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ABSTRACT 
 
Despite the rapid progress of open-domain generation-based conversational agents, most 

deployed systems treat dialogue contexts as single-turns, while systems dealing with multi-turn 

contexts are less studied. There is a lack of a reliable metric for evaluating multi-turn 

modelling, as well as an effective solution for improving it. In this paper, we focus on an 

essential component of multi-turn generation-based conversational agents: context attention 
distribution, i.e. how systems distribute their attention on dialogue’s context. For evaluation of 

this component, We introduce a novel attention-mechanism-based metric: DAS ratio. To 

improve performance on this component, we propose an optimization strategy that employs self-

contained distractions. Our experiments on the Ubuntu chatlogs dataset show that models with 

comparable perplexity can be distinguished by their ability on context attention distribution. 

Our proposed optimization strategy improves both non-hierarchical and hierarchical models on 

the proposed metric by about 10% from baselines. 
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1. INTRODUCTION 
 

In recent years, generation-based conversational agents have shown a lot of progress, while 
multiturn generation-based conversational agents are still facing challenges. Most recent work 

ignores multiturn modelling by considering a multi-turn context as a 1-turn context [1, 2]. Some 

works try to deal with multi-turn modelling using modified attention mechanisms, hierarchical 
structures, utterance tokens, etc. [3, 4, 5]. The main difference between multi-turn conversational 

agents and regular (1-turn) conversational agents is that instead of dealing with an utterance in a 

context on the word-level, multi-turn models deal with a dialogue on the utterance-level, so that 

models can understand an utterance as a whole and focus on important utterances rather than 
important words. 

 

An example of important/unimportant utterances existing in the same context is given by Table 1. 
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Table 1: An example of important utterances and unimportant utterances under the same context in the 

Ubuntu chatlog dataset [6]. Unimportant utterances are marked in red. 

 

User Utterances 

Taru Haha sucker. 

Kuja ? 

Taru Anyways, you made the changes right? 

Kuja Yes. 

Taru Then from the terminal type : sudo apt - 

get update 

Kuja  I did. 

 

In this example, the first two utterances (“Haha sucker.” and “?”) are unimportant utterances that 
are irrelevant to the main topic of the context. Human dialogues naturally contain many of these 

unimportant utterances. These utterances do not distract humans from understanding the main 

idea of the context, since humans can easily ignore them and focus instead on important 
utterances; however, a model usually lacks this capability and can be distracted by these 

utterances, resulting in a lower performance in generating relevant responses to the main topic of 

a context. Therefore, it is crucial that a multi-turn model can decide which utterances in the 
context are important and which are unimportant, and distribute its attention accordingly. In this 

paper, we define the research topic as context attention distribution, which denotes how much 

attention is distributed respectively to important and unimportant utterances in a context. A 

model with a good performance on context attention distribution should pay more attention to 
important utterances and less attention to unimportant utterances. 

 

Recent work lacks a measurement for the performance of multi-turn modelling. Common metrics 
rely on general evaluation metrics such as BLEU [7], which measures the quality of generated 

responses. These metrics cannot directly describe a model’s ability on dealing with multi-turn 

contexts, since the quality of generated responses is influenced by many aspects. Better 

performance in dealing with multi-turn context may result in better general performance; 
however, a better general performance does not necessariy mean that the model has a better 

ability on dealing with multi-turn contexts. Thus, as a supplementary to general evaluation 

metrics like BLEU, we propose a metric that measures a conversational agent’s performance on 
context attention distribution, which is specifically designed for evaluating a model’s 

performance on multi-turn modelling. Since most multi-turn conversational agents have the 

attention mechanism and rely on it to distribute attention to different utterances in a context, we 
propose distracting test as the evaluation method to examine if a model pays more attention to the 

important utterances. The test adds unrelated utterances as distractions to the context of each 

dialogue and compares the attention scores of distracting utterances (i.e., unimportant utterances) 

and original utterances (i.e., important utterances). The ratio of the average attention score of 
distracting utterances and original utterances is defined as the distracting attention score ratio 

(DAS ratio). We use DAS ratio as the evaluation metric for a model’s performance on context 

attention distribution. A model with good capability on context attention distribution should have 
higher scores on original utterances and lower scores on distracting utterances, thus a lower DAS 

ratio.  

 
Furthermore, we propose a self-contained optimization strategy to improve a conversational 

agent’s performance on context attention distribution. For each dialogue, we randomly pick some 

utterances from the training corpus outside the current dialogue as self-contained distractions, and 

insert them into the current dialogue with different levels of possibilities. The attention paid to 
these distractions is minimized during the training process through multi-task learning. With this 
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optimization strategy, a model learns to distribute less attention to unimportant utterances and 

thus more attention to important utterances. 
 

In this paper, we examine the following research questions: 1) How do existing multi-turn 

modeling structures perform on context attention distribution? 2) Can the proposed optimization 

strategy improve a model’s performance on context attention distribution? 3) Which probability 
level is the best for inserting distractions in the proposed optimization strategy? 

 

Our contributions are as follows: 
 

(1) We deal with a less studied problem: evaluating and improving context attention 

distribution for multi-turn conversational agents. 

(2) We propose a novel evaluation metric for multi-turn conversational agents: DAS ratio. It 
measures a model’s performance on context attention distribution, i.e. the capability of 

distributing more attention to important utterances and less to unimportant ones. 

(3) We propose an optimization strategy that minimizes the attention paid to self-contained 
distractions during the training process, and thus makes the model try to pay less 

attention to unimportant utterances. The strategy can easily be added and adapted to 

existing models. 
 

Extensive experiments on 23 model variants and 9 distracting test sets show an overall 

improvement in the performance on context attention distribution for the proposed strategy. We 

will share our code for reproducibility (in the final version, a Github link will be provided). 
Related work is introduced in Section 2. In Section 3, we introduce our base models and 

proposed methods. We show our experiments settings in Section 4 and results in Section 5. 

Finally, we give a conclusion in Section 6. 
 

2. RELATED WORKS 
 

Common evaluation metrics for conversational agents measure the similarity between the 

generated responses and the gold responses. Liu et al. [8] summarizes commonly used metrics: 
word overlap-based metrics (e.g. BLEU) and embedding-based metrics. Bruni et al. [9] propose 

an adversarial evaluation method, which uses a classifier to distinguish human responses from 

generated responses. Lowe et al. [10] propose a model that simulates human scoring for 
generated responses. Zemlyanskiy et al. [11] examine the quality of generated responses in a 

different direction: how much information the speakers exchange with each other. Recently, Li et 

al. [5] propose a metric that evaluates the human-likeness of the generated response by measuring 
the gap between the corresponding semantic influences. Different from the above, our proposed 

evaluation metric is based on the attention mechanism and is intended to measure a model’s 

performance on context attention distribution. 

 
Most generation-based conversational agents apply simple concatenation for multi-turn 

conversation modelling [2, 1], which regards a multi-turn context as a 1-turn utterance. Some 

works try to model multi-turn conversations through the hierarchical structure: Serban et al. [3, 4] 
first introduce the hierarchical structure to dialogue models. Tian et al. [12] evaluate different 

methods for integrating context utterances in hierarchical structures. Zhang et al. [13] further 

evaluate the effectiveness of static and dynamic attention mechanism. Gu et al. [14] apply a 

similar hierarchical structure on Transformer, and propose masked utterance regression and 
distributed utterance order ranking for the training objectives. Different from hierarchical models, 

Li et al. [5] encode each utterance with a special token [C] and apply a flow module to train the 

model to predict the next [C]; then they use semantic influence (the difference of the predicted 
and original tokens) to support generation. In our paper, instead of modelling the relations of 
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inter-context utterances as [14] or the dialogue flow as [5], our optimization strategy improves 

multi-turn modelling by n distinguishing important/unimportant utterances directly on the 
attention mechanism. 

 

3. METHODS 
 

Our proposed evaluation metric and optimization strategy can work on attention mechanisms 
including Transformers. In this paper, we choose an LSTM Seq2Seq model with attention 

mechanism [15, 16, 17] as the base model, since most hierarchical structured multi-turn 

conversational agents are based on LSTM [3, 4, 12, 13] while few are based on Transformers.  
 

The basic task of generation-based conversational agents is to predict the next token given all the 

past and current tokens from the context and response, and to make the predicted response as 

similar to the original response as possible. Formally, the probability of response Y given context 
X is predicted as: 

 

𝑃(𝑌|𝑋) = ∏ 𝑝(𝑦𝑡|𝑦1 , … , 𝑦𝑡−1, 𝑋)
𝑛
𝑡=1 ,           (1) 

 

Where X = x1, . . . , xm and Y =y1, . . . , yn are a context-response pair. 
 

3.1. LSTM Seq2Seq Model with Attention 
 

We simplify an LSTM unit as LSTM, and we denote the attention version of an LSTM with an 

asterisk (LSTM∗). They are well introduced in previous work [18].We calculate the hidden vector 

ht at step t as: 

 

                                             ht = LSTM∗(ht−1, E(zt), ct−1),                                                 (2) 

 

where ht−1∈𝑅dim is the hidden vector at step t-1, dim is the dimensionality of hidden vectors, and 

E(zt) is the word embedding for token zt∈ {x1, ..., xm,y1, ..., yn−1}. ct−1 is the context vector at step 

t-1, and it is input to the next step t only in the decoder. Each ht and ct of the current step t are 
combined through a linear layer and an activation to predict the next token. 

 

3.2. Attention Mechanism & Utterance Integration (UI) 
 

 
 

Figure 1: Structure of non-hierarchical, static and dynamic attention loss. 
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We examine both non-hierarchical and hierarchical structures. For hierarchical structures, following 

[13], we develop two attention mechanisms: static and dynamic. Following [12], we develop 
models that are both with and without utterance integration LSTM units. For the non-hierarchical 

structured model, there are no hidden vectors for utterances. All hidden vectors of tokens in the 

encoder are concatenated and used in the attention mechanism. Denoting the concatenated vector 

H = [h1, h2, ..., hm], we calculate the context vector ct for each decoding 
Step t as: 

ct=H ·(softmax(H⊤· ht)) .                    (3) 

 

For the hierarchical models, we use the hidden vector of each utterance’s last token as the hidden 

vector of the utterance, and we discard the hidden vectors for the other tokens. Thus, compared to 
the non-hierarchical structured model, we have much fewer hidden vectors from the encoder. 

 

The context vector of static attention mechanism is calculated based on the utterance-level 

concatenated vector and the hidden vector of the last utterance in the context. Denoting the 
hidden vector of k th utterance as Hk, and the hidden vector of the last utterance in the context as 

Hq, we have the context’s concatenated vector HC = [H1, H2, ..., Hq]. We calculate the context 

vector ct for static attention mechanism as: 

 

 
 

where it is easy to see that the static context vector remains unchanged by the decoder. 

 

The context vector of dynamic attention mechanism is calculated based on the utterance-level 
concatenated vector and the hidden vector of each token in the decoding step. We calculate the 

context vector ct for dynamic attention mechanism as: 

 

 
 

Compared to the static attention mechanism, the context vector ct varies at each decoding step. 

Finally, with the utterance integration LSTM unit, we calculate Hm from H1,H2,...Hq: 

 

Hm=LSTM(H1,H2,...,Hq).                                  (6) 

 
For models with utterance integration (UI), Hm is input to the first step of the decoder, while for 

models without UI, regular hm is input instead. 

 

3.3. Distracting Test & Attention Score (AS) 
 

We examine if a multi-turn conversational agent distributes more attention to important 

utterances through the distracting test and attention scores. 
 

In the distracting test, for each dialogue before the end of the context, we insert several utterances 

that are irrelevant to the main idea of the dialogue as distractions. These utterances are named 
distracting utterances, and they can be randomly picked utterances from the training corpus 

(random), be formed by frequent words from the training corpus (frequent), or be formed by 

rare words from the training corpus (rare). We compare the attention scores of the distracting 
utterances with the attention scores of the original utterances. A well-performing model should 

distribute less attention to the distracting utterances while more attention to the original 

utterances. For an utterance Hk, the corresponding attention score AS(Hk) is calculated as: 
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hi denotes hidden vectors from the encoding steps and ht denotes hidden vectors from the 

decoding steps. m is the number of tokens in a context, and q denotes the number of utterances in 

a context. Note that for non-hierarchical models we multiply by an m in each AS(Hk) to avoid 

bias caused by the total number of tokens in different contexts. Similarly for hierarchical models, 

we multiply by a q in each AS(Hk) to avoid bias caused by the number of total utterances in 
different contexts. As a result, for an utterance Hq, AS(Hq) will be 100% (or approximately 100% 

for non-hierarchical models) if the model assigns Hq an about average attention score among all 

utterances. We denote the last utterance in a context as Query and the rest of utterances in the 

context as History. Since different models have different scalars on attention scores, we calculate 
the average AS for all distracting utterances and all History in each dialogue, and use the ratio of 

them for evaluation. This ratio is denoted as distracting attention score ratio (DASratio),which 

measures a model’s ability on context attention distribution: 
 

 
 
where d means a single dialogue, and D denotes all dialogues in a test set. HDistraction denotes 

distracting utterances, and HHistory denotes utterances in History. 

 

3.4. Optimization with Self-Contained Distractions on Attention Mechanism 
 

To train a conversational model to distribute more attention to important and less attention to 

unimportant utterances, we propose the following optimization strategy:1) For each dialogue, 
we select some random utterances from other dialogues in the training corpus as self-contained 

distractions. We decide whether to insert these distractions into the current dialogue or not 

stochastically by a probability level. We denote the probability level as the training inserting 
probability. The locations of inserting distractions are randomly decided, while the locations are 

always before Query (the last utterance of the context). 2) We create a bitmask M to track 

whether an utterance is original (0) or distracting (1). During the training period, the model uses 

the bitmask to calculate the attention loss Lt attention, which is summed up with the loss from the 
response generator. For each decoding step t, the attention loss is calculated as: 

 

 
 

where ◦ means Hadamard product, or element wise multiplication. As shown in Equation (9), our 
goal is to minimize the attention assigned to all the self-contained distractions. During the 

distracting test, no bitmask is offered to the model. The illustration of attention loss on both non-

hierarchical and hierarchical models is shown in Figure 1. 
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4. EXPERIMENTS 
 

In this section, we introduce the setups of the experiment. 
 

4.1. Dataset 
 

We use the Ubuntu chatlogs data set [6] as the training and testing corpus, which contains 

dialogues about solving technical problems of Ubuntu. We choose this dataset because the 

dialogues have both technical topics and casual chats, meaning that it is easier to distinguish 
important/unimportant utterances than datasets whose topics are consistent. We use about 0.48M 

dialogues for training, 20K dialogues for validation, and 10K dialogues for testing. These are the 

original settings of the Ubuntu chatlogs dataset. We removed all single-turn dialogues. 
 

4.2. Training 
 
Our methods are built on an LSTM Seq2Seq model with attention mechanism. We used Pytorch 

[19] for implementation. The LSTM model has 4 layers and the dimension is 512. The training 

procedure was with a batch size of 256, a learning rate of 1.0, and a gradient clip threshold of 5. 
The vocabulary size is 25000 and the dropout rate is 0.2. The learning rate is halved when the 

perplexity stops dropping, and the training is stopped when the model converges. 

 

4.3. Examined Models 
 

We examine our proposed evaluation metric on 5 models: non-hierarchical LSTM (Non-hier), static 
attention without utterance integration LSTM unit (Static), static attention with utterance integration 

LSTM unit (StaticUI), dynamic attention without utterance integration LSTM unit (Dynamic), and 

dynamic attention with utterance integration LSTM unit (DynamicUI). In addition, we examine 

our proposed optimization strategy on these 5 models with 3 training inserting probabilities–0.5, 

0.7, and 1.0. Models with a training inserting probability of 0 are regarded as baselines. For 

comparison, we pick the best overall model and train the model with self-contained distractions 

but without training on the attention loss (Non-atten-loss), i.e. the model does not know which 
utterances are distractions. In total, we train and evaluate 23 model variants. 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

4.4. Evaluation 
 

Table 2: Examples of distracting test sets. Distracting utterances are marked red. 
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 Random: 0.5 Random: 0.7 Random: 1.0 

 

History 

\ Well, can I move the 

drives? 

Yes. 

Or kill all speedlink. Anyways, you made the 

Changes right? 

Well, can I move the 

drives? 

Well, can I move the 

drives? 

Ah not like that. Then from the terminal 

type: sudoapt-get update. 

Ah not like that. I did. Ah not like that. 

 Frequent: Begin Frequent: Middle Frequent:End 

 

History 

Why should I help you? Well, can I move the 

drives? 

Well, can I move the 

drives? 

I have my right. Why should I help you? Ah not like that. 

Well, can I move the 

drives? 

I have my right. Why should I help you? 

Ah not like that. Ah not like that. I have my right. 

 Rare:Begin Rare:Middle Rare:End 

 

History 

Would you have lunch? Well, can I move the 

drives? 

Well, can I move the 

drives? 

I should have lunch. Would you have lunch? Ah not like that. 

Well, can I move the 

drives? 

I should have lunch. Would you have lunch? 

Ah not like that. Ah not like that. I should have lunch. 

Query I guess I could just get an enclosure and copy via USB. 

Response I would advise you to get the disk. 

 

For the distracting test, we set the number of distracting utterances for each dialogue to 2. We 

chose 2 to make the distracting utterances a complete turn and to make the number of distracting 
utterances the minimum, since dialogues from the corpus normally have only 4 to 8 utterances in 

the contexts. We have 3 distracting test sets. 1) Random distracting test set: distracting utterances 

in this test set are randomly picked from the training corpus (outside the current dialogue), and 
they are randomly picked in every evaluation step, which means that there is no pre-prepared 

random distracting test set. 2) Frequent distracting test set: distracting utterances in this test set 

are formed by frequent words in the training corpus, but these utterances do not appear in the 
training corpus. In our experiments, we use “why should I help you” and “I have my right” as 

examples of distracting utterances with frequent words. 3) Rare distracting test set: distracting 

utterances in this test set have words that are rare in the training corpus, and these utterances do 

not appear in the training corpus. In our experiments, we use “would you have lunch?” and “I 
should have lunch” as examples of distracting utterances with rare words. 

 

In the distracting test, we insert distracting utterances into different locations. For 1) random, we 
insert utterances to a random location before Query in each context. Similar to the optimization 

strategy, we use different probability levels to decide whether a distracting utterance is to be 

inserted or not. We denote these as testing inserting probability. In our experiments, we set the 

probability levels to be 0.5, 0.7, and 1.0. We expect the model to perform stably on all different 
probability levels. For 2) frequent and 3) rare, we have three kinds of inserting locations: at the 

beginning of a context (marked as Begin), in the middle of the context (marked as Middle), and at 

the end of the context (before Query and after History, marked as End). In total, we have 9 test 
sets for evaluation. See Table 2 for the example of each test set. 

5. RESULTS AND DISCUSSIONS 
 

Table 3 illustrates the main results on DAS ratios. It shows the DAS ratios of 23 trained model 

variants on 9 distracting test sets. Figure 2 shows the DAS ratios of 3 example model variants 
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(StaticUI with training inserting probability of 0.0 as the baseline, Non-atten-loss StaticUI with 

training inserting probability of 0.7, and StaticUI with training inserting probability of 0.7) on 9 
distracting test sets. Table 4, Table 5 and Table 6 show the detailed results on average Attention 

Score (average AS) of distracting utterances and average AS of History. 

 

In Table 3, we show the perplexity and History’s average AS of each model on the non-distracted 
test set under the “Original” column. Since perplexity scores on the distracting test sets are 

similar, we show the perplexity scores on the non-distracted test set only. We show the DAS 

ratios of each model on each of the distracting test sets under the “DAS ratio for distracting test 
set” column. A lower DAS ratio means that a model distributes less attention to distracting 

utterances (unimportant utterances) and more attention to the original utterances in History 

(important utterances), from which it can be inferred that the model has better performance on 

context attention distribution. Both perplexity and DAS ratio are the lower, the better. 
 

5.1. Perplexity and Average AS on Non-Distracted Test Set 
 

Perplexity scores are shown in the “Perp.” column, under the “Original” column in Table 3.  

Perplexity scores of the examined 23 models are similar; the Static models trained with our 

proposed optimization strategy and a higher training inserting probability level achieves slightly 
better performance than other models. Average AS are shown in the “Avg.” column, under the 

“Original” column in Table 3. The average AS of History tells about a model’s attention 

distribution for History and Query. A higher score indicates that less attention is distributed to 
Query. Recall that AS of an utterance is 100% (or approximately 100% for non-hierarchical 

models) if the utterance is paid about average attention among the dialogue. Overall, the models 

distribute attention of lower than average to History, especially for models with static attention 
(i.e. the Static model and StaticUI model), which distribute more attention to Query than non 

hierarchical models and models with dynamic attention. 

 

This is apparent from the structure of static attention. We also show the results of a StaticUI 
model without training on the attention loss (Non-atten-loss StaticUI model) as a comparison. 

The StaticUI model trained with our optimization strategy distributes more attention to query 

than the Non-atten-loss StaticUI model. This is because the optimization strategy decreases the 
model’s attention distributed to distracting utterances in History, thus decreasing the overall 

attention distributed to History. 

 

5.2. Distracting Test: Random 
 

Results of the random distracting test with different testing inserting probabilities (0.5, 0.7, and 
1.0) are shown in the “Random” column in Table 3. Models with training inserting probabilities 

of 0.0 (shown in the row where “Prob” is 0.0) are baseline models to which our proposed 

optimization strategy is not applied. In general, our proposed optimization strategy with training 

inserting probabilities of 0.5 or 0.7 achieves better performance on DAS ratios (i.e. the models 
achieve lower DAS ratios) on random distracting test sets of all 3 testing inserting probabilities. 

The Static model and the DynamicUI model achieves the best performance with a training 

inserting probability of 0.5, while the Non-hier model, the StaticUI model and the Dynamic 
model achieve the best performance with a training inserting probability of 0.7. A training 

inserting probability 

of 1.0 leads to worse performance. One reason is that it assumes there must be some distracting 
utterances in a context, while that is not always the case. 

 
Table 3: Results of perplexity (Perp.) and average AS of History (Avg.) on the original test set (%) are 

shown in the “Original” column. We also show results of DAS ratios on 9 distracting test sets and 23 
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model variants. 
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Figure 2: DAS ratios of 3 example model variants on 9 distracting test sets. The lower the DAS 

ratio, the better the performance. 

 

The StaticUI model with a training inserting probability of 0.7 achieves the best overall 
performance on DAS ratio. As shown in Figure 2, on all the random distracting test sets 

(probabilities of 0.5, 0.7, and 1.0), the StaticUI model is better than the baseline StaticUI model 

and the Non-atten-loss StaticUI model. The baseline model is not trained with any self-contained 
distractions (training inserting probability is 0.0), and it gets the worst performance. The Non 

atten-loss model is trained with self-contained distractions (with a training inserting probability 

of 0.7) while not knowing which utterances are distractions, and it achieves a better performance 

than the baseline. The StaticUI model with a training inserting probability of 0.7 is trained to 
minimize the attention loss of self-contained distractions and it achieves the best performance. 

Naturally since the optimization strategy minimizes the attention loss of distractions, the StaticUI 

model distributes less attention to History and more attention to Query (refer to the “Avg” 
column in Appendix 4 for more details); nevertheless, a lower DAS ratio shows that the model 

distributes even less attention to the distracting utterances compared to the original utterances in 

History. 
 

Note that even if both our proposed strategy and the random distracting test use the same trick: 

insert random distracting utterances among original utterances in History, the random utterances 

inserted in the distracting test are different from those inserted in the training process, thus it is 
difficult for the test to be biased in favor of models with our proposed strategy. It is apparent that 

less attention is distributed to History, while DAS ratio calculates the ratio between the 

distracting utterances and the original utterances in History, so it shows the attention distributed 
to the distracting utterances regardless of the total attention distributed to History. Moreover, we 

adopt three testing inserting probability levels to ensure stable evaluation results for each model. 

 

5.3. Distracting Test: Frequent and Rare 
 

Results of the frequent and the rare distracting test are shown in the “Frequent” and “Rare” 
columns in Table 3. Different from the random distracting test, the inserting locations of these 

two tests are decided manually. As a nature of LSTM model, all models distribute more attention 

to utterances near Query and less attention to utterances far away from Query, as can be seen in 

Table 3 and Figure 2 that DAS ratios are higher for End test set (near Query) and lower for Begin 
test set (far away from Query). Since the results on Begin and End test sets are biased by the 

structure of LSTM, we mainly analyze the results on Middle test sets. For the Middle test sets of 

both the frequent and rare distracting test, the best models are still those trained with our 
proposed optimization strategy. StaticUI models with training inserting probabilities of 0.5 and 

0.7 achieve the best performance (lowest DAS ratios) on the Frequent Middle and Rare Middle 
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test sets. The Non-atten-loss models can be better than the models trained with a wrong training 

inserting probability. Telling from similar DAS ratios, the frequent distracting test set is as 
difficult for the trained models to distinguish as the rare distracting test set, although for humans, 

the rare distracting utterances are much easier to distinguish than the frequent ones. 

 
Table 4: Results of perplexity (Perp.) and average AS of History (Avg.) on the original test set (%) are 

shown in the “Original” column. Besides, we show the results on the random distracting test of: DAS ratio, 

average AS of distracting utterances (DAS) (%), and average AS of original utterances in History (Avg.) 

(%). 
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Table 5: Results on the frequent distracting test of: DAS ratio, average AS of distracting utterances(DAS) 

(%), average AS of original utterances in History (Avg.) (%), and AS of the first/last utterance in History 

(%). 
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Table 6: Results on the rare distracting test of: DAS ratio, average AS of distracting utterances 

(DAS) (%), average AS of original utterances in History (Avg.) (%), and AS of the first/last 

utterance in History (%). 
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5.4. Detailed Results on the Distracting Tests 
 
In addition to DAS ratio, Table 4 shows the average AS of distracting utterances and of original 

utterances in History. Table 5 and Table 6 additionally show the AS of the first or last utterances 

in History. Note again that an attention score of 100% for a utterance indicates that this utterance 
receives an average attention score, e.g. for a dialogue containing 10 utterances, an attention 

score of 100% indicates that the utterance receives 10% attention out of all. 

 

From Table 4 it is clear that the average AS of the original utterances in History varies by model 
variants. A higher average AS for History indicates a lower AS for Query. Some models 

distribute most of the attention to Query while some models distribute the attention evenly to 

both History and Query. Normally, Query contains more relevant information, so we expect a 
lower average AS for History; however, the average AS for History is not the lower the better, 

since there are still some utterances in History that are important for the context. A lower average 

AS for History comes together with a lower average AS for distracting utterances (or a lower 
DAS), so DAS ratio is better suited for evaluating a model’s capability on context attention 

distribution, since it takes the average AS for original utterances in History into account. In Table 

4, the models with the lowest DAS ratio also have the lowest average AS for distracting 

utterances and original utterances, while in Table 5 and Table 6, it is not always the case. 
 

In Table 5 and Table 6, for the distracting test sets where distracting utterances are put in the 

beginning/end of the context, we show AS for the first/last utterance in History to have a clearer 
comparison. We can see in columns of Frequent: Begin and Rare: Begin that the distracting 

utterances usually receive lower attention than the first utterance in History, while the other 

original utterances in History receive more attention than the first utterance. This indicates a good 
performance of the model variants. Utterances far away from Query are normally distributed 

lower attention, so in a normal case, it is natural that the utterances that come after the first 

utterance receive more attention; however, these distracting utterances receive less attention, 

regardless of the fact that they are placed after the first utterances. It can thus be inferred that 
most model variants can distinguish distracting utterances as unimportant and distribute less 

attention to them. Similarly, the last utterances in History usually get more attention, while as the 

columns of Frequent: End and Rare: End show, distracting utterances receive less attention 
compared to other original utterances in History, regardless of that the distracting utterances are 

placed closer to Query. 

 

5.5. Summary of Results 
 

DAS ratio can distinguish conversational agents with similar perplexity on their ability of context 
attention distribution. In general, models trained with our proposed optimization strategy focus 

less on distracting utterances and more on original utterances in History. For most models, DAS 

ratios decrease by about 10% when trained with our proposed strategy with a 0.5 or 0.7 

probability level. 0.7 is generally the best option for a training inserting probability. 
 

6. CONCLUSIONS AND FUTURE WORKS 
 

We have studied context attention distribution, an essential component of multi-turn modelling 
for open-domain conversational agents. We have proposed an evaluation metric for context 

attention distribution based on the distracting test: DAS ratio. We have also improved the 

performance of context attention distribution for common multi-turn conversational agents 

through an optimization strategy via reducing the attention loss of self-contained distracting 
utterances. Extensive experiments show that our proposed strategy achieves improvements on 
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most models, especially with a training inserting probability level of 0.7. Future works can focus 

on adapting the proposed evaluation metric and optimization strategy to transformer-based 
conversational agents. 

 

ACKNOWLEDGEMENTS 
 

This paper is funded by the collaborative project of DNB ASA and Norwegian University of 

Science and Technology (NTNU). We also received assist on computing resources from the 

IDUN cluster of NTNU [20]. We would like to thank Benjamin Kille and Peng Liu for their 
helpful comments. 

 

REFERENCES 
 

[1] Y. Zhang, S. Sun, M. Galley, Y.-C. Chen, C. Brockett, X. Gao, J. Gao, J. Liu, and B. Dolan, 

“DIALOGPT : Large-scale generative pre-training for conversational response generation,” in 

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System 

Demonstrations. Online: Association for Computational Linguistics, Jul. 2020, pp. 270–278. 

[Online]. Available: https://www.aclweb.org/anthology/2020.acl-demos.30 

[2] X. Zhao, W. Wu, C. Xu, C. Tao, D. Zhao, and R. Yan, “Knowledge-grounded dialogue generation 

with pre-trained language models,” in Proceedings of the 2020 Conference on Empirical Methods in 

Natural Language Processing (EMNLP). Online: Association for Computational Linguistics, Nov. 
2020, pp. 3377–3390. [Online]. Available: https://aclanthology.org/2020.emnlp-main.272 

[3] I. V. Serban, A. Sordoni, Y. Bengio, A. Courville, and J. Pineau, “Building End-To-End Dialogue 

Systems Using Generative Hierarchical Neural Network Models,” in Thirtieth AAAI Conference on 

Artificial Intelligence, 2016. [Online]. Available: 

https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11957 

[4] I. V. Serban, A. Sordoni, R. Lowe, L. Charlin, J. Pineau, A. Courville, and Y. Bengio,“A Hierarchical 

Latent Variable Encoder-Decoder Model for Generating Dialogues,” in Thirty-First AAAI Conference 

on Artificial Intelligence, 2017. [Online]. Available: 

https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14567 

[5] Z. Li, J. Zhang, Z. Fei, Y. Feng, and J. Zhou, “Conversations are not flat: Modeling the dynamic 

information flow across dialogue utterances,” in Proceedings of the 59th Annual Meeting of the 

Association for Computational Linguistics and the 11th International Joint Conference on Natural 
Language Processing (Volume 1: Long Papers). Online: Association for Computational 

Linguistics, Aug. 2021, pp. 128–138. [Online]. Available: https://aclanthology.org/2021.acl-long.11 

[6] R. Lowe, N. Pow, I. Serban, and J. Pineau, “The Ubuntu Dialogue Corpus: A Large Dataset for 

Research in Unstructured Multi-Turn Dialogue Systems,” in Proceedings of the 16th Annual Meeting 

of the Special Interest Group on Discourse and Dialogue. Association for Computational Linguistics, 

2015, pp. 285–294. [Online]. Available: http://aclweb.org/anthology/W15-4640 

[7] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for automatic evaluation of 

machine translation,” in Proceedings of the 40th Annual Meeting of the Association for 

Computational Linguistics. Philadelphia, Pennsylvania, USA: Association for Computational 

Linguistics, Jul. 2002, pp. 311–318. [Online]. Available: https://aclanthology.org/P02-1040 

[8] C.-W. Liu, R. Lowe, I. Serban, M. Noseworthy, L. Charlin, and J. Pineau, “How NOT To Evaluate 
Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue 

Response Generation,” in Proceedings of the 2016 Conference on EmpiricalMethods in Natural 

Language Processing. Association for Computational Linguistics, 2016, pp. 2122–2132. 

[Online]. Available: http://aclweb.org/anthology/D16-1230 

[9] E. Bruni and R. Fernandez, “Adversarial evaluation for open-domain dialogue generation,” in 

Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue. Association for 

Computational Linguistics, 2017, pp. 284–288. [Online]. Available: 

http://aclweb.org/anthology/W17-5534 

[10] R. Lowe, M. Noseworthy, I. V. Serban, N. Angelard-Gontier, Y. Bengio, and J. Pineau, “Towards an 

Automatic Turing Test: Learning to Evaluate Dialogue Responses,” in Proceedings of the 55th 

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 

https://www.aclweb.org/anthology/2020.acl-demos.30
https://aclanthology.org/2020.emnlp-main.272
https://aclanthology.org/2021.acl-long.11


 Computer Science & Information Technology (CS & IT)                                        143 

Association for Computational Linguistics, 2017, pp. 1116–1126. [Online]. Available: 

http://aclweb.org/anthology/P17-1103 

[11] Y. Zemlyanskiy and F. Sha, “Aiming to Know You Better Perhaps Makes Me a More Engaging 

Dialogue Partner,” in Proceedings of the 22nd Conference on Computational Natural Language 

Learning. Association for Computational Linguistics, 2018, pp.551–561. [Online]. Available: 

http://aclweb.org/anthology/K18-1053 

[12] Z. Tian, R. Yan, L. Mou, Y. Song, Y. Feng, and D. Zhao, “How to Make Context More Useful? An 

Empirical Study on Context-Aware Neural Conversational Models,” in Proceedings of the 55th 

Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). 

Association for Computational Linguistics, 2017, pp. 231–236. [Online]. Available: 
http://aclweb.org/anthology/P17-2036 

[13] W. Zhang, Y. Cui, Y. Wang, Q. Zhu, L. Li, L. Zhou, and T. Liu, “Context- Sensitive Generation of 

Open-Domain Conversational Responses,” in Proceedings of the 27th International Conference on 

Computational Linguistics. Association for Computational Linguistics, 2018, pp. 2437–2447. 

[Online]. Available: http://aclweb.org/anthology/C18-1206 

[14] X. Gu, K. M. Yoo, and J.-W. Ha, “DialogBERT: Discourse-aware response generation via learning to 

recover and rank utterances,” in In Proceedings of the 35th AAAI Conference on Artificial 

Intelligence (AAAI 2021), 2021. 

[15] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 

1735–1780, Nov. 1997. [Online]. Available: http://dx.doi.org/10.1162/neco.1997.9.8.1735 

[16] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural Networks,” in 
Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. 

D. Lawrence, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2014, pp. 3104–3112. [Online]. 

Available: http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf 

[17] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and 

Translate,” in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, 

CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. [Online]. Available: 

http://arxiv.org/abs/1409.0473 

[18] J. Li, M. Galley, C. Brockett, G. Spithourakis, J. Gao, and B. Dolan, “A Persona-Based Neural 

Conversation Model,” in Proceedings of the 54th Annual Meeting of the Association for 

Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, 

2016, pp. 994–1003. [Online]. Available: http://aclweb.org/anthology/P16-1094 
[19] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, 

and A. Lerer, “Automatic differentiation in PyTorch,” in NIPS-W, 2017. 

[20] M. Själander, M. Jahre, G. Tufte, and N. Reissmann, “EPIC: An energy-efficient, highperformance 

GPGPU computing research infrastructure,” 2019. 

 

 

 

© 2023 By AIRCC Publishing Corporation. This article is published under the Creative Commons 

Attribution (CC BY) license. 

 

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://aclweb.org/anthology/P16-1094

	3.1. LSTM Seq2Seq Model with Attention
	3.3. Distracting Test & Attention Score (AS)
	3.4. Optimization with Self-Contained Distractions on Attention Mechanism
	4.1. Dataset
	4.2. Training
	4.4. Evaluation
	5.4. Detailed Results on the Distracting Tests
	5.5. Summary of Results
	6. Conclusions and Future Works
	Acknowledgements
	References

