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ABSTRACT

Despite the rapid progress of open-domain generation-based conversational agents, most
deployed systems treat dialogue contexts as single-turns, while systems dealing with multi-turn
contexts are less studied. There is a lack of a reliable metric for evaluating multi-turn
modelling, as well as an effective solution for improving it. In this paper, we focus on an
essential component of multi-turn generation-based conversational agents: context attention
distribution, i.e. how systems distribute their attention on dialogue’s context. For evaluation of
this component, We introduce a novel attention-mechanism-based metric: DAS ratio. To
improve performance on this component, we propose an optimization strategy that employs self-
contained distractions. Our experiments on the Ubuntu chatlogs dataset show that models with
comparable perplexity can be distinguished by their ability on context attention distribution.
Our proposed optimization strategy improves both non-hierarchical and hierarchical models on
the proposed metric by about 10% from baselines.
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1. INTRODUCTION

In recent years, generation-based conversational agents have shown a lot of progress, while
multiturn generation-based conversational agents are still facing challenges. Most recent work
ignores multiturn modelling by considering a multi-turn context as a 1-turn context [1, 2]. Some
works try to deal with multi-turn modelling using modified attention mechanisms, hierarchical
structures, utterance tokens, etc. [3, 4, 5]. The main difference between multi-turn conversational
agents and regular (1-turn) conversational agents is that instead of dealing with an utterance in a
context on the word-level, multi-turn models deal with a dialogue on the utterance-level, so that
models can understand an utterance as a whole and focus on important utterances rather than
important words.

An example of important/unimportant utterances existing in the same context is given by Table 1.
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Table 1: An example of important utterances and unimportant utterances under the same context in the
Ubuntu chatlog dataset [6]. Unimportant utterances are marked in red.

User | Utterances

Taru | Haha sucker.

Kuja | ?

Taru | Anyways, you made the changes right?

Kuja | Yes.

Taru | Then from the terminal type : sudo apt -
get update

Kuja | Idid.

In this example, the first two utterances (“Haha sucker.” and “?”’) are unimportant utterances that
are irrelevant to the main topic of the context. Human dialogues naturally contain many of these
unimportant utterances. These utterances do not distract humans from understanding the main
idea of the context, since humans can easily ignore them and focus instead on important
utterances; however, a model usually lacks this capability and can be distracted by these
utterances, resulting in a lower performance in generating relevant responses to the main topic of
a context. Therefore, it is crucial that a multi-turn model can decide which utterances in the
context are important and which are unimportant, and distribute its attention accordingly. In this
paper, we define the research topic as context attention distribution, which denotes how much
attention is distributed respectively to important and unimportant utterances in a context. A
model with a good performance on context attention distribution should pay more attention to
important utterances and less attention to unimportant utterances.

Recent work lacks a measurement for the performance of multi-turn modelling. Common metrics
rely on general evaluation metrics such as BLEU [7], which measures the quality of generated
responses. These metrics cannot directly describe a model’s ability on dealing with multi-turn
contexts, since the quality of generated responses is influenced by many aspects. Better
performance in dealing with multi-turn context may result in better general performance;
however, a better general performance does not necessariy mean that the model has a better
ability on dealing with multi-turn contexts. Thus, as a supplementary to general evaluation
metrics like BLEU, we propose a metric that measures a conversational agent’s performance on
context attention distribution, which is specifically designed for evaluating a model’s
performance on multi-turn modelling. Since most multi-turn conversational agents have the
attention mechanism and rely on it to distribute attention to different utterances in a context, we
propose distracting test as the evaluation method to examine if a model pays more attention to the
important utterances. The test adds unrelated utterances as distractions to the context of each
dialogue and compares the attention scores of distracting utterances (i.e., unimportant utterances)
and original utterances (i.e., important utterances). The ratio of the average attention score of
distracting utterances and original utterances is defined as the distracting attention score ratio
(DAS ratio). We use DAS ratio as the evaluation metric for a model’s performance on context
attention distribution. A model with good capability on context attention distribution should have
higher scores on original utterances and lower scores on distracting utterances, thus a lower DAS
ratio.

Furthermore, we propose a self-contained optimization strategy to improve a conversational
agent’s performance on context attention distribution. For each dialogue, we randomly pick some
utterances from the training corpus outside the current dialogue as self-contained distractions, and
insert them into the current dialogue with different levels of possibilities. The attention paid to
these distractions is minimized during the training process through multi-task learning. With this
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optimization strategy, a model learns to distribute less attention to unimportant utterances and
thus more attention to important utterances.

In this paper, we examine the following research questions: 1) How do existing multi-turn
modeling structures perform on context attention distribution? 2) Can the proposed optimization
strategy improve a model’s performance on context attention distribution? 3) Which probability
level is the best for inserting distractions in the proposed optimization strategy?

Our contributions are as follows:

(1) We deal with a less studied problem: evaluating and improving context attention
distribution for multi-turn conversational agents.

(2) We propose a novel evaluation metric for multi-turn conversational agents: DAS ratio. It
measures a model’s performance on context attention distribution, i.e. the capability of
distributing more attention to important utterances and less to unimportant ones.

(3) We propose an optimization strategy that minimizes the attention paid to self-contained
distractions during the training process, and thus makes the model try to pay less
attention to unimportant utterances. The strategy can easily be added and adapted to
existing models.

Extensive experiments on 23 model variants and 9 distracting test sets show an overall
improvement in the performance on context attention distribution for the proposed strategy. We
will share our code for reproducibility (in the final version, a Github link will be provided).
Related work is introduced in Section 2. In Section 3, we introduce our base models and
proposed methods. We show our experiments settings in Section 4 and results in Section 5.
Finally, we give a conclusion in Section 6.

2. RELATED WORKS

Common evaluation metrics for conversational agents measure the similarity between the
generated responses and the gold responses. Liu et al. [8] summarizes commonly used metrics:
word overlap-based metrics (e.g. BLEU) and embedding-based metrics. Bruni et al. [9] propose
an adversarial evaluation method, which uses a classifier to distinguish human responses from
generated responses. Lowe et al. [10] propose a model that simulates human scoring for
generated responses. Zemlyanskiy et al. [11] examine the quality of generated responses in a
different direction: how much information the speakers exchange with each other. Recently, Li et
al. [5] propose a metric that evaluates the human-likeness of the generated response by measuring
the gap between the corresponding semantic influences. Different from the above, our proposed
evaluation metric is based on the attention mechanism and is intended to measure a model’s
performance on context attention distribution.

Most generation-based conversational agents apply simple concatenation for multi-turn
conversation modelling [2, 1], which regards a multi-turn context as a 1-turn utterance. Some
works try to model multi-turn conversations through the hierarchical structure: Serban et al. [3, 4]
first introduce the hierarchical structure to dialogue models. Tian et al. [12] evaluate different
methods for integrating context utterances in hierarchical structures. Zhang et al. [13] further
evaluate the effectiveness of static and dynamic attention mechanism. Gu et al. [14] apply a
similar hierarchical structure on Transformer, and propose masked utterance regression and
distributed utterance order ranking for the training objectives. Different from hierarchical models,
Li et al. [5] encode each utterance with a special token [C] and apply a flow module to train the
model to predict the next [C]; then they use semantic influence (the difference of the predicted
and original tokens) to support generation. In our paper, instead of modelling the relations of
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inter-context utterances as [14] or the dialogue flow as [5], our optimization strategy improves
multi-turn modelling by n distinguishing important/unimportant utterances directly on the
attention mechanism.

3. METHODS

Our proposed evaluation metric and optimization strategy can work on attention mechanisms
including Transformers. In this paper, we choose an LSTM Seg2Seq model with attention
mechanism [15, 16, 17] as the base model, since most hierarchical structured multi-turn
conversational agents are based on LSTM [3, 4, 12, 13] while few are based on Transformers.

The basic task of generation-based conversational agents is to predict the next token given all the
past and current tokens from the context and response, and to make the predicted response as
similar to the original response as possible. Formally, the probability of response Y given context
X is predicted as:

PYIX) = [TF<1 pely, s e, XD, ()
Where X = X1, ..., Xmand Y =yi, ..., ynare a context-response pair.
3.1. LSTM Seq2Seq Model with Attention

We simplify an LSTM unit as LSTM, and we denote the attention version of an LSTM with an
asterisk (LSTM™). They are well introduced in previous work [18].We calculate the hidden vector
h:at step t as:

t = LSTM*(ht—l, E(Zt), Ct—l), (2)

where h,-1 €R%Mis the hidden vector at step t-1, dim is the dimensionality of hidden vectors, and
E(z) is the word embedding for token z; € {xu, ..., Xm,Y1, ..., Ya-1}. Ci~11iS the context vector at step

t-1, and it is input to the next step t only in the decoder. Each h;and c: of the current step t are
combined through a linear layer and an activation to predict the next token.

3.2. Attention Mechanism & Utterance Integration (Ul)
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Figure 1: Structure of non-hierarchical, static and dynamic attention loss.
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We examine both non-hierarchical and hierarchical structures. For hierarchical structures, following
[13], we develop two attention mechanisms: static and dynamic. Following [12], we develop
models that are both with and without utterance integration LSTM units. For the non-hierarchical
structured model, there are no hidden vectors for utterances. All hidden vectors of tokens in the
encoder are concatenated and used in the attention mechanism. Denoting the concatenated vector
H = [hy, hy, ..., hi], we calculate the context vector c;for each decoding

Step t as:

c=H - (softmax(H hy)). (3)

For the hierarchical models, we use the hidden vector of each utterance’s last token as the hidden
vector of the utterance, and we discard the hidden vectors for the other tokens. Thus, compared to
the non-hierarchical structured model, we have much fewer hidden vectors from the encoder.

The context vector of static attention mechanism is calculated based on the utterance-level
concatenated vector and the hidden vector of the last utterance in the context. Denoting the
hidden vector of k th utterance as Hy, and the hidden vector of the last utterance in the context as
H,, we have the context’s concatenated vector A = [Hi, H,, ..., Hq]. We calculate the context
vector c; for static attention mechanism as:

ey = He - [soi"tmm{_’HI - Hy)), (4)
where it is easy to see that the static context vector remains unchanged by the decoder.

The context vector of dynamic attention mechanism is calculated based on the utterance-level
concatenated vector and the hidden vector of each token in the decoding step. We calculate the
context vector cfor dynamic attention mechanism as:

¢y = He - (softmax(H} - b)) - (5)

Compared to the static attention mechanism, the context vector c;varies at each decoding step.
Finally, with the utterance integration LSTM unit, we calculate H,, from H,,H.,...Hy:

Hp=LSTM(H\,H.,...,.H,). (6)

For models with utterance integration (Ul), Hy, is input to the first step of the decoder, while for
models without Ul, regular hy, is input instead.

3.3. Distracting Test & Attention Score (AS)

We examine if a multi-turn conversational agent distributes more attention to important
utterances through the distracting test and attention scores.

In the distracting test, for each dialogue before the end of the context, we insert several utterances
that are irrelevant to the main idea of the dialogue as distractions. These utterances are named
distracting utterances, and they can be randomly picked utterances from the training corpus
(random), be formed by frequent words from the training corpus (frequent), or be formed by
rare words from the training corpus (rare). We compare the attention scores of the distracting
utterances with the attention scores of the original utterances. A well-performing model should
distribute less attention to the distracting utterances while more attention to the original
utterances. For an utterance Hy, the corresponding attention score AS(Hy) is calculated as:
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(m - mean hen, XP(h] - hy)
q S exp(h] - he)
q-exp(H, - Hy)
Yoi pexp(HY - H)
q- L"I{]')[:.HI,:I— - hy)
Y i exp(H] - by ])

) Non-hierarchical

AS(Hi) = o Static attention . (7)

mean; Dynamic attention

h; denotes hidden vectors from the encoding steps and h: denotes hidden vectors from the
decoding steps. m is the number of tokens in a context, and g denotes the number of utterances in
a context. Note that for non-hierarchical models we multiply by an m in each AS(Hj) to avoid
bias caused by the total number of tokens in different contexts. Similarly for hierarchical models,
we multiply by a q in each AS(Hx) to avoid bias caused by the number of total utterances in
different contexts. As a result, for an utterance Hq, AS(Hg) will be 100% (or approximately 100%
for non-hierarchical models) if the model assigns Hqan about average attention score among all
utterances. We denote the last utterance in a context as Query and the rest of utterances in the
context as History. Since different models have different scalars on attention scores, we calculate
the average AS for all distracting utterances and all History in each dialogue, and use the ratio of
them for evaluation. This ratio is denoted as distracting attention score ratio (DASratio),which
measures a model’s ability on context attention distribution:

DAS ratio — meangep ( (8)

mean{AS{ Ifl)i-lr.-u'lmn ) )
mean(AS(Hyisiory))

where d means a single dialogue, and D denotes all dialogues in a test set. Hpistraction denotes
distracting utterances, and Hisory denotes utterances in History.

3.4. Optimization with Self-Contained Distractions on Attention Mechanism

To train a conversational model to distribute more attention to important and less attention to
unimportant utterances, we propose the following optimization strategy:1) For each dialogue,
we select some random utterances from other dialogues in the training corpus as self-contained
distractions. We decide whether to insert these distractions into the current dialogue or not
stochastically by a probability level. We denote the probability level as the training inserting
probability. The locations of inserting distractions are randomly decided, while the locations are
always before Query (the last utterance of the context). 2) We create a bitmask M to track
whether an utterance is original (0) or distracting (1). During the training period, the model uses
the bitmask to calculate the attention loss L' atention, Which is summed up with the loss from the
response generator. For each decoding step t, the attention loss is calculated as:

MSE(softmax(#H " - h;) o M,0) Non-hicrarchical
MSE(sol'lmux(’I[(‘, - H,) o M,0) Static attention (9)
MSE(.\'()I‘lnmx('l{(]- ~hy)o M,0) Dynamic attention

L‘.'

allention

where ° means Hadamard product, or element wise multiplication. As shown in Equation (9), our
goal is to minimize the attention assigned to all the self-contained distractions. During the
distracting test, no bitmask is offered to the model. The illustration of attention loss on both non-
hierarchical and hierarchical models is shown in Figure 1.
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4. EXPERIMENTS
In this section, we introduce the setups of the experiment.
4.1. Dataset

We use the Ubuntu chatlogs data set [6] as the training and testing corpus, which contains
dialogues about solving technical problems of Ubuntu. We choose this dataset because the
dialogues have both technical topics and casual chats, meaning that it is easier to distinguish
important/unimportant utterances than datasets whose topics are consistent. We use about 0.48M
dialogues for training, 20K dialogues for validation, and 10K dialogues for testing. These are the
original settings of the Ubuntu chatlogs dataset. We removed all single-turn dialogues.

4.2. Training

Our methods are built on an LSTM Seq2Seq model with attention mechanism. We used Pytorch
[19] for implementation. The LSTM model has 4 layers and the dimension is 512. The training
procedure was with a batch size of 256, a learning rate of 1.0, and a gradient clip threshold of 5.
The vocabulary size is 25000 and the dropout rate is 0.2. The learning rate is halved when the
perplexity stops dropping, and the training is stopped when the model converges.

4.3. Examined Models

We examine our proposed evaluation metric on 5 models: non-hierarchical LSTM (Non-hier), static
attention without utterance integration LSTM unit (Static), static attention with utterance integration
LSTM unit (StaticUl), dynamic attention without utterance integration LSTM unit (Dynamic), and
dynamic attention with utterance integration LSTM unit (DynamicUI). In addition, we examine
our proposed optimization strategy on these 5 models with 3 training inserting probabilities—0.5,
0.7, and 1.0. Models with a training inserting probability of O are regarded as baselines. For
comparison, we pick the best overall model and train the model with self-contained distractions
but without training on the attention loss (Non-atten-loss), i.e. the model does not know which
utterances are distractions. In total, we train and evaluate 23 model variants.

4.4. Evaluation

Table 2: Examples of distracting test sets. Distracting utterances are marked red.
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Random: 0.5 Random: 0.7 Random: 1.0
\ Well, can | move the Yes.
History drives?
Or kill all speedlink. Anyways, you made the Well, can | move the
Changes right? drives?
Well, can | move the Ah not like that. Then from the terminal
drives? type: sudoapt-get update.
Ah not like that. I did. Ah not like that.
Frequent: Begin Frequent: Middle Frequent:End
Why should | help you? Well, can | move the Well, can | move the
History drives? drives?
I have my right. Why should | help you? Ah not like that.
Well, can | move the I have my right. Why should I help you?
drives?
Ah not like that. Ah not like that. I have my right.
Rare:Begin Rare:Middle Rare:End
Would you have lunch? Well, can | move the Well, can | move the
History drives? drives?
I should have lunch. Would you have lunch? Ah not like that.
Well, can | move the I should have lunch. Would you have lunch?
drives?
Ah not like that. Ah not like that. I should have lunch.
Query I guess | could just get an enclosure and copy via USB.
Response I would advise you to get the disk.

For the distracting test, we set the number of distracting utterances for each dialogue to 2. We
chose 2 to make the distracting utterances a complete turn and to make the number of distracting
utterances the minimum, since dialogues from the corpus normally have only 4 to 8 utterances in
the contexts. We have 3 distracting test sets. 1) Random distracting test set: distracting utterances
in this test set are randomly picked from the training corpus (outside the current dialogue), and
they are randomly picked in every evaluation step, which means that there is no pre-prepared
random distracting test set. 2) Frequent distracting test set: distracting utterances in this test set
are formed by frequent words in the training corpus, but these utterances do not appear in the
training corpus. In our experiments, we use “why should I help you” and “I have my right” as
examples of distracting utterances with frequent words. 3) Rare distracting test set: distracting
utterances in this test set have words that are rare in the training corpus, and these utterances do
not appear in the training corpus. In our experiments, we use “would you have lunch?” and “I
should have lunch” as examples of distracting utterances with rare words.

In the distracting test, we insert distracting utterances into different locations. For 1) random, we
insert utterances to a random location before Query in each context. Similar to the optimization
strategy, we use different probability levels to decide whether a distracting utterance is to be
inserted or not. We denote these as testing inserting probability. In our experiments, we set the
probability levels to be 0.5, 0.7, and 1.0. We expect the model to perform stably on all different
probability levels. For 2) frequent and 3) rare, we have three kinds of inserting locations: at the
beginning of a context (marked as Begin), in the middle of the context (marked as Middle), and at
the end of the context (before Query and after History, marked as End). In total, we have 9 test
sets for evaluation. See Table 2 for the example of each test set.

5. RESULTS AND DISCUSSIONS

Table 3 illustrates the main results on DAS ratios. It shows the DAS ratios of 23 trained model
variants on 9 distracting test sets. Figure 2 shows the DAS ratios of 3 example model variants
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(StaticUl with training inserting probability of 0.0 as the baseline, Non-atten-loss StaticUl with
training inserting probability of 0.7, and StaticUl with training inserting probability of 0.7) on 9
distracting test sets. Table 4, Table 5 and Table 6 show the detailed results on average Attention
Score (average AS) of distracting utterances and average AS of History.

In Table 3, we show the perplexity and History’s average AS of each model on the non-distracted
test set under the “Original” column. Since perplexity scores on the distracting test sets are
similar, we show the perplexity scores on the non-distracted test set only. We show the DAS
ratios of each model on each of the distracting test sets under the “DAS ratio for distracting test
set” column. A lower DAS ratio means that a model distributes less attention to distracting
utterances (unimportant utterances) and more attention to the original utterances in History
(important utterances), from which it can be inferred that the model has better performance on
context attention distribution. Both perplexity and DAS ratio are the lower, the better.

5.1. Perplexity and Average AS on Non-Distracted Test Set
Perplexity scores are shown in the “Perp.” column, under the “Original” column in Table 3.
Perplexity scores of the examined 23 models are similar; the Static models trained with our
proposed optimization strategy and a higher training inserting probability level achieves slightly
better performance than other models. Average AS are shown in the “Avg.” column, under the
“Original” column in Table 3. The average AS of History tells about a model’s attention
distribution for History and Query. A higher score indicates that less attention is distributed to
Query. Recall that AS of an utterance is 100% (or approximately 100% for non-hierarchical
models) if the utterance is paid about average attention among the dialogue. Overall, the models
distribute attention of lower than average to History, especially for models with static attention
(i.e. the Static model and StaticUl model), which distribute more attention to Query than non
hierarchical models and models with dynamic attention.

This is apparent from the structure of static attention. We also show the results of a StaticUl
model without training on the attention loss (Non-atten-loss StaticUl model) as a comparison.
The StaticUl model trained with our optimization strategy distributes more attention to query
than the Non-atten-loss StaticUl model. This is because the optimization strategy decreases the
model’s attention distributed to distracting utterances in History, thus decreasing the overall
attention distributed to History.

5.2. Distracting Test: Random

Results of the random distracting test with different testing inserting probabilities (0.5, 0.7, and
1.0) are shown in the “Random” column in Table 3. Models with training inserting probabilities
of 0.0 (shown in the row where “Prob” is 0.0) are baseline models to which our proposed
optimization strategy is not applied. In general, our proposed optimization strategy with training
inserting probabilities of 0.5 or 0.7 achieves better performance on DAS ratios (i.e. the models
achieve lower DAS ratios) on random distracting test sets of all 3 testing inserting probabilities.
The Static model and the DynamicUl model achieves the best performance with a training
inserting probability of 0.5, while the Non-hier model, the StaticUl model and the Dynamic
model achieve the best performance with a training inserting probability of 0.7. A training
inserting probability

of 1.0 leads to worse performance. One reason is that it assumes there must be some distracting
utterances in a context, while that is not always the case.

Table 3: Results of perplexity (Perp.) and average AS of History (Avg.) on the original test set (%) are
shown in the “Original” column. We also show results of DAS ratios on 9 distracting test sets and 23
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B Bascling (StaticUl model with training inserting probebility of 0.0)
:{ I Mon-ztten-loss StaticUl model with training inserting probability of 0.7
B StaticUl model with training inserting probebility of 0.7

DAS Ratio

Randam 0.5 Randam 0.7 Randam 1.0 Frag Bagin Fregq Middla Fraq End Rara Bagin Rara Middle Rare End
1 Begi q T g
Distracting Test Set

Figure 2: DAS ratios of 3 example model variants on 9 distracting test sets. The lower the DAS
ratio, the better the performance.

The StaticUl model with a training inserting probability of 0.7 achieves the best overall
performance on DAS ratio. As shown in Figure 2, on all the random distracting test sets
(probabilities of 0.5, 0.7, and 1.0), the StaticUl model is better than the baseline StaticUl model
and the Non-atten-loss StaticUl model. The baseline model is not trained with any self-contained
distractions (training inserting probability is 0.0), and it gets the worst performance. The Non
atten-loss model is trained with self-contained distractions (with a training inserting probability
of 0.7) while not knowing which utterances are distractions, and it achieves a better performance
than the baseline. The StaticUl model with a training inserting probability of 0.7 is trained to
minimize the attention loss of self-contained distractions and it achieves the best performance.
Naturally since the optimization strategy minimizes the attention loss of distractions, the StaticUl
model distributes less attention to History and more attention to Query (refer to the “Avg”
column in Appendix 4 for more details); nevertheless, a lower DAS ratio shows that the model
distributes even less attention to the distracting utterances compared to the original utterances in
History.

Note that even if both our proposed strategy and the random distracting test use the same trick:
insert random distracting utterances among original utterances in History, the random utterances
inserted in the distracting test are different from those inserted in the training process, thus it is
difficult for the test to be biased in favor of models with our proposed strategy. It is apparent that
less attention is distributed to History, while DAS ratio calculates the ratio between the
distracting utterances and the original utterances in History, so it shows the attention distributed
to the distracting utterances regardless of the total attention distributed to History. Moreover, we
adopt three testing inserting probability levels to ensure stable evaluation results for each model.

5.3. Distracting Test: Frequent and Rare

Results of the frequent and the rare distracting test are shown in the “Frequent” and “Rare”
columns in Table 3. Different from the random distracting test, the inserting locations of these
two tests are decided manually. As a nature of LSTM model, all models distribute more attention
to utterances near Query and less attention to utterances far away from Query, as can be seen in
Table 3 and Figure 2 that DAS ratios are higher for End test set (near Query) and lower for Begin
test set (far away from Query). Since the results on Begin and End test sets are biased by the
structure of LSTM, we mainly analyze the results on Middle test sets. For the Middle test sets of
both the frequent and rare distracting test, the best models are still those trained with our
proposed optimization strategy. StaticUl models with training inserting probabilities of 0.5 and
0.7 achieve the best performance (lowest DAS ratios) on the Frequent Middle and Rare Middle
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test sets. The Non-atten-loss models can be better than the models trained with a wrong training

inserting probability. Telling from similar DAS ratios, the frequent distracting test set is as

difficult for the trained models to distinguish as the rare distracting test set, although for humans,

the rare distracting utterances are much easier to distinguish than the frequent ones.

Table 4: Results of perplexity (Perp.) and average AS of History (Avg.) on the original test set (%) are
shown in the “Original” column. Besides, we show the results on the random distracting test of: DAS ratio,

average AS of distracting utterances (DAS) (%), and average AS of original utterances in History (Avg.)

(%).
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Table 5: Results on the frequent distracting test of: DAS ratio, average AS of distracting utterances(DAS)

Computer Science & Information Technology (CS & IT)
(%), average AS of original utterances in History (Avg.) (%), and AS of the first/last utterance in History

(%).
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Table 6: Results on the rare distracting test of: DAS ratio, average AS of distracting utterances

(DAS) (%), average AS of original utterances in History (Avg.) (%), and AS of the first/last

utterance in History (%).
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5.4. Detailed Results on the Distracting Tests

In addition to DAS ratio, Table 4 shows the average AS of distracting utterances and of original
utterances in History. Table 5 and Table 6 additionally show the AS of the first or last utterances
in History. Note again that an attention score of 100% for a utterance indicates that this utterance
receives an average attention score, e.g. for a dialogue containing 10 utterances, an attention
score of 100% indicates that the utterance receives 10% attention out of all.

From Table 4 it is clear that the average AS of the original utterances in History varies by model
variants. A higher average AS for History indicates a lower AS for Query. Some models
distribute most of the attention to Query while some models distribute the attention evenly to
both History and Query. Normally, Query contains more relevant information, so we expect a
lower average AS for History; however, the average AS for History is not the lower the better,
since there are still some utterances in History that are important for the context. A lower average
AS for History comes together with a lower average AS for distracting utterances (or a lower
DAS), so DAS ratio is better suited for evaluating a model’s capability on context attention
distribution, since it takes the average AS for original utterances in History into account. In Table
4, the models with the lowest DAS ratio also have the lowest average AS for distracting
utterances and original utterances, while in Table 5 and Table 6, it is not always the case.

In Table 5 and Table 6, for the distracting test sets where distracting utterances are put in the
beginning/end of the context, we show AS for the first/last utterance in History to have a clearer
comparison. We can see in columns of Frequent: Begin and Rare: Begin that the distracting
utterances usually receive lower attention than the first utterance in History, while the other
original utterances in History receive more attention than the first utterance. This indicates a good
performance of the model variants. Utterances far away from Query are normally distributed
lower attention, so in a normal case, it is natural that the utterances that come after the first
utterance receive more attention; however, these distracting utterances receive less attention,
regardless of the fact that they are placed after the first utterances. It can thus be inferred that
most model variants can distinguish distracting utterances as unimportant and distribute less
attention to them. Similarly, the last utterances in History usually get more attention, while as the
columns of Frequent: End and Rare: End show, distracting utterances receive less attention
compared to other original utterances in History, regardless of that the distracting utterances are
placed closer to Query.

5.5. Summary of Results

DAS ratio can distinguish conversational agents with similar perplexity on their ability of context
attention distribution. In general, models trained with our proposed optimization strategy focus
less on distracting utterances and more on original utterances in History. For most models, DAS
ratios decrease by about 10% when trained with our proposed strategy with a 0.5 or 0.7
probability level. 0.7 is generally the best option for a training inserting probability.

6. CONCLUSIONS AND FUTURE WORKS

We have studied context attention distribution, an essential component of multi-turn modelling
for open-domain conversational agents. We have proposed an evaluation metric for context
attention distribution based on the distracting test: DAS ratio. We have also improved the
performance of context attention distribution for common multi-turn conversational agents
through an optimization strategy via reducing the attention loss of self-contained distracting
utterances. Extensive experiments show that our proposed strategy achieves improvements on
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most models, especially with a training inserting probability level of 0.7. Future works can focus
on adapting the proposed evaluation metric and optimization strategy to transformer-based
conversational agents.
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