬𝑠0,𝑎0,…[∑ 𝛾𝑡𝑟(𝑠𝑡 , 𝑎𝑡)∞
𝑡=0 ]                    (1) 

 

Where 0 ≤ 𝛾 ≤ 1 is a discount factor, 𝑎𝑡~𝜋(𝑎𝑡|𝑠𝑡) is drawn from the policy, and 

𝑠𝑡+1~𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) is generated by environmental dynamics. The state value function 

 

𝑉𝜋(𝑠𝑡) = 𝑬𝑎𝑡,𝑠𝑡+1,…[∑ 𝛾𝑖 𝑟(𝑠𝑡+1, 𝑎𝑡+1)∞
𝑖=0 ]       (2) 

 

is the expected return by policy  from state st. The state action function  

 

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) = 𝑬𝑠𝑡+1,𝑎𝑡+1,…[∑ 𝛾𝑖𝑟(𝑠𝑡+1, 𝑎𝑡+1)∞
𝑖=0 ]      (3) 

 

is the expected return by policy  after taking action at at state st. [252]. 

 

The objective of this study is to present a systematic review of RL literature to identify metrics for 

measuring the stability, robustness, and resilience of RL. We limit RL to general reinforcement 
learning and not to specialized RL, such as inverse RL. We reviewed studies that attempted to 

measure or otherwise characterize stability and robustness. and resilience of RL, seeking metrics for 

these behaviors. 

 
We searched computer science and technical literature databases for eligible papers, combining RL, 

behavior terms, and terms related to measuring, metrics, and quantification. The result comprised 

16,015 items, and after removal of duplications and extraneous material, a collection of 546 items 
was established. Through the process of elimination described in full in this paper, we reduced the 

set to 248 papers. We systematically reviewed 248 papers and presented the results in this analysis.  

We classified the papers by behavior (i.e., stability (n=76), robustness (n=169), and resilience 
(n=3)), and identified the primary domains of application as robotics, network systems, power 

system control, and vehicle/traffic control and navigation. We identified approaches to determine or 

measure each behavior individually and across behaviors. The approaches were categorized as 

quantitative or theoretical, and the quantitative approaches were further classified as being applied 
internally (e.g., in training) or externally (e.g., performance measures on outputs) to the model. The 

metrics, approaches, and objectives were identified for each paper reviewed. The objective 

indicates the metric or approach intended to be stable, robust, or resilient. We close by indicating 
the need to define stability, robustness, and resilience behaviors for RL and identify quantitative 

and theoretical approaches to achieve measurement and determination of these behaviors. 

There is a rich set of domains (i.e., 53 identified in this survey) in which the measurement of RL 

stability, robustness, and resilience has been conducted. The domains ranged from robotics and 
network systems to sheep herding and fish behavior. The most frequently mentioned domains 

include robotics, general control, and network systems, with numerous studies not specifying a 

domain. Many studies used Gym [254] and other environments for demonstration purposes. 
Though the search focused on the quantitative measurement of stability, robustness, and resilience, 

theoretical approaches were identified as well. The quantitative approaches were categorized as 

internal or external depending on where the evaluation was conducted in the model. Internal 
measures quantified the performance of the training and external measures quantified the ultimate 

performance of the model. 

 

The goal of this systematic review is to identify metrics for measuring the stability, robustness, and 
resilience of RL. To initiate the search for this review, we identified keywords and phrases related 

to reinforcement learning, the behaviors of interest (stability, robustness, and resilience), and 

measurement. The key phrase is reinforcement learning. The measurement keywords are metric, 
measure, index, score, quantifier and indicator. 
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We believe that this is the first comprehensive review of stability, robustness, and resilience 
specifically geared toward RL. The remainder of this paper is organized as follows. Section 2 

describes the methods used in the systematic review. Section 3 presents the results of the review. 

Section 4 discusses the results of the review and introduces a decision tree for metric selection 

based on the review.  
 

2. METHODS 
 

Keywords salient to RL, system behavior, and measurement were identified for the research topic. 
The typical search was of the form: 

 

<Key Phrase> + <Behavior> + <Measurement> 

 
with <Key Phrase>, <Behavior> and <Measurement> defined above.  A specific example is  

 

“reinforcement learning” AND robust* AND (“metric” OR “measure” OR “index” OR “score” OR 
“quantifier” OR “indicator”) 

 

Multiple searches were conducted using bibliographic databases covering broad areas of computer 
science, physical and biological sciences, and engineering. The information sources used in this 

study are the open-access arXiv covering 1991-present and the subscription services Scopus (1823-

present) and Web of Science (1900-present). No restrictions were placed on the publication date or 

language. Journal articles, books, books in a series, book sections or chapters, edited books, theses 
and dissertations, conference papers, and technical reports containing keywords and phrases were 

included in the search. The publication date of the returned search results is bound by the dates of 

coverage of each database and the date on which the search was performed; however, all searches 
were completed by October 31, 2020. The range of dates for the documents ultimately included in 

the review was from 2002 to 2020. 

 
The queried databases yielded 16,015 citations. Irrelevant citations were also retrieved. We 

excluded extraneous studies, resulting in a collection of 699 publications. Furthermore, the removal 

of duplicate papers resulted in 580 publications. Citations for “full conference proceedings were 

removed if the relevant paper(s) within the associated conference were otherwise collected, 
resulting in 546 publications. Further refinement excluded publications that were not on RL, which 

were not on the searched behavior, or those that had no metrics or theoretical content, resulting in 

248 documents. We systematically reviewed 248 papers, and the results are presented in this 
analysis.  

 

The 248 papers that made it through the screening process were grouped by search behavior: 

stability, robustness, and resilience. We also identified papers on one behavior that mentioned one 
or both other behaviors. Some studies that mentioned other behaviors did so interchangeably. For 

instance, stability and robustness have been used interchangeably in several studies, which can lead 

to some confusion in the definitions of these behaviors. The primary domains of application were 
identified and categorized as robotics, network systems, general control systems, Gym [254], and 

other environments. We also identified publications that mentioned the RL policy. 

 
The primary focus of this study was to identify approaches to determine or measure each behavior. 

Of course, most publications reviewed focused on quantitative approaches because of the search 

terms used. Those that use a theoretical approach provide additional insight into the behavior-

determination problem. The quantitative approaches were further classified as being applied 
internally (e.g., in training) or externally (e.g., performance measures on outputs) to the model. 
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Metrics, approaches, and objectives were identified for each study (see Figure 1). The objective 
indicates the metric or approach intended to be stable and robust, or resilient. 

 

 
 

Figure 1.  Categorization and resulting metrics, approaches, and objectives 

 

There is little agreement in the literature on the definitions of stability, robustness, and resilience. In 

fact, there are few distinct definitions of these behaviors. In this review, we used the following 
definitions: 

 

Stability is a property of the learning algorithm (i.e., a small change in the training set results in a 

similar model) and refers to the ranking of the variance of a model [253]. For example, if we use 
the variance of the loss function over all datasets as a performance measure, we test a set of models. 

The smallest loss indicated a more stable model. Given this definition, stability analysis is an 

application of sensitivity analysis to machine learning. 
 

Robustness, when used with respect to computer software, refers to an operating system or 

other program that performs well not only under ordinary conditions but also under unusual 
conditions that stress its designers’ assumptions (http://www.linfo.org/robust.html). Robustness is a 

property of the model and is measured by, for example, loss over all datasets (as opposed to the 

variance of the loss). 

 
Throughout the literature, resilience has been used interchangeably with robustness; however, it is 

used most often with production machine learning systems to indicate robustness to different 

datasets and different data added to the dataset. 
 

3. RESULTS AND ANALYSIS 
 

Publications were categorized by behavior as follows: stability (n=76) [4-80], robustness (n=169) 

[81-169], and resilience (n=3) [1-3]. Studies on one behavior often mention other behaviors, 
especially stability and robustness. Resilience was mentioned in five stability papers and 11 

robustness papers. Robustness was mentioned in 50 stability papers and in one resilience paper. 

Stability was mentioned in 104 Robustness papers and in all (3) Resilience papers. 
 

Given the recent explosion of literature on the robustness of neural networks to adversarial attacks, 

one might expect it to be a cornerstone of the robustness papers reviewed herein. The term 

“adversarial” was mentioned in a quarter (n=61, N=248) of the papers reviewed. That is, 1 
resilience paper, 56 robustness papers, and 4 stability papers mention “adversarial”. Some papers on 
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one behavior used one of the other behaviors interchangeably, notably stability and robustness, 
specifically [91, 93, 105, 145, 146, 179, 194, 225, and 237] and generally in several other articles. 

 

3.1. Application Domains 
 

The publication application domains are provided in the supplementary information and 

summarized in Figure 2. The primary domains were robotics, with 16.4% (n=44) of the total 
citations (N=268), followed by network systems and general control (n=7.8%, n=21), with 9.3% 

(n=25) using Gym or other environments as their experimental domain. Just as many (n=25, 

9.3%) papers did not specify a domain. These top 5 (n=53) domains comprised over 50% (52.9%, 

n=136) of citations. Most (52.8%, n=28) domains (n=53) had a single citation.  
 

 
 

Figure 2. Application Domain Categories 

 

3.2. Reinforcement Learning Policies 
 
Tweny-one (21) RL policies were mentioned in the articles. Most documents did not identify the 

policies used. Of the 21 types of policies mentioned, the top 4 – Actor-Critic (n=18), Q-learning 

(n=16), Proximal Policy Optimization (PPO) (n=8), and Adaptive Critic Design (n=5) comprised 

72.3% of the total citations that included policy (N=65). 
 

3.3. Approach to Determining or Measuring Behavior 
 

The publications’ approaches to determining or measuring each behavior are categorized as either 

quantitative or theoretical. Most of the publications focused on quantitative approaches (n=205, 

82.0%), which is understandable given that the search focused on quantifying behaviors. For 
publications on stability behavior, there was an almost even split between the quantitative (n=42) 

and theoretical (n=43) approaches. However, publications on robustness behavior have primarily 

focused on quantitative approaches (n=160) vice theoretical (n=35). All (3) publications on 
resilience applied quantitative approaches. 
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3.3.1. Types of Quantitative Approaches 
 

Next, we further categorized the quantitative approaches according to whether they were focused 

internal or external to the model. Internal quantitative approaches measure aspects within the 

model, such as its training and associated measures, including the value of rewards over time or 
the number of episodes until convergence. External quantitative approaches measure 

performance-related aspects of a model, such as variations in accuracy or throughput. Most  

(n=142, 63.1%) quantitative approaches were categorized as performance-related or external 
measures. Of these, most (n=103) were for robustness, followed by those for stability (n=36). The 

3 papers on resilience focused on performance-related quantitative measures. Robustness also led 

to internal approaches (n=69) with stability (n=14). This is primarily due to the large number of 
robustness papers (n=170) and paucity of resilience papers (n=3). Of the robustness papers, 

40.0% (n=69) contained internal quantitative measures, and 60.6% contained external 

quantitative measures. The stability values were 18.2% and 46.8%, respectively. 

 

3.3.2. Types of Internal Quantitative Approaches 

 

Looking at the types of internal quantitative approaches, we see a narrow set of aspects 
considered in the papers. These metrics are specifically designed to measure stability rather than 

the variance of the output. They measured the variation in training performance. The vast 

majority (n=75, 88.2%) of the internal quantitative approaches calculated the reward- or score-
based metrics. Other types of internal quantitative approaches include two each of policy entropy, 

variations in control strategy approximation weights, and convergence rate, and one each of 

policy weight, calculation of the Lyapunov stability criteria, and calculation of the Wasserstein 

function lower bound. In RL context, convergence refers to the stability of the learning process 
(and the underlying model) over time [11]. 

 

3.3.3. Types of External Quantitative Approaches 
 

External or performance-based quantitative approaches for measuring behaviors primarily (n=39) 

used deviations or variations in performance-related metrics other than precision, accuracy, or recall 

(Figure 3). The next highest category (n=28) of quantitative metrics used error, failure, and success 
rates. Statistics on the performance of the tracking or estimation error follow, with n=23 papers. 

Papers in the network domain used network-related metrics (n=15) to measure behavior. Statistics 

on precision, accuracy, and recall (n=12) were also used. Five papers used variance in loss or regret 
estimation, three papers used game-related performance measures to quantify behavior, and two 

papers each used bounds on or the size of the stability region and terminal wealth and inventory. 

Eighteen (18) additional different types of external quantitative metric categories were represented 
by a single paper each. 
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Figure 3. External Quantitative Metrics 

 

3.3.4. Quantitative Approach Objectives 

 

An additional aspect reviewed was to determine to what actions or events were the quantitative 
approaches attempting to be stable, robust, or resilient. We call this the <behavior> objective. 

The <behavior> objective category (see Figure 4), with the highest number of citations, was 

geared toward handling changes in the operational environment, dynamic environment, or 
network (n=41). Papers that did not specifically state their objectives comprised the next most 

populous category (n=35). The objective of handling uncertainties and disturbances in the 

environment also contained n=35 papers. The remaining objectives included input 

variation/perturbations (n=20), differences between training and test or operational environments 
(n=19), differences or uncertainties in model parameters (n=16), adversarial attack (n=14), 

different domains, environments, or settings (n=8), errors or failures in the operational 

environment (n=5), differences in training datasets or initializations (n=5), high variability (n=2), 
and one paper each in systematic pressure, spamming, incomplete data, and unknown control 

coefficients. 

 

 
 

Figure 4. Quantitative <behavior> Objectives 

 

3.3.5. Types of Theoretical Approaches 

 

 Most of the theoretical approaches in the papers reviewed were based on the Lyapunov theory 

(n=50, 61.0%) (Figure 5). The next highest types of theoretical approaches used are convergence 
to Nash equilibrium (n=10) and value-based guarantees, such as error and output deviation 
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bounds (n=8). Of the remainder, three papers used the Wasserstein distance to explore stability, 
three studies proved that the methods were doubly robust, two papers proved that the methods 

exhibited Lipschitz continuity, and stochastic stability theory to prove stability, stability 

guarantees, policy-based guarantees, regret bounds, minimization of the Jacobian on input, and 

per-episode Bellman-error regret guarantees/bounds were used by a single paper each to establish 
the stability of the RL methods discussed. 

 

 
 

Figure 5. Theoretical approaches 

 

3.3.6. Theoretical Approach Objectives 

 
We also reviewed the <behavior> objective for theoretical papers (Figure 6). Most papers (n=42, 

54.5%) on theoretical approaches did not state their objectives. Of the few that did, changes or 

dynamics in the operational environment were the most frequent objective (n=10), followed by 
differences or uncertainties in model parameters (n=7), adversarial attack (n=6), error or failure 

(n=5), differences between training and test or operational environments (n=2), input variation 

(n=2), and one each for domain shifts, different function approximation architectures, and 

differences in quantization levels. 
 

 
 

Figure 6. Theoretical <behavior> Objectives 

 

4. DISCUSSION 
 

Our study was conducted to characterize the published methods of measuring or determining the 
stability, robustness, or resilience of RL. Of an initial collection of 16,015 items, 248 papers met the 

inclusion criteria and were systematically reviewed. Approaches to measuring or determining 

behavior are classified as either quantitative or theoretical. Quantitative approaches were further 
classified as internal or external depending on whether they evaluated the training, test, or 



 Computer Science & Information Technology (CS & IT)                                        67 

operational phases. For both categories of quantitative approaches, we categorized the metrics used, 
with internal approaches primarily using the reward or score (and statistics on the same) and 

external approaches primarily using variations in performance-related metrics (although not 

precision, accuracy, or recall). The theoretical approaches were dominated by Lyapunov stability 

theory. We further characterized the objectives of stability, robustness, and resilience. Quantitative 
approaches to measuring behavior focused on the ability to handle differences in the operational 

environment, whereas most theoretical approaches to determining behavior did not specifically 

state an objective. However, the objective of the theoretical approaches can be implied using 
Lyapunov stability theory, that is, to prove the stability of the system. Lyapunov was used, 

regardless of whether the article was on stability or robustness. 

 
To determine the metric to use, we developed a decision tree based on the information obtained 

in this literature review. It is a collapsible tree, so that branches are not exposed unless selected, 

and open branches can be closed or collapsed. There are several levels in the decision tree, 

starting with i) behavior (stability, robustness, or resilience); ii) the domain; iii) a list of 
quantitative and theoretical objectives; iv) the next level divides the metrics into external, 

internal, and theoretical metrics; and v) the last level, that is, the leaves, is the set of metrics for 

that branch of the decision tree. For example, suppose we want to find a suitable metric to 
measure the robustness of a control system expected to face changes in the operational 

environment. From the metric decision tree shown in Figure 7, we can see that the first selection 

is for a robustness metric. This selection displays the domains in which the robustness metrics are 
described. Selecting the General Control domain reveals 9 objectives, including the objective 

“Dynamic Environment.” An external metric found in the literature for this case is “blood 

glucose response” which is not applicable for this control system. The more appropriate metrics 

and approaches are the size of the stability region, value-based guarantees, error bounds, and 
Lyapunov stability theory and calculation. Any or all of these can be used to measure the 

robustness of a general control system in a dynamic operational environment. 

 
Supplementary information for this review is provided at https://arxiv.org/pdf/2203.12048.pdf, 

including a) PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 

[251] diagrams for Stability, Robustness and Resilience, respectively; b) the data reduction 

methodology for Stability, Robustness and Resilience, respectively; and the PRISMA checklist. 
In addition, the site provides detailed tables of the results described in Section 3. 
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Figure 7. Metric Selection Decision Tree Section 
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