
David C. Wyld et al. (Eds): NIAI, MoWiN, AIAP, SIGML, CNSA, ICCIoT, CCSEIT - 2023

pp. 115-129, 2023. CS & IT - CSCP 2023 DOI: 10.5121/csit.2023.130310

A DFS ALGORITHM FOR MAXIMUM

MATCHINGS IN GENERAL GRAPHS

Tony T. Lee1, Bojun Lu2 and Hanli Chu1

1School of Science and Engineering, The Chinese University of Hong Kong,

Shenzhen
2School of Data Science, The Chinese University of Hong Kong, Shenzhen

ABSTRACT

In this paper, we propose a depth-first search (DFS) algorithm for finding maximum matching

in general graphs. Unlike blossom shrinking algorithms, which store all possible alternative

alternating-paths in the super-vertices shrinking from blossoms, the newly proposed algorithm

does not involve blossom shrinking. The basic idea is to deflect the alternating path when facing

blossoms. The algorithm maintains detour information in an auxiliary stack to minimize the

redundant data structures. A benefit of our technique is to avoid spending the time on shrinking

and expanding blossoms. This DFS algorithm can determine a maximum matching of a general

graph with m edges and n vertices in 𝑂(𝑚𝑛) time with space complexity 𝑂(𝑛).

KEYWORDS

Maximum Matching, Augmenting Path, Blossom, Trunk, Sprout

1. INTRODUCTION

The maximum matching in an undirected graph is a set of disjoint edges that has the maximum
cardinality. Finding a maximum matching is a fundamental problem in combinatorial

optimization [1, 2]. It has wide applications in the development of graph theory and computer

science [3]. In a bipartite graph with 𝑛 vertices and 𝑚 edges, finding a maximum matching

problem is solved by the Hopcroft-Karp algorithm in 𝑂((𝑚 + 𝑛)√𝑛)time [4]. For constructing a

maximum matching in a general graph, the blossom shrinking algorithm proposed by Edmonds in

[5] is the first polynomial algorithm that runs in time 𝑂(𝑛4). The complexity of this algorithm

has been improved from 𝑂(𝑛4) to 𝑂(𝑛3)by Gabow [6], and further reduced to 𝑂(𝑚𝑛) by

Gabow and Tarjan [7] for a graph with nvertices and m edges. The best-known algorithm is given

by Micali and Vazirani [8] and [9] that runs in 𝑂(𝑚√𝑛), but it is rather difficult to understand

and too complex for efficient implementation. Almost all these algorithms follow Edmonds’ idea

of shrinking blossoms [10], which requires data structures to represent blossoms, and the time
spent on shrinking and expanding blossoms.

The main contribution of this paper is to present a depth-first search (DFS) maximum matching

algorithm that does not involve blossom shrinking. The basic idea is to deflect the alternating
path when a blossom, or odd cycle, is formed. This deflection algorithm adopts two stacks, one is

a directional alternating path, and the other one is an ordered list of edges to maintain detour

information. The two stacks interact with each other to grow or to prune in the exploring process,
until an augmenting path is identified or it confirms that no augmenting paths exist. Unlike the

Edmonds’ algorithm, which is a breadth-first search (BFS) algorithm that stores all possible

http://airccse.org/cscp.html
http://airccse.org/csit/V13N03.html
https://doi.org/10.5121/csit.2023.130310
https://en.wikipedia.org/wiki/Maximum_cardinality_matching
https://en.wikipedia.org/wiki/Hopcroft-Karp_algorithm

116 Computer Science & Information Technology (CS & IT)

alternative alternating paths in the super-vertices shrunk from blossoms. The deflection algorithm
maintains such detour information in the sprout stack to minimize the redundant data structures.

This newly proposed maximum matching algorithm can achieve a complexity of 𝑂(𝑚𝑛) ,

because it avoids spending the time on shrinking and expanding blossoms.

The organization of this paper is as follows. In Sect. 2, we present the definitions of
terminologies used in this paper. In Sect. 3, we describe the issue of parity conflicts arising from

blossoms and illustrate our deflection method with some examples. This section is mainly

expository in nature, and it compares the method of deflection versus shirking when blossoms

occur. In Sect. 4, we present a DFS algorithm to enumerate augmenting paths， and discuss the

performance of this algorithm. Finally, we conclude this paper in Sect. 5.

2. PRELIMINARIES

Definition. An undirected graph 𝐺(𝑉, 𝐸) consists of a vertex set 𝑉 and an edge set 𝐸. An edge is

an unordered pair of vertices {𝑣, 𝑢}and written as 𝑒 = 〈𝑣, 𝑢〉. The number of vertices𝑛 = |𝑉(𝐺)|
is the order of 𝐺, and the number of edges 𝑚 = |𝐸(𝐺)| is the size of 𝐺.

Without loss of generality, we assume that the general graph 𝐺 under consideration is a simple

graph without loops, multiple edges, or isolated vertices.

Definition. A set 𝑀 ⊆ 𝐸 is a matching if no two edges in 𝑀 have a vertex in common, or no

vertex 𝑣 ∈ 𝑉 is incident with more than one edge in 𝑀. A matching of maximum cardinality is

called a maximum matching. A perfect matching of a graph𝐺 is a matching which covers all

vertices of 𝑉. Relative to a matching 𝑀 in 𝐺, a vertex 𝑣 is called a matched vertex, or covered

vertex, if it is incident to an edge in 𝑀. Otherwise, the vertex 𝑣 is called a free vertex. The set of

𝑀-matched vertices is denoted by ∂(𝑀), and the set of 𝑀-free vertices �̅�(𝑀). Similarly, edges in

𝑀 are matched edges, while edges not in 𝑀are free edges. Every matched vertex 𝑣 has a mate,

the other endpoint of the matched edge.

Definition. Apath 𝑃 = {〈𝑣1, 𝑣2〉, 〈𝑣2, 𝑣3〉, ⋯ , 〈𝑣𝑙−1 , 𝑣𝑙〉} is a sequence of edges, which alternately

join a sequence of distinct vertices. The path 𝑃 can also sometimes be written as 𝑃 =
𝑣1, 𝑣2, ⋯ , 𝑣𝑙−1, 𝑣𝑙. A cycle is a path with an edge joining the first and last vertices. Relative to a

matching 𝑀 in 𝐺, an 𝑴-alternating path𝑃is a path in which edges alternate between those in 𝑀

and those not in𝑀, and it is called an 𝑴-augmenting path if its endpoints 𝑣1 and 𝑣𝑙 are both

free, in which case 𝑙 must be even.

The following result shows that an 𝑀-augmenting path 𝑃 can enlarge the size of 𝑀 by one.

Lemma 1.If𝑃 is an 𝑀-augmenting path relative to a matching 𝑀, then the symmetric difference
defined by

𝑀⨁𝑃 = (𝑀 − 𝑃)⋃(𝑃 − 𝑀) = (𝑀⋃𝑃) − (𝑀⋂𝑃)

is also a matching, and |𝑀⨁𝑃| = |𝑀| + 1.

An immediate consequence of this result is the following theorem due to Berge [11] that

characterizes maximum matchings.

Theorem 1. (Augmenting Path Theorem) A matching𝑀 is maximum if and only if there is no 𝑀-

augmenting path.

Computer Science & Information Technology (CS & IT) 117

Theorem 1 implies that if a matching 𝑀 in a graph 𝐺 is not maximum, then there exists an 𝑀-
augmenting path. This is the basis of almost all algorithms for determining maximum matchings

in general graphs. The basic idea is to enlarge an existing matching 𝑀 by any 𝑀-augmenting

path. Repeat the searching process until no augmenting paths exist anymore.

Suppose that 𝑀 is a matching in a graph 𝐺(𝑉, 𝐸), if we assign the red color to the edges in 𝑀 and

the blue color to those edges not in 𝑀, then there is a one-to-one correspondence between the

complex-colored graph and the matching 𝑀. Follow almost all algorithms for finding maximum
matching starting with some existing matching, we will adopt the complex coloring method

proposed in [12] and [13] to initialize our maximum matching algorithm.

The complex coloring is a variable elimination method. In a graph 𝐺(𝑉, 𝐸), suppose that a

fictitious vertex is inserted in the middle of an edge 〈𝑣𝑖, 𝑣𝑗〉 to divide the edge into two links.

These two links connect the fictitious vertex to the two endpoints 𝑣𝑖 or𝑣𝑗, respectively. As an

example, the graph displayed in Figure 1(a) with inserted fictitious vertices is shown in Figure

1(b). Instead of coloring the edges, the complex coloring is assigning colors to links.

1(a). Petersen Graph. 1(b). Petersen Graph with 1(c). A color configuration of

fictitious vertices. Petersen Graph.

Figure 1. Complex coloring of Petersen Graph.

Definition. Assigning the two colors {𝑟: = 𝑟𝑒𝑑, 𝑏: = 𝑏𝑙𝑢𝑒} to the two links of each edge, the

coloring is consistent if one and only one of the links incident to each vertex is assigned red

color 𝑟, and all other links are colored in blue color 𝑏. If the two links of an edge are colored with

different colors 𝑟 and 𝑏, then the edge is called a (𝑟, 𝑏)variable, otherwise it is a constant, as

Figure 1 shows. The notation 〈𝑣𝑖 , 𝑣𝑗〉 → (𝑐𝑜𝑙𝑜𝑟1, 𝑐𝑜𝑙𝑜𝑟2)is used to indicate the assigning of color

pair (𝑐𝑜𝑙𝑜𝑟1, 𝑐𝑜𝑙𝑜𝑟2)to edge 〈𝑣𝑖 , 𝑣𝑗〉. The color configuration of a complex-colored graph 𝐺 is

represented by the two-tuple 𝐶(𝑀) = {𝑀, �̅�(𝑀)}, where 𝑀 is the set of edges that are fully

colored in red color 𝑟, and �̅�(𝑀) is the set of vertices that are not covered by 𝑀 and they are

incident to the red link of a (𝑟, 𝑏) variable. Vertices in �̅�(𝑀) are also called 𝑴-exposed.

Since only one red link is incident to each vertex, there is a natural one-to-one correspondence

between a matching 𝑀 and the color configuration 𝐶(𝑀) = {𝑀, �̅�(𝑀)}, in which the set of red

edges 𝑀 corresponds to a matching and �̅�(𝑀) is the set of free vertices relative to 𝑀 . For

example, the graph shown in Figure 1(c) is consistently colored by the set of colors {𝑟, 𝑏}. The

initial color assignment is random; the consistency requirement can be easily satisfied if we only

assign the red color 𝑟 to one of the links incident to each vertex.

Definition. The binary color-exchange operation “⊗”that operates on two adjacent colored

edges (𝑐𝑜𝑙𝑜𝑟1, 𝑐𝑜𝑙𝑜𝑟2),(𝑐𝑜𝑙𝑜𝑟3, 𝑐𝑜𝑙𝑜𝑟4) is defined by,
(𝑐𝑜𝑙𝑜𝑟1, 𝑐𝑜𝑙𝑜𝑟2) ⊗ (𝑐𝑜𝑙𝑜𝑟3, 𝑐𝑜𝑙𝑜𝑟4) = (𝑐𝑜𝑙𝑜𝑟1, 𝑐𝑜𝑙𝑜𝑟3) ⊚ (𝑐𝑜𝑙𝑜𝑟2, 𝑐𝑜𝑙𝑜𝑟4)

118 Computer Science & Information Technology (CS & IT)

where ⊚ indicates the adjacency of two colored edges. A color exchange is effective if the
operation does not increase the number of variables.

An example of the binary color-exchange operation “ ⊗ ” performed on two adjacent

variables〈𝑢, 𝑣〉 → (𝑏, 𝑟) and 〈𝑣, 𝑤〉 → (𝑏, 𝑟) is illustrated in Figure 2. The two variables were

eliminated as the result of this color-exchange operation (𝑏, 𝑟) ⊗ (𝑏, 𝑟) = (𝑏, 𝑏) ⊚ (𝑟, 𝑟).

Figure 2. Variable elimination via color exchange operations.

It is important to note that the above color-exchange operation preserves the consistency of a

color configuration. Since we only allow effective color exchange operation (𝑐𝑜𝑙𝑜𝑟1, 𝑐𝑜𝑙𝑜𝑟2) ⊗
(𝑐𝑜𝑙𝑜𝑟3, 𝑐𝑜𝑙𝑜𝑟4) = (𝑐𝑜𝑙𝑜𝑟1, 𝑐𝑜𝑙𝑜𝑟3) ⊚ (𝑐𝑜𝑙𝑜𝑟2, 𝑐𝑜𝑙𝑜𝑟4), and the effectiveness is assured if either
(𝑐𝑜𝑙𝑜𝑟1, 𝑐𝑜𝑙𝑜𝑟2) or (𝑐𝑜𝑙𝑜𝑟3, 𝑐𝑜𝑙𝑜𝑟4), or both are variables. Thus, the color exchange operation

may either eliminate adjacent variables, or move a variable to an adjacent edge. Non-adjacent
variables in a consistently colored graph must move next to each other before they can be

eliminated.

Since a variable (𝑟, 𝑏) is always moving within an alternating path, the symmetric difference

operation 𝑀⨁𝑃defined in Lemma 1 is equivalent to the elimination of two variables at the two

ends of an augmenting path 𝑃. As Figure 3 shows, a (𝑟, 𝑏)variable 〈𝑣0, 𝑣1〉walks on a complex-

colored augmenting path 〈𝑣0, 𝑣1〉, 〈𝑣1, 𝑣2〉, 〈𝑣2, 𝑣3〉 by a sequence of color exchanges to cancel

another (𝑟, 𝑏)variable〈𝑣3, 𝑣4〉. Note that the two end vertices𝑣0 and 𝑣3 are both free vertices.

Thus, according to Theorem 1, finding a maximum matching in a complex-colored graph 𝐺 is

equivalent to repeatedly eliminating variables until remaining variables are all irreducible.

Figure 3. Cancellation of variables by walking on a complex-colored augmenting path.

Computer Science & Information Technology (CS & IT) 119

3. BLOSSOMS: SHRINKING VERSUS DEFLECTION

The algorithm for maximum matching is a process of searching for successive 𝑀-augmenting

paths starting from an initial matching 𝑀. In the exploration process of an 𝑀-augmenting path,

the 𝑀-alternating path is a directional path, which starts from a free vertex and continuously

grows in one direction. In the matching 𝑀 depicted in Figure 4(a), there are two 𝑀-alternating

paths starting from the free vertex 𝑣0 that can reach 𝑣𝑑, namely

𝑃1 = 𝑣0, 𝑣1, 𝑣𝑎 , 𝑣𝑒 , 𝑣𝑑 , 𝑣𝑥,

and

𝑃2 = 𝑣0, 𝑣1, 𝑣𝑎 , 𝑣𝑏 , 𝑣𝑐 , 𝑣𝑑 , 𝑣𝑒.

If we take the 𝑀-alternating path 𝑃1, then we can reach the other free vertex 𝑣𝑥 and obtain an 𝑀-

augmenting path, in which the two end variables 〈𝑣0, 𝑣1〉 → (𝑟, 𝑏) and 〈𝑣𝑑 , 𝑣𝑥〉 → (𝑏, 𝑟) can be

eliminated by a sequence of color exchanges. However, if we take the 𝑀-alternating path 𝑃2, then

we miss this 𝑀-augmenting path. This divergent path problem arises when the vertex 𝑣𝑑 belongs

to an odd cycle, called blossom by Edmonds.

Figure 4(a). The original graph 𝐺.

Figure 4(b). The contracted graph 𝐺′.
Figure 4. Illustration of Blossom Shrinking.

Edmonds’ algorithm solves this difficult problem by shrinking blossoms, or odd cycles, down to

single super-vertices, thus to reveal augmenting paths, as Figure 4(b) shows. When we find an

augmenting path from a free vertex 𝑣0to another free vertex 𝑣𝑥 in the contracted graph 𝐺′, then

we immediately obtain an augment path in the original graph 𝐺 by unshrinking the super-

vertices.

Definition. Given a matching 𝑀and an 𝑀-alternating path 𝑃 starting from a free vertex 𝑣0, the

parity bit of a vertex 𝑣 on 𝑃, denoted by 𝜋(𝑣),is determined by the distance (number of edges)

between this vertex 𝑣 and the initial free vertex 𝑣0along 𝑃. If the distance is even then 𝜋(𝑣) = 0;

otherwise, 𝜋(𝑣) = 1.

120 Computer Science & Information Technology (CS & IT)

We adopt the convention that the link incident to the initial free vertex 𝑣0 in an 𝑀-alternating

path 𝑃is always colored red, if not we can always change it to red by color-exchanging with its

neighbouring red link. With this convention, the parity bit of each vertex on the path 𝑃can be

defined by the following equivalent localized definition:

𝜋(𝑣) = {
0, 𝑖𝑓𝑖𝑛𝑝𝑢𝑡𝑙𝑖𝑛𝑘𝑡𝑜𝑣𝑖𝑠𝑟𝑒𝑑𝑎𝑛𝑑𝑜𝑢𝑡𝑝𝑢𝑡𝑖𝑠𝑏𝑙𝑢𝑒(𝑣𝑖𝑠𝑖𝑛𝑒𝑣𝑒𝑛𝑠𝑡𝑎𝑡𝑒),

 1, 𝑖𝑓𝑖𝑛𝑝𝑢𝑡𝑙𝑖𝑛𝑘𝑡𝑜𝑣𝑖𝑠𝑏𝑙𝑢𝑒𝑎𝑛𝑑𝑜𝑢𝑡𝑝𝑢𝑡𝑖𝑠𝑟𝑒𝑑(𝑣𝑖𝑠𝑖𝑛𝑜𝑑𝑑𝑠𝑡𝑎𝑡𝑒).

Consider the two 𝑀-alternating paths,

𝑃1 = 𝑣0, 𝑣1, 𝑣𝑎 , 𝑣𝑒 , 𝑣𝑑 , 𝑣𝑐 , 𝑣𝑏 and 𝑃2 = 𝑣0, 𝑣1, 𝑣𝑎 , 𝑣𝑏 , 𝑣𝑐 , 𝑣𝑑 , 𝑣𝑒

in the graph 𝐺 shown in Figure 4(a). We write the two paths 𝑃1 and 𝑃2 with their sequences of

parities as follows:

𝑃1: 𝑣0𝜋(𝑣0)𝑣1𝜋(𝑣1)𝑣𝑎𝜋(𝑣𝑎)𝑣𝑒𝜋(𝑣𝑒)𝑣𝑑𝜋(𝑣𝑑)𝑣𝑐𝜋(𝑣𝑐)𝑣𝑏𝜋(𝑣𝑏) = 𝑣00𝑣11𝑣𝑎0𝑣𝑒1𝑣𝑑0𝑣𝑐1𝑣𝑏0,
𝑃2: 𝑣0𝜋(𝑣0)𝑣1𝜋(𝑣1)𝑣𝑎𝜋(𝑣𝑎)𝑣𝑏𝜋(𝑣𝑏)𝑣𝑐𝜋(𝑣𝑐)𝑣𝑑𝜋(𝑣𝑑)𝑣𝑒𝜋(𝑣𝑒) = 𝑣00𝑣11𝑣𝑎0𝑣𝑏1𝑣𝑐0𝑣𝑑1𝑣𝑒0.

Comparing the above two sequences, we can sum up the following properties of blossoms.

Property 1.The 𝑀-alternating path 𝑃 always enters the blossom at a vertex 𝑣𝑎with even parity bit

𝜋(𝑣𝑎) = 0,called base, because path divergence occurs only when the input to 𝑣𝑎 is red and

multiple outputs are blue. On the other hand, if the input is blue, then there is only one red output,

which is the case of entering the base of an even cycle.

Property 2. The parity bit 𝜋(𝑣)of a vertex𝑣in the blossom, other than the base, can be either 0

(even) or 1 (odd), depending on the direction of the path𝑃.

Property 3. If the 𝑀-alternating path 𝑃 return to the base 𝑣𝑎 and form a blossom, then the last

vertex 𝑣 always possesses an even parity 𝜋(𝑣) = 0, which conflicts with the parity 𝜋(𝑣𝑎) = 0 of

the base vertex 𝑣𝑎.For example, the last vertex 𝑣𝑏 in 𝑃1, and𝑣𝑒 in 𝑃2.

In the exploration of 𝑀-alternating paths, the difficulty arising from blossoms is mainly due the

parity conflicts characterized in Property 2 and 3. The aim of shrinking the blossom to a single

super-vertex is two-fold: eliminating the parity conflicts, and reserving all 𝑀-alternating paths
passing through the blossom.

In contrast to shrinking, the algorithm proposed in this paper deflects the 𝑀-alternating path and

makes a detour around blossoms. This dynamic exploration mechanism is a two tuple𝑇 = {𝑃, 𝑆},

calledtrunk, which consists of an 𝑀-alternating path𝑃starting from a free vertex, and a stack of

sprout𝑆 that maintains all possible detours of𝑃. The 𝑀-alternating path 𝑃is a stack of ordered

sequence of vertices, and the sprout 𝑆 is a stack of ordered sequence of edges, in which each edge

is a sprout that represents the starting point of a reserved detour for the alternating path 𝑃.

Definition. A vertex 𝑣 in the 𝑀-alternating path 𝑃 with even parity 𝜋(𝑣) = 0 is called a sprout

root and is abbreviated as s-root. The set of free edges incident with an s-root𝑣 is defined as

𝑆𝑝𝑟𝑜𝑢𝑡(𝑣) = {〈𝑣, 𝑢〉 | 𝑣 ∈ 𝑃, 𝜋(𝑣) = 0, 〈𝑣, 𝑢〉 ∈ �̅�},
and the set of vertices mated with an s-root 𝑣 by free edges is defined as

𝑀𝑎𝑡𝑒(𝑣) = {𝑢 | 𝑣 ∈ 𝑃, 𝜋(𝑣) = 0, 〈𝑣, 𝑢〉 ∈ �̅�}.

Computer Science & Information Technology (CS & IT) 121

The 𝑀-alternating path 𝑃 is directional; at an odd parity matched vertex 𝑣 with𝜋(𝑣) = 1, there is

a unique path to continue 𝑃 from a blue input link to the only red output link. However, at an

even matched parity vertex 𝑣 with𝜋(𝑣) = 0 , the vertex𝑣 is an 𝑠-root, and the path𝑃 can be

continued from a red input link to any one of the multiple blue output links. In our DFS

algorithm, the path 𝑃 will arbitrarily select one of the edges in 𝑆𝑝𝑟𝑜𝑢𝑡(𝑣), and keep the others in

reserve in the sprout stack 𝑆, in case that the path 𝑃 needs detours in the future.

The searching process of this dynamic trunk𝑇 = {𝑃, 𝑆}starts from an initial free vertex 𝑣0 and

one of its mates𝑢 ∈ 𝑀𝑎𝑡𝑒(𝑣0), meaning that initially we have 𝑃 = {𝑣0, 𝑢}with sprout set𝑆 =
𝑆𝑝𝑟𝑜𝑢𝑡(𝑣0)\{〈𝑣0, 𝑢〉}. As the path 𝑃 extends, the process keeps adding pairs of vertices to the

alternating path𝑃, and appending sprouts to the stack 𝑆 along the extension of path 𝑃. If the path

𝑃 hits another free vertex, then an 𝑀-augmenting path is identified and the searching process
stops. Otherwise, the exploration process will continue until the path hits a dead end or an active

vertex in 𝑃. The latter case indicates that the path 𝑃 forms a cycle. In either case, the path 𝑃 will

make a detour. The algorithm concedes defeat if the stack of sprout 𝑆 is empty, otherwise it will

retrieve the last sprout in 𝑆, namely an edge 𝑒 = 〈𝑣𝑠 , 𝑣𝑡〉, and replace the entire sub-path in 𝑃

starting from𝑣𝑠 with the sequence 𝑣𝑠 , 𝑣𝑡 . The algorithm continues the searching process after

making the detour. Table 1 lists each step of the searching process starting from the free vertex

𝑣0 in the graph 𝐺 shown in Figure 4(a).

122 Computer Science & Information Technology (CS & IT)

Table 1.The process of searching for an augmenting path through an odd cycle

Steps Alternating Path 𝑷 Sprout Stack 𝑺 Remarks

1

(initialization

)
𝑣00𝑣11 ∅

𝑣0 is the initial free vertex, add

𝑣0, 𝑣1 to 𝑃.

2 𝑣00𝑣11𝑣𝑎0𝑣𝑏1 〈𝑣𝑎 , 𝑣𝑒〉 Add 𝑣𝑎 , 𝑣𝑏 to 𝑃 and 〈𝑣𝑎 , 𝑣𝑒〉 to 𝑆.

3 𝑣00𝑣11𝑣𝑎0𝑣𝑏1𝑣𝑐0𝑣𝑑1 〈𝑣𝑎 , 𝑣𝑒〉, 〈𝑣𝑐 , 𝑣𝑦〉 Add 𝑣𝑐 , 𝑣𝑑 to 𝑃 and 〈𝑣𝑐, 𝑣𝑦〉to 𝑆.

4 𝑣00𝑣11𝑣𝑎0𝑣𝑏1𝑣𝑐0𝑣𝑑1𝑣𝑒0𝑣𝑎1 〈𝑣𝑎 , 𝑣𝑒〉, 〈𝑣𝑐 , 𝑣𝑦〉
Add 𝑣𝑒 , 𝑣𝑎 to 𝑃 , the vertex 𝑣𝑎

appeared twice in 𝑃with conflict

parity, detect an odd cycle.

5 (detour) 𝑣00𝑣11𝑣𝑎0𝑣𝑏1𝑣𝑐0𝑣𝑦1 〈𝑣𝑎 , 𝑣𝑒〉

Make a detour around cycle.

Retrieve sprout 〈𝑣𝑐, 𝑣𝑦〉 from 𝑆 ,

and replace the sequence

𝑣𝑐 , 𝑣𝑑 , 𝑣𝑒 , 𝑣𝑎in 𝑃 with 𝑣𝑐, 𝑣𝑦.

6 (dead end) 𝑣00𝑣11𝑣𝑎0𝑣𝑏1𝑣𝑐0𝑣𝑦1 〈𝑣𝑎 , 𝑣𝑒〉 The path hits a dead end at 𝑣𝑧 .

7 (detour) 𝑣00𝑣11𝑣𝑎0𝑣𝑒1 ∅

Make a detour around the dead

end 𝑣𝑧 . Retrieve sprout 〈𝑣𝑎 , 𝑣𝑒〉
from𝑆, and replace the sequence

𝑣𝑎 , 𝑣𝑏 , 𝑣𝑐 , 𝑣𝑦 in 𝑃 with 𝑣𝑎 , 𝑣𝑒 .

Starting from here, the path is in
the clockwise direction of the odd

cycle 𝑣𝑎 , 𝑣𝑏 , 𝑣𝑐 , 𝑣𝑑 , 𝑣𝑒.

8

(termination)
𝑣00𝑣11𝑣𝑎0𝑣𝑒1𝑣𝑑0𝑣𝑥1 〈𝑣𝑑 , 𝑣𝑐〉

If 〈𝑣𝑑 , 𝑣𝑥〉 is selected, add 𝑣𝑑 , 𝑣𝑥

to 𝑃, the process may move to 𝑣𝑐

or to 𝑣x , in the latter case, the

augmenting path

𝑣0, 𝑣1, 𝑣𝑎 , 𝑣𝑒 , 𝑣𝑑 , 𝑣𝑥 is identified

and the process is stopped. If
〈𝑣𝑑 , 𝑣𝑐〉 is selected then the next

step is 8A.

8A 𝑣00𝑣11𝑣𝑎0𝑣𝑒1𝑣𝑑0𝑣𝑐1 〈𝑣𝑑 , 𝑣𝑥〉
If the process selects 〈𝑣𝑑 , 𝑣𝑐〉
instead of 〈𝑣𝑑, 𝑣𝑥〉 in step 8, then

add𝑣𝑑 , 𝑣𝑐to 𝑃, and 〈𝑣𝑑 , 𝑣𝑥〉 to 𝑆.

9A
𝑣00𝑣11𝑣𝑎0𝑣𝑒1𝑣𝑑0𝑣𝑐1

𝑣𝑏0𝑣𝑎1
〈𝑣𝑑 , 𝑣𝑥〉

Add 𝑣𝑏 , 𝑣𝑎 to 𝑃 , the vertex 𝑣𝑎

appeared twice in 𝑃with conflict

parity, detect an odd cycle.

10A (detour

and

termination)

𝑣00𝑣11𝑣𝑎0𝑣𝑒1𝑣𝑑0𝑣𝑥1 ∅

Make a detour around cycle.

Retrieve sprout 〈𝑣𝑑, 𝑣𝑥〉 from 𝑆 ,
and replace the sequence

𝑣𝑑 , 𝑣𝑐 , 𝑣𝑏 , 𝑣𝑎in 𝑃 with 𝑣𝑑 , 𝑣𝑥 . The

augmenting path

𝑣0, 𝑣1, 𝑣𝑎 , 𝑣𝑒 , 𝑣𝑑 , 𝑣𝑥 is identified

and the process is stopped.

The parity conflicts will not occur when the alternating path forms an even cycle. As Figure 5

shows, there is only one 𝑀-alternating path transits the even cycle because the parity of the base

vertex 𝑣𝑎 of the even cycle is odd with 𝜋(𝑣𝑎) = 1 . Unlike odd cycles, an even cycle is a

legitimate two-colored 𝑀-alternating cycle, which is naturally compatible with the 𝑀-alternating
path P. The odd cycle and even cycle displayed in Figure 4 and Figure 5, respectively, clearly

demonstrate this key point. Table 2 provides the searching process starting from the free
vertex𝑣0 in the graph shown in Figure 5.

Computer Science & Information Technology (CS & IT) 123

Figure 5. The graph 𝐺with an even cycle.

Table 2.The process of searching for an augmenting path through an even cycle

Steps Alternating Path 𝑷
Sprout

Stack S
Remarks

1

(initialization)
𝑣00𝑣11 ∅

𝑣0is the initial free vertex, add

𝑣0, 𝑣1 to 𝑃.

2 𝑣00𝑣11𝑣20𝑣𝑎1 ∅ Add 𝑣2, 𝑣𝑎 to 𝑃.

3 𝑣00𝑣11𝑣20𝑣𝑎1𝑣𝑏0𝑣𝑐1 〈𝑣𝑏 , 𝑣𝑦〉
If the edge 〈𝑣𝑏 , 𝑣𝑐〉 is selected, add

𝑣𝑏 , 𝑣𝑐 to 𝑃 and 〈𝑣𝑏 , 𝑣𝑦〉 to 𝑆 .

Otherwise, the next step is 3A.

4 𝑣00𝑣11𝑣20𝑣𝑎1𝑣𝑏0𝑣𝑐1𝑣𝑑0𝑣𝑎1 〈𝑣𝑏 , 𝑣𝑦〉, 〈𝑣𝑑 , 𝑣𝑥〉
Add 𝑣𝑑 , 𝑣𝑎 to 𝑃 , the vertex 𝑣𝑎

appeared twice in 𝑃 with same

parity, detect an even cycle.

5 (detour and

termination)
𝑣00𝑣11𝑣20𝑣𝑎1𝑣𝑏0𝑣𝑐1𝑣𝑑0𝑣𝑥1 〈𝑣𝑏 , 𝑣𝑦〉

Make a detour around the cycle.

Retrieve sprout〈𝑣𝑑, 𝑣𝑥〉 from𝑆, and

replace the sequence 𝑣𝑑 , 𝑣𝑎in 𝑃

with 𝑣𝑑 , 𝑣𝑥. Theaugmentingpath

𝑣0, 𝑣1, 𝑣2, 𝑣𝑎 , 𝑣𝑏 , 𝑣𝑐 , 𝑣𝑑 , 𝑣𝑥 is

identified and the process is

stopped.

3A (dead end) 𝑣00𝑣11𝑣20𝑣𝑎1𝑣𝑏0𝑣𝑦1 〈𝑣𝑏 , 𝑣𝑐〉

If the edge 〈𝑣𝑏 , 𝑣𝑦〉 is selected, add

𝑣𝑏 , 𝑣𝑦 to 𝑃 and 〈𝑣𝑏 , 𝑣𝑐〉to 𝑆 . Then

the path 𝑃 hits a dead end at 𝑣𝑧 .

4A (detour) 𝑣00𝑣11𝑣20𝑣𝑎1𝑣𝑏0𝑣𝑐1 ∅

Make a detour around the dead end

𝑣𝑧 . Retrieve sprout〈𝑣𝑏 , 𝑣𝑐〉 from𝑆 ,

and replace the sequence 𝑣𝑏 , 𝑣𝑦 in

𝑃 with 𝑣𝑏 , 𝑣𝑐.

5A

(termination)
𝑣00𝑣11𝑣20𝑣𝑎1𝑣𝑏0𝑣𝑐1𝑣𝑑0𝑣𝑥1 〈𝑣𝑑 , 𝑣𝑎〉

Add 𝑣𝑑 , 𝑣𝑥 to 𝑃and 〈𝑣𝑑, 𝑣𝑎〉to 𝑆.

The augmenting path

𝑣0, 𝑣1, 𝑣2, 𝑣𝑎 , 𝑣𝑏 , 𝑣𝑐 , 𝑣𝑑 , 𝑣𝑥 is

identified and the process is

stopped.

124 Computer Science & Information Technology (CS & IT)

Figure 6. The graph G with two nested odd-cycles.

The searching process adaptively changes the directional alternating path according to the

topology of the graph. The graph 𝐺 displayed in Figure 6 has two nested odd cycles. Starting at

free vertex 𝑣0, the alternating path 𝑃 encountered odd cyclesfour times before it finds another

free vertex 𝑣ℎ . The following sequence of the searching process reveals the resilience of the

dynamic trunk𝑇 = {𝑃, 𝑆}.

1. 𝑃 = 𝑣00𝑣11𝑣𝑎0𝑣𝑏1𝑣𝑐0𝑣𝑓1𝑣𝑔0𝑣𝑐1

𝑆 = {〈𝑣𝑎 , 𝑣𝑒〉, 〈𝑣𝑐 , 𝑣𝑔〉}

2. 𝑃 = 𝑣00𝑣11𝑣𝑎0𝑣𝑏1𝑣𝑐0𝑣𝑔1

𝑆 = {〈𝑣𝑎 , 𝑣𝑒〉}

3. 𝑃 = 𝑣00𝑣11𝑣𝑎0𝑣𝑏1𝑣𝑐0𝑣𝑔1𝑣𝑓0𝑣𝑑1𝑣𝑒0𝑣𝑎1

𝑆 = {〈𝑣𝑎 , 𝑣𝑒〉, 〈𝑣𝑓 , 𝑣𝑐〉}

4. 𝑃 = 𝑣00𝑣11𝑣𝑎0𝑣𝑏1𝑣𝑐0𝑣𝑔1𝑣𝑓0𝑣𝑐1

𝑆 = {〈𝑣𝑎 , 𝑣𝑒〉}

5. 𝑃 = 𝑣00𝑣11𝑣𝑎0𝑣𝑒1

𝑆 = ∅

6. 𝑃 = 𝑣00𝑣11𝑣𝑎0𝑣𝑒1𝑣𝑑0𝑣𝑓1𝑣𝑔0𝑣𝑐1𝑣𝑏0𝑣𝑎1

𝑆 = {〈𝑣𝑏 , 𝑣ℎ〉}

7. 𝑃 = 𝑣00𝑣11𝑣𝑎0𝑣𝑒1𝑣𝑑0𝑣𝑓1𝑣𝑔0𝑣𝑐1𝑣𝑏0𝑣ℎ1

 𝑆 = ∅
/* augmenting path identified successfully. */

4. THE DFS ALGORITHM

In this Section, we summarize the DFS algorithm and describe the details of the searching

process. The algorithm consists of two phases: a growing phase and a pruning phase. The

alternating path 𝑃 and the sprout stack 𝑆 will be updated in both phases.

Input: A general graph 𝐺(𝑉, 𝐸), a color configuration 𝐶(𝑀) = {𝑀, �̅�(𝑀)}of graph 𝐺(𝑉, 𝐸) with

a current matching 𝑀, and a free vertex 𝑣0 ∈ �̅�(𝑀).

Idea: Explore a trunk 𝑇 = {𝑃, 𝑆} from the𝑀-exposed vertex 𝑣0, stretching the alternating path 𝑃

and the sprout stack 𝑆 as far as possible. In each step, an ordered pair of vertices (𝑣𝑎 , 𝑣𝑏)will be

Computer Science & Information Technology (CS & IT) 125

added to the alternating path 𝑃; the first vertex 𝑣𝑎 is an 𝑠-root with even parity in 𝑃. The edge

𝑒 = 〈𝑣𝑎 , 𝑣𝑏〉 is a sprout selected from the set 𝑆𝑝𝑟𝑜𝑢𝑡(𝑣𝑎) ; the rest edges in 𝑆𝑝𝑟𝑜𝑢𝑡(𝑣𝑎)\
{〈𝑣𝑎 , 𝑣𝑏〉} will then be added to 𝑆. If a dead end was detected or a cycle was formed, the trunk 𝑇

will make a detour according to the last sprout in stack 𝑆 . Declare a failure if 𝑆 is empty,

otherwise continue the process to reach another free vertex that yields an augmentation.

Initialization: 𝑃 = {𝑣0, 𝑣1}, 𝑆 = 𝑆𝑝𝑟𝑜𝑢𝑡(𝑣0)\{〈𝑣0, 𝑣1〉}.

Iteration: (Growing Phase) If the next pair of vertices 𝑣a, 𝑣b extended from the current

alternating path 𝑃 are not in 𝑃, then perform the following updating operation:

𝑃 = 𝑃 ∪ {𝑣𝑎 , 𝑣𝑏},

𝑆 = 𝑆 ∪ 𝑆𝑝𝑟𝑜𝑢𝑡(𝑣𝑎)\{〈𝑣𝑎 , 𝑣𝑏〉}.

(Pruning Phase) When a dead end or a cycle was found, stop if 𝑆 = ∅ and there is no 𝑀-

augmenting path from 𝑣0, otherwise, retrieve the last sprout 〈𝑣𝑎 , 𝑣𝑏〉 from 𝑆, eliminate all vertices

after 𝑣𝑎 in the path 𝑃 = 𝑣0, ⋯ , 𝑣𝑎 , ⋯ , 𝑣𝑥and replace them with 𝑣𝑎 , 𝑣𝑏. Update trunk 𝑇 as follows

and continue the searching process:

𝑃 = 𝑣0, ⋯ , 𝑣𝑎 , 𝑣𝑏,

𝑆 = 𝑆\{〈𝑣a, 𝑣b〉}.

In the pruning phase, we implicitly claim that if the edge 〈𝑣𝑎 , 𝑣𝑏〉 ∈ 𝑆then the vertex 𝑣𝑎 ∈ 𝑃. This

claim is always valid because the vertex 𝑣𝑎and the edge 〈𝑣𝑎 , 𝑣𝑏〉 ∈ 𝑆𝑝𝑟𝑜𝑢𝑡(𝑣𝑎) were added to 𝑃

and 𝑆, respectively and simultaneously, in the growing phase.

The algorithm terminates when no augmenting paths exist. The searching process halts when

either an augmenting path was identified, or every alternating path starting from a free vertex was
inspected and returned with an empty sprout stack. We show in the following lemma that all

possible alternating paths starting from a free vertex 𝑣0 will be visited if the exploration process

ends with an empty sprout stack.

Lemma 2. If an alternating path 𝑃 starting from a free vertex 𝑣0 ends the searching process with

an empty sprout stack 𝑆 = ∅, then 𝑃has visited every alternating path starting from 𝑣0.

Proof. Suppose 𝑄 = 𝑣0, ⋯ , 𝑣𝑥 , 𝑣𝑎 , 𝑣𝑏 is the shortest alternating path that 𝑃 has never visited,

where 𝜋(𝑣𝑎) = 0 and 𝜋(𝑣𝑏) = 1. Then neither 𝑃has visited the alternating path 𝑄′ = 𝑣0, ⋯ , 𝑣𝑥,

because 〈𝑣𝑥 , 𝑣𝑎〉 ∈ 𝑆𝑝𝑟𝑜𝑢𝑡(𝑣𝑥)but it was eventually disappeared in the final sprout set 𝑆 =
∅.That is, if 𝑃 has visited𝑄′ = 𝑣0, ⋯ , 𝑣𝑥then it certainly has visited 𝑄 = 𝑣0, ⋯ , 𝑣𝑥 , 𝑣𝑎 , 𝑣𝑏through

the sprout 〈𝑣𝑥 , 𝑣𝑎〉, which is impossible according to our assumption. On the other hand, if 𝑃 has

never visited𝑄′ = 𝑣0, ⋯ , 𝑣𝑥, then this contradicts our assumption that 𝑄 = 𝑣0, ⋯ , 𝑣𝑥 , 𝑣𝑎 , 𝑣𝑏is the

shortest alternating path that 𝑃 has never visited.∎

In the DFS algorithm, we assume that if a free vertex 𝑣0failed to find another free vertex through

an alternating path, then 𝑣0will never access any other free vertices, even if other augmenting

paths modified the graph configuration. By definition, any alternating path in a maximum

matching 𝑀 should contain at most one 𝑀-exposed vertex. This point can be further elaborated

by the Gallai-Edmonds decomposition of a graph 𝐺, in which every 𝑀-exposed vertex 𝑣0 of a

maximum matching𝑀is locked up in an odd component of 𝐺. This isolation property ensures that

repeating an exploring process starting from the same free vertex 𝑣0is not necessary.

126 Computer Science & Information Technology (CS & IT)

The Sylvester’s graph is a good example to illustrate the isolation property of free vertices in a

maximum matching 𝑀. As Figure 7 shows, the three odd components 𝐺1,𝐺2, 𝐺3 of graph 𝐺are

connected by a vertex 𝑣𝑎, we observe the following properties:

1. Deleting 𝑣𝑎,𝑀 covers all but one vertex of each odd component 𝐺𝑖 , 𝑖 = 1,2,3.

2. 𝑀covers the vertex 𝑣𝑎.

3. If 𝑀 matches one of the free vertices in 𝐺𝑖 , 𝑖 = 1,2,3, with 𝑣𝑎, then the other two free vertices

in 𝐺𝑗 , 𝑗 ≠ 𝑖, will be isolated, and they cannot be connected by an alternating path.

Figure 7. A Maximum Matching of The Sylvester’s Graph.

Definition. In a graph 𝐺(𝑉, 𝐸), for 𝑆 ⊆ 𝑉(𝐺), let 𝑁𝐺(𝑆) denote the set of vertices in 𝐺 − 𝑆which

have at least one neighbour in 𝑆, and let 𝐺[𝑆] denote the subgraph of 𝐺 induced by 𝑆. The graph

𝐺 is factor-critical if 𝐺 − 𝑣 has a perfect matching for every vertex 𝑣 ∈ 𝑉(𝐺). A matching in 𝐺

is near-perfect if it matches all but one vertex of 𝐺.

A factor-critical graph is connected, and has an odd number of vertices. Simple examples include

odd-length cycle 𝐶𝑛 and the complete graph 𝐾𝑛 of odd order 𝑛.

Definition. In a graph 𝐺(𝑉, 𝐸), let 𝐵 be the set of vertices covered by every maximum matching

in 𝐺, and let 𝐷 = 𝑉(𝐺) − 𝐵. The set 𝐵is further partitioned into 𝐵 = 𝐴 ∪ 𝐶, where 𝐴is the set of

vertices that are adjacent to at least one vertex in 𝐷, and 𝐶 = 𝐵 − 𝐴. The Gallai-Edmonds

decomposition of 𝐺 is the partition of 𝑉(𝐺) into three mutually disjoint subsets 𝑉 = 𝐴 ∪ 𝐶 ∪ 𝐷.

Theorem 2 (Gallai-Edmonds Structure Theorem[14]) Let 𝐴, 𝐶, 𝐷 be the sets in the Gallai-

Edmonds Decomposition of a graph 𝐺(𝑉, 𝐸). Let 𝑇1, ⋯ , 𝑇𝑙 be the components of 𝐺[𝐶], and 𝐺1,

⋯ , 𝐺𝑘 be the components of 𝐺[𝐷] . If 𝑀 is a maximum matching in 𝐺, then the following
properties hold:

1. Each 𝑇𝑖 , 𝑖 = 1,2, . . . , 𝑙, is an even component, and𝑀 restricts to a perfect matching on 𝑇𝑖 .
2. Each 𝐺𝑖 , 𝑖 = 1,2, . . . , 𝑘, is an odd component, which is factor-critical, and𝑀 restricts to a near-

perfect matching on 𝐺𝑖 .
3. 𝑀 completely matches 𝐴 into distinct components 𝐺1, ⋯ , 𝐺𝑘 of 𝐺[𝐷]. ∎

A detailed proof of this theorem is given by Lovász and Plummer in[1, 2], and a short proof is

provided by West in [15]. The property 3 in the above theorem can be explained by Hall’s

Theorem. Contracting each component 𝐺𝑖of𝐺[𝐷] to a single vertex𝑣𝑔,𝑖, we define an auxiliary

bipartite graph 𝐻(𝐴 ∪ 𝑌, 𝐸𝐻) as follows:

𝑌 = {𝑣𝑔,1, 𝑣𝑔,2 ⋯ , 𝑣𝑔,𝑘}, and 𝐴 = {𝑣𝑎,1, 𝑣𝑎,2 ⋯ , 𝑣𝑎,ℎ},

Computer Science & Information Technology (CS & IT) 127

𝐸𝐻 = {(𝑣𝑎,𝑗 , 𝑣𝑔,𝑖)| 𝑣𝑎,𝑗 ∈ 𝐴ℎ𝑎𝑣𝑖𝑛𝑔𝑎𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝐺𝑖}.

In the Gallai-Edmonds decomposition and a maximum matching𝑀 of a general graph 𝐺, as

Figure 8 illustrates, the isolated 𝑀 -exposed vertex in 𝐺1 cannot access to that in 𝐺4 by any

alternating paths. It can be shown that Hall’s condition |𝑆| ≤ |𝑁𝐻(𝑆)| holds for any 𝑆 ⊆
𝐴 [16], thus the 𝑀 restricts to a matching on bipartite graph 𝐻that covers 𝐴.

(a) The decomposition 𝑉 = 𝐴 ∪ 𝐶 ∪ 𝐷.

(b) Auxiliary bipartite graph𝐻.

Figure 8. The Gallai-Edmonds decomposition of a general graph 𝐺.

Since each odd component𝐺𝑖 is factor-critical, and any vertex of𝐺𝑖can be the one unmatched by a

maximum matching𝑀. Thus, the only unmatched vertex in each odd component𝐺𝑖can either be

matched with a vertex𝑣𝑎 ∈ 𝐴, or be isolated in the odd component𝐺𝑖. Therefore, any free vertex

can only be the source of an augmenting path at most once in the DFS algorithm. Since the initial

number of free vertices is upper bounded by the order of 𝑂(𝑛), and the length of each alternating

path 𝑃is proportional to the number of edges 𝑚 = |𝐸|, the complexity of the DFS algorithm is
given in Theorem 3.

Theorem 3. The DFS algorithm can determine a maximum matching of a general graph in

𝑂(𝑚𝑛)time with space complexity 𝑂(𝑛).

Experiments were conducted to verify the performance of our maximum matching algorithm. A

set of Δ-regular graphs with 𝑛 vertices and 𝑚 =
Δ𝑛

2
 edges was randomly generated. Figure 9

shows the experimental results of average running time, in which 25 graphs were randomly

generated for every pair of (Δ, 𝑛), 𝑛 = 100, 200, . . . , 2500 and Δ = 3, 4, 5. These experimental

results confirm the performance of our maximum matching algorithm given in Theorem 3. As

128 Computer Science & Information Technology (CS & IT)

shown in Figure 9, for each set of graphs under consideration, the running time of our algorithm

is on the order of 𝑂(𝑛2)for a given degree Δ.

Figure 9. The running time of the maximum matching algorithm.

5. CONCLUSION

The fundamental problem of finding maximum matching in general graphs is the existence of

odd cycles, or blossoms. Instead of shrinking blossoms, this paper proposed a deflection

algorithm to cope with the parity conflicts caused by odd cycles. This new algorithm achieves

𝑂(𝑚𝑛) time complexity with 𝑂(𝑛) data structure. This newly proposed algorithm is

complementary to Edmonds’ blossom algorithm in two important aspects: depth-first search

(DFS) versus breadth-first search (BFS), and deflection from blossoms versus shrinking of

blossoms. In the future, we will explore the application of this method to maximum matching of
weighted graphs.

ACKNOWLEDGEMENTS

The authors would like to thank Professor Shahbaz Khan of Department of Computer Science

and Engineering, Indian Institute of Technology, Roorkee, India, for many useful criticism and
suggestions.

REFERENCES

[1] Lovász, László& Plummer, Michael D. (1986)Matching Theory, Vol. 29, Annals of Discrete

Mathematics,North-Holland, Amsterdam.

[2] Lovász, László& Plummer, Michael D.(2009) Matching Theory, Vol. 367, American Mathematical

Society.

[3] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009)Introduction to Algorithms,

MITpress.

[4] Hopcroft, John E. & Karp, Richard M., (1973) “An 𝑛5/2 algorithm for maximum matchings in

bipartite graphs”,SIAM Journal on Computing, Vol. 2, No. 4, pp. 225–231.

[5] Edmonds, Jack, (1965) “Paths, trees, and flowers”,Canadian Journal of Mathematics, Vol. 17, pp.
449–467.

Computer Science & Information Technology (CS & IT) 129

[6] Gabow, Harold N., (1976) “An efficient implementation of Edmonds’ algorithm for maximum

matching ongraphs”,Journal of the ACM (JACM), Vol. 23, No. 2, pp. 221–234.

[7] Gabow, Harold N. &Tarjan, Robert E., (1985)“A linear-time algorithm for a special case of disjoint

set union”,Journal of Computer and System Sciences, Vol. 30, No. 2, pp. 209–221.

[8] Micali,Silvio&Vazirani, Vijay V., (1980) “An 𝑂(√|𝑉||𝐸|) algorithm for finding maximum matching

ingeneral graphs”, in the 21st Annual Symposium on Foundations of Computer Science (1980), pp.

17–27, IEEE.

[9] Vazirani, Vijay V., (1994) “A theory of alternating paths and blossoms for proving correctness of

the𝑂(√|𝑉||𝐸|)general graph maximum matching algorithm”,Combinatorica, Vol. 14, No. 1, pp. 71–

109.

[10] Tarjan, Robert E. (1983)Data Structures and Network Algorithms,Society for industrial and Applied

Mathematics.

[11] Berge, Claude, (1957) “Two theorems in graph theory”,Proceedings of the National Academy of

Sciences ofthe United States of America, Vol. 43, No. 9, pp. 842–844.

[12] Lee, Tony T., Wan, Y., & Guan, H., (2013) “Randomized ∆-edge colouring via exchanges of

complexcolours”,International Journal of Computer Mathematics, Vol. 90, No. 2, pp. 228–245.

[13] Wang, L., Ye, T., Lee, Tony T., & Hu, W., (2018) “A parallel complex coloring algorithm for

scheduling ofinput-queued switches”, IEEE Transactions on Parallel and Distributed Systems, Vol.

29, No. 7,pp. 1456-1468.

[14] Gallai, Tibor, (1963) “Kritische graphen ii”,Magyar Tud. Akad. Mat. Kutato Int. Kozl., Vol. 8, pp.
373–395.

[15] West, Douglas B.,(2011) “A short proof of the Berge–Tutte formula and the Gallai–Edmonds

structuretheorem”,European Journal of Combinatorics, Vol. 32, No. 5, pp. 674–676.

[16] West, Douglas B. (2001)Introduction to Graph Theory, Prentice-Hall, Inc., Upper Saddle River.

AUTHORS

TONY T. LEE received the BSEE degree from National Cheng Kung University,

Taiwan, and the M.S. and Ph.D. degrees in electrical engineering from the Polytechnic

Institute of New York University (now Tandon School of Engineering, New York

University), Brooklyn, NY, USA. From 2013 to 2017, he was a Zhiyuan Chair Professor

with the Electronics Engineering Department, Shanghai Jiao Tong University. From 1993

to 2013, he was a Chair Professor with the Information Engineering Department, The
Chinese University of Hong Kong. From 1991 to 1993, he was a Professor of electrical

engineering with the Polytechnic Institute of New York University. From 1989 to 1991, he was an adjunct

Associate Professor with the Department of Electrical Engineering of Columbia University, New York. He

was with AT&T Bell Laboratories, Holmdel, NJ, USA, from 1977 to 1983, and with Bellcore (now

Telcordia Technologies), Morristown, NJ, USA, from 1983 to 1993. He is currently a Professor with the

School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen). He is a Fellow of

IEEE and HKIE. He has received many awards, including the 1989 Leonard G. Abraham Prize Paper

Award from the IEEE Communication Society, and the 1999 National Natural Science Award from China.

He has served as an Editor of the IEEE TRANSACTIONS ON COMMUNICATIONS, and an Area Editor

of the Journal of Communication Network.

Dr. Bojun Lu received her Bachelor’s degree in Mathematics and Applied Mathematics

from the University of Science and Technology of China (USTC), China in 2008, and her

Ph.D. degree at the Department of Systems Engineering and Engineering Management

from The Chinese University of Hong Kong (CUHK), Hong Kong in July 2014. After

graduation, Bojun enriched her industrial experiences in quantitative finance industry

with positions of quantitative researcher for around three years. She joined the CUHK-

Shenzhen with a Lecturer position in January 2018, and is promoted as Assistant

Professor (Teaching) in 2022. Her teaching area includes applied mathematics, mathematical statistics, and

combinatorial mathematics. Her research interests include algorithms and theory in matching problems
with possible real-world applications, methodologies in multivariate data analysis, quantitative finance,

lattice theory and possible applications in cryptography encoding and decoding.

130 Computer Science & Information Technology (CS & IT)

Hanli Chu received his Bachelor’s degree in Electronic Information Engineering from the

Chinese University of Hong kong, Shenzhen (CUHKSZ).In September 2021, he started his

master programme study in Computer Information Engineering at CUHKSZ. His research

interests include image classification, semantic segmentation, etc.

© 2023 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license

	Abstract
	Keywords
	Maximum Matching, Augmenting Path, Blossom, Trunk, Sprout

