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ABSTRACT 
 
In this paper, we propose a depth-first search (DFS) algorithm for finding maximum matching 

in general graphs. Unlike blossom shrinking algorithms, which store all possible alternative 

alternating-paths in the super-vertices shrinking from blossoms, the newly proposed algorithm 

does not involve blossom shrinking. The basic idea is to deflect the alternating path when facing 

blossoms. The algorithm maintains detour information in an auxiliary stack to minimize the 

redundant data structures. A benefit of our technique is to avoid spending the time on shrinking 

and expanding blossoms. This DFS algorithm can determine a maximum matching of a general 

graph with m edges and n vertices in 𝑂(𝑚𝑛) time with space complexity 𝑂(𝑛). 
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1. INTRODUCTION 
 

The maximum matching in an undirected graph is a set of disjoint edges that has the maximum 
cardinality. Finding a maximum matching is a fundamental problem in combinatorial 

optimization [1, 2]. It has wide applications in the development of graph theory and computer 

science [3]. In a bipartite graph with 𝑛  vertices and 𝑚  edges, finding a maximum matching 

problem is solved by the Hopcroft-Karp algorithm in 𝑂((𝑚 + 𝑛)√𝑛)time [4]. For constructing a 

maximum matching in a general graph, the blossom shrinking algorithm proposed by Edmonds in 

[5] is the first polynomial algorithm that runs in time 𝑂(𝑛4). The complexity of this algorithm 

has been improved from 𝑂(𝑛4)  to 𝑂(𝑛3)by Gabow [6], and further reduced to 𝑂(𝑚𝑛)  by 

Gabow and Tarjan [7] for a graph with nvertices and m edges. The best-known algorithm is given 

by Micali and Vazirani [8] and [9] that runs in 𝑂(𝑚√𝑛), but it is rather difficult to understand 

and too complex for efficient implementation. Almost all these algorithms follow Edmonds’ idea 

of shrinking blossoms [10], which requires data structures to represent blossoms, and the time 
spent on shrinking and expanding blossoms. 

 

The main contribution of this paper is to present a depth-first search (DFS) maximum matching 

algorithm that does not involve blossom shrinking. The basic idea is to deflect the alternating 
path when a blossom, or odd cycle, is formed. This deflection algorithm adopts two stacks, one is 

a directional alternating path, and the other one is an ordered list of edges to maintain detour 

information. The two stacks interact with each other to grow or to prune in the exploring process, 
until an augmenting path is identified or it confirms that no augmenting paths exist. Unlike the 

Edmonds’ algorithm, which is a breadth-first search (BFS) algorithm that stores all possible 
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alternative alternating paths in the super-vertices shrunk from blossoms. The deflection algorithm 
maintains such detour information in the sprout stack to minimize the redundant data structures. 

This newly proposed maximum matching algorithm can achieve a complexity of 𝑂(𝑚𝑛) , 

because it avoids spending the time on shrinking and expanding blossoms.  

 

The organization of this paper is as follows. In Sect. 2, we present the definitions of 
terminologies used in this paper. In Sect. 3, we describe the issue of parity conflicts arising from 

blossoms and illustrate our deflection method with some examples. This section is mainly 

expository in nature, and it compares the method of deflection versus shirking when blossoms 

occur. In Sect. 4, we present a DFS algorithm to enumerate augmenting paths， and discuss the 

performance of this algorithm. Finally, we conclude this paper in Sect. 5.  
 

2. PRELIMINARIES 
 

Definition. An undirected graph 𝐺(𝑉, 𝐸) consists of a vertex set 𝑉 and an edge set 𝐸. An edge is 

an unordered pair of vertices {𝑣, 𝑢}and written as 𝑒 = 〈𝑣, 𝑢〉. The number of vertices𝑛 = |𝑉(𝐺)| 
is the order of 𝐺, and the number of edges 𝑚 = |𝐸(𝐺)| is the size of 𝐺. 

 

Without loss of generality, we assume that the general graph 𝐺 under consideration is a simple 

graph without loops, multiple edges, or isolated vertices. 
 

Definition. A set 𝑀 ⊆ 𝐸 is a matching if no two edges in 𝑀 have a vertex in common, or no 

vertex 𝑣 ∈ 𝑉 is incident with more than one edge in 𝑀. A matching of maximum cardinality is 

called a maximum matching. A perfect matching of a graph𝐺 is a matching which covers all 

vertices of 𝑉. Relative to a matching 𝑀 in 𝐺, a vertex 𝑣 is called a matched vertex, or covered 

vertex, if it is incident to an edge in 𝑀. Otherwise, the vertex 𝑣 is called a free vertex. The set of 

𝑀-matched vertices is denoted by ∂(𝑀), and the set of 𝑀-free vertices �̅�(𝑀). Similarly, edges in 

𝑀 are matched edges, while edges not in 𝑀are free edges. Every matched vertex 𝑣 has a mate, 

the other endpoint of the matched edge. 
 

Definition. Apath 𝑃 = {〈𝑣1, 𝑣2〉, 〈𝑣2, 𝑣3〉, ⋯ , 〈𝑣𝑙−1 , 𝑣𝑙〉} is a sequence of edges, which alternately 

join a sequence of distinct vertices. The path 𝑃 can also sometimes be written as  𝑃 =
𝑣1, 𝑣2, ⋯ , 𝑣𝑙−1, 𝑣𝑙. A cycle is a path with an edge joining the first and last vertices. Relative to a 

matching 𝑀 in 𝐺, an 𝑴-alternating path𝑃is a path in which edges alternate between those in 𝑀 

and those not in𝑀, and it is called an 𝑴-augmenting path if its endpoints 𝑣1 and 𝑣𝑙 are both 

free, in which case 𝑙 must be even. 

 

The following result shows that an 𝑀-augmenting path 𝑃 can enlarge the size of 𝑀 by one. 

 

Lemma 1.If𝑃 is an 𝑀-augmenting path relative to a matching 𝑀, then the symmetric difference 
defined by  

𝑀⨁𝑃 = (𝑀 − 𝑃)⋃(𝑃 − 𝑀) = (𝑀⋃𝑃) − (𝑀⋂𝑃) 
 

is also a matching, and |𝑀⨁𝑃| = |𝑀| + 1. 
 

An immediate consequence of this result is the following theorem due to Berge [11] that 

characterizes maximum matchings. 
 

Theorem 1. (Augmenting Path Theorem) A matching𝑀 is maximum if and only if there is no 𝑀-

augmenting path.  
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Theorem 1 implies that if a matching 𝑀 in a graph 𝐺 is not maximum, then there exists an 𝑀-
augmenting path. This is the basis of almost all algorithms for determining maximum matchings 

in general graphs. The basic idea is to enlarge an existing matching 𝑀 by any 𝑀-augmenting 

path. Repeat the searching process until no augmenting paths exist anymore.  

 

Suppose that 𝑀 is a matching in a graph 𝐺(𝑉, 𝐸), if we assign the red color to the edges in 𝑀 and 

the blue color to those edges not in 𝑀, then there is a one-to-one correspondence between the 

complex-colored graph and the matching 𝑀. Follow almost all algorithms for finding maximum 
matching starting with some existing matching, we will adopt the complex coloring method 

proposed in [12] and [13] to initialize our maximum matching algorithm.  

 

The complex coloring is a variable elimination method. In a graph 𝐺(𝑉, 𝐸), suppose that a 

fictitious vertex is inserted in the middle of an edge 〈𝑣𝑖, 𝑣𝑗〉 to divide the edge into two links. 

These two links connect the fictitious vertex to the two endpoints 𝑣𝑖 or𝑣𝑗, respectively. As an 

example, the graph displayed in Figure 1(a) with inserted fictitious vertices is shown in Figure 

1(b). Instead of coloring the edges, the complex coloring is assigning colors to links.  

 

 
1(a). Petersen Graph.         1(b). Petersen Graph with   1(c). A color configuration of 

fictitious vertices.           Petersen Graph. 

 
Figure 1. Complex coloring of Petersen Graph. 

 

Definition. Assigning the two colors {𝑟: = 𝑟𝑒𝑑, 𝑏: = 𝑏𝑙𝑢𝑒} to the two links of each edge, the 

coloring is consistent if one and only one of the links incident to each vertex is assigned red 

color 𝑟, and all other links are colored in blue color 𝑏. If the two links of an edge are colored with 

different colors 𝑟 and 𝑏, then the edge is called a (𝑟, 𝑏)variable, otherwise it is a constant, as 

Figure 1 shows. The notation 〈𝑣𝑖 , 𝑣𝑗〉 → (𝑐𝑜𝑙𝑜𝑟1, 𝑐𝑜𝑙𝑜𝑟2)is used to indicate the assigning of color 

pair (𝑐𝑜𝑙𝑜𝑟1, 𝑐𝑜𝑙𝑜𝑟2)to edge 〈𝑣𝑖 , 𝑣𝑗〉. The color configuration of a complex-colored graph 𝐺 is 

represented by the two-tuple 𝐶(𝑀) = {𝑀, �̅�(𝑀)}, where 𝑀  is the set of edges that are fully 

colored in red color 𝑟, and �̅�(𝑀) is the set of vertices that are not covered by 𝑀 and they are 

incident to the red link of a (𝑟, 𝑏) variable. Vertices in �̅�(𝑀) are also called 𝑴-exposed. 

 
Since only one red link is incident to each vertex, there is a natural one-to-one correspondence 

between a matching 𝑀 and the color configuration 𝐶(𝑀) = {𝑀, �̅�(𝑀)}, in which the set of red 

edges 𝑀  corresponds to a matching and �̅�(𝑀)  is the set of free vertices relative to 𝑀 . For 

example, the graph shown in Figure 1(c) is consistently colored by the set of colors {𝑟, 𝑏}. The 

initial color assignment is random; the consistency requirement can be easily satisfied if we only 

assign the red color 𝑟 to one of the links incident to each vertex.  
 

Definition. The binary color-exchange operation “⊗”that operates on two adjacent colored 

edges (𝑐𝑜𝑙𝑜𝑟1, 𝑐𝑜𝑙𝑜𝑟2),(𝑐𝑜𝑙𝑜𝑟3, 𝑐𝑜𝑙𝑜𝑟4) is defined by, 
(𝑐𝑜𝑙𝑜𝑟1, 𝑐𝑜𝑙𝑜𝑟2) ⊗ (𝑐𝑜𝑙𝑜𝑟3, 𝑐𝑜𝑙𝑜𝑟4) = (𝑐𝑜𝑙𝑜𝑟1, 𝑐𝑜𝑙𝑜𝑟3) ⊚ (𝑐𝑜𝑙𝑜𝑟2, 𝑐𝑜𝑙𝑜𝑟4) 
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where ⊚ indicates the adjacency of two colored edges. A color exchange is effective if the 
operation does not increase the number of variables. 

 

An example of the binary color-exchange operation “ ⊗ ” performed on two adjacent 

variables〈𝑢, 𝑣〉 → (𝑏, 𝑟) and 〈𝑣, 𝑤〉 → (𝑏, 𝑟) is illustrated in Figure 2. The two variables were 

eliminated as the result of this color-exchange operation (𝑏, 𝑟) ⊗ (𝑏, 𝑟) = (𝑏, 𝑏) ⊚ (𝑟, 𝑟).  

 

 
 

Figure 2. Variable elimination via color exchange operations. 

 

It is important to note that the above color-exchange operation preserves the consistency of a 

color configuration. Since we only allow effective color exchange operation (𝑐𝑜𝑙𝑜𝑟1, 𝑐𝑜𝑙𝑜𝑟2) ⊗
(𝑐𝑜𝑙𝑜𝑟3, 𝑐𝑜𝑙𝑜𝑟4) = (𝑐𝑜𝑙𝑜𝑟1, 𝑐𝑜𝑙𝑜𝑟3) ⊚ (𝑐𝑜𝑙𝑜𝑟2, 𝑐𝑜𝑙𝑜𝑟4), and the effectiveness is assured if either 
(𝑐𝑜𝑙𝑜𝑟1, 𝑐𝑜𝑙𝑜𝑟2) or (𝑐𝑜𝑙𝑜𝑟3, 𝑐𝑜𝑙𝑜𝑟4), or both are variables. Thus, the color exchange operation 

may either eliminate adjacent variables, or move a variable to an adjacent edge. Non-adjacent 
variables in a consistently colored graph must move next to each other before they can be 

eliminated.  

 

Since a variable (𝑟, 𝑏) is always moving within an alternating path, the symmetric difference 

operation 𝑀⨁𝑃defined in Lemma 1 is equivalent to the elimination of two variables at the two 

ends of an augmenting path 𝑃. As Figure 3 shows, a (𝑟, 𝑏)variable 〈𝑣0, 𝑣1〉walks on a complex-

colored augmenting path 〈𝑣0, 𝑣1〉, 〈𝑣1, 𝑣2〉, 〈𝑣2, 𝑣3〉 by a sequence of color exchanges to cancel 

another (𝑟, 𝑏)variable〈𝑣3, 𝑣4〉. Note that the two end vertices𝑣0  and 𝑣3  are both free vertices. 

Thus, according to Theorem 1, finding a maximum matching in a complex-colored graph 𝐺 is 

equivalent to repeatedly eliminating variables until remaining variables are all irreducible.     
 

 
 

Figure 3. Cancellation of variables by walking on a complex-colored augmenting path. 
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3. BLOSSOMS: SHRINKING VERSUS DEFLECTION 
 

The algorithm for maximum matching is a process of searching for successive 𝑀-augmenting 

paths starting from an initial matching  𝑀. In the exploration process of an 𝑀-augmenting path, 

the 𝑀-alternating path is a directional path, which starts from a free vertex and continuously 

grows in one direction. In the matching 𝑀 depicted in Figure 4(a), there are two 𝑀-alternating 

paths starting from the free vertex 𝑣0 that can reach 𝑣𝑑, namely 

 

𝑃1 = 𝑣0, 𝑣1, 𝑣𝑎 , 𝑣𝑒 , 𝑣𝑑 , 𝑣𝑥, 

and  

𝑃2 = 𝑣0, 𝑣1, 𝑣𝑎 , 𝑣𝑏 , 𝑣𝑐 , 𝑣𝑑 , 𝑣𝑒. 

 

If we take the 𝑀-alternating path 𝑃1, then we can reach the other free vertex 𝑣𝑥  and obtain an 𝑀-

augmenting path, in which the two end variables 〈𝑣0, 𝑣1〉 → (𝑟, 𝑏) and 〈𝑣𝑑 , 𝑣𝑥〉 → (𝑏, 𝑟) can be 

eliminated by a sequence of color exchanges. However, if we take the 𝑀-alternating path 𝑃2, then 

we miss this 𝑀-augmenting path. This divergent path problem arises when the vertex 𝑣𝑑 belongs 

to an odd cycle, called blossom by Edmonds.  
 

 
 

Figure 4(a). The original graph 𝐺. 

 

 
 

Figure 4(b). The contracted graph 𝐺′. 
Figure 4. Illustration of Blossom Shrinking. 

 
Edmonds’ algorithm solves this difficult problem by shrinking blossoms, or odd cycles, down to 

single super-vertices, thus to reveal augmenting paths, as Figure 4(b) shows. When we find an 

augmenting path from a free vertex 𝑣0to another free vertex 𝑣𝑥  in the contracted graph 𝐺′, then 

we immediately obtain an augment path in the original graph 𝐺  by unshrinking the super-

vertices.  

 

Definition. Given a matching 𝑀and an 𝑀-alternating path 𝑃 starting from a free vertex 𝑣0, the 

parity bit of a vertex 𝑣 on 𝑃, denoted by 𝜋(𝑣),is determined by the distance (number of edges) 

between this vertex 𝑣 and the initial free vertex 𝑣0along 𝑃. If the distance is even then 𝜋(𝑣) = 0; 

otherwise, 𝜋(𝑣) = 1. 



120         Computer Science & Information Technology (CS & IT) 

 

We adopt the convention that the link incident to the initial free vertex 𝑣0 in an 𝑀-alternating 

path 𝑃is always colored red, if not we can always change it to red by color-exchanging with its 

neighbouring red link. With this convention, the parity bit of each vertex on the path 𝑃can be 

defined by the following equivalent localized definition: 
 

𝜋(𝑣) = {
0,     𝑖𝑓𝑖𝑛𝑝𝑢𝑡𝑙𝑖𝑛𝑘𝑡𝑜𝑣𝑖𝑠𝑟𝑒𝑑𝑎𝑛𝑑𝑜𝑢𝑡𝑝𝑢𝑡𝑖𝑠𝑏𝑙𝑢𝑒(𝑣𝑖𝑠𝑖𝑛𝑒𝑣𝑒𝑛𝑠𝑡𝑎𝑡𝑒),

  1,     𝑖𝑓𝑖𝑛𝑝𝑢𝑡𝑙𝑖𝑛𝑘𝑡𝑜𝑣𝑖𝑠𝑏𝑙𝑢𝑒𝑎𝑛𝑑𝑜𝑢𝑡𝑝𝑢𝑡𝑖𝑠𝑟𝑒𝑑(𝑣𝑖𝑠𝑖𝑛𝑜𝑑𝑑𝑠𝑡𝑎𝑡𝑒).   
 

 

Consider the two 𝑀-alternating paths, 
 

𝑃1 = 𝑣0, 𝑣1, 𝑣𝑎 , 𝑣𝑒 , 𝑣𝑑 , 𝑣𝑐 , 𝑣𝑏 and 𝑃2 = 𝑣0, 𝑣1, 𝑣𝑎 , 𝑣𝑏 , 𝑣𝑐 , 𝑣𝑑 , 𝑣𝑒 

in the graph 𝐺 shown in Figure 4(a). We write the two paths 𝑃1 and 𝑃2 with their sequences of 

parities as follows: 
 

𝑃1: 𝑣0𝜋(𝑣0)𝑣1𝜋(𝑣1)𝑣𝑎𝜋(𝑣𝑎)𝑣𝑒𝜋(𝑣𝑒)𝑣𝑑𝜋(𝑣𝑑)𝑣𝑐𝜋(𝑣𝑐)𝑣𝑏𝜋(𝑣𝑏) = 𝑣00𝑣11𝑣𝑎0𝑣𝑒1𝑣𝑑0𝑣𝑐1𝑣𝑏0, 
𝑃2: 𝑣0𝜋(𝑣0)𝑣1𝜋(𝑣1)𝑣𝑎𝜋(𝑣𝑎)𝑣𝑏𝜋(𝑣𝑏)𝑣𝑐𝜋(𝑣𝑐)𝑣𝑑𝜋(𝑣𝑑)𝑣𝑒𝜋(𝑣𝑒) = 𝑣00𝑣11𝑣𝑎0𝑣𝑏1𝑣𝑐0𝑣𝑑1𝑣𝑒0. 

 

Comparing the above two sequences, we can sum up the following properties of blossoms. 

 

Property 1.The 𝑀-alternating path 𝑃 always enters the blossom at a vertex 𝑣𝑎with even parity bit 

𝜋(𝑣𝑎) = 0,called base, because path divergence occurs only when the input to 𝑣𝑎  is red and 

multiple outputs are blue. On the other hand, if the input is blue, then there is only one red output, 

which is the case of entering the base of an even cycle.   
 

Property 2. The parity bit 𝜋(𝑣)of a vertex𝑣in the blossom, other than the base, can be either 0 

(even) or 1 (odd), depending on the direction of the path𝑃.  

 

Property 3. If the 𝑀-alternating path 𝑃 return to the base 𝑣𝑎 and form a blossom, then the last 

vertex 𝑣 always possesses an even parity 𝜋(𝑣) = 0, which conflicts with the parity 𝜋(𝑣𝑎) = 0 of 

the base vertex 𝑣𝑎.For example, the last vertex 𝑣𝑏 in 𝑃1, and𝑣𝑒 in 𝑃2.   

 

In the exploration of 𝑀-alternating paths, the difficulty arising from blossoms is mainly due the 

parity conflicts characterized in Property 2 and 3. The aim of shrinking the blossom to a single 

super-vertex is two-fold: eliminating the parity conflicts, and reserving all 𝑀-alternating paths 
passing through the blossom. 

 

In contrast to shrinking, the algorithm proposed in this paper deflects the 𝑀-alternating path and 

makes a detour around blossoms. This dynamic exploration mechanism is a two tuple𝑇 = {𝑃, 𝑆}, 

calledtrunk, which consists of an 𝑀-alternating path𝑃starting from a free vertex, and a stack of 

sprout𝑆 that maintains all possible detours of𝑃. The 𝑀-alternating path 𝑃is a stack of ordered 

sequence of vertices, and the sprout 𝑆 is a stack of ordered sequence of edges, in which each edge 

is a sprout that represents the starting point of a reserved detour for the alternating path 𝑃. 
 

Definition. A vertex 𝑣 in the 𝑀-alternating path 𝑃 with even parity 𝜋(𝑣) = 0 is called a sprout 

root and is abbreviated as s-root. The set of free edges incident with an s-root𝑣 is defined as 
 

𝑆𝑝𝑟𝑜𝑢𝑡(𝑣) = {〈𝑣, 𝑢〉 | 𝑣 ∈ 𝑃, 𝜋(𝑣) = 0, 〈𝑣, 𝑢〉 ∈ �̅�}, 
and the set of vertices mated with an s-root 𝑣 by free edges is defined as 

𝑀𝑎𝑡𝑒(𝑣) = {𝑢 | 𝑣 ∈ 𝑃, 𝜋(𝑣) = 0, 〈𝑣, 𝑢〉 ∈ �̅�}. 
 



Computer Science & Information Technology (CS & IT)                                        121 

The 𝑀-alternating path 𝑃 is directional; at an odd parity matched vertex 𝑣 with𝜋(𝑣) = 1, there is 

a unique path to continue 𝑃 from a blue input link to the only red output link. However, at an 

even matched parity vertex 𝑣  with𝜋(𝑣) = 0 , the vertex𝑣  is an 𝑠-root, and the path𝑃  can be 

continued from a red input link to any one of the multiple blue output links. In our DFS 

algorithm, the path 𝑃 will arbitrarily select one of the edges in 𝑆𝑝𝑟𝑜𝑢𝑡(𝑣), and keep the others in 

reserve in the sprout stack 𝑆, in case that the path 𝑃 needs detours in the future.  

 

The searching process of this dynamic trunk𝑇 = {𝑃, 𝑆}starts from an initial free vertex 𝑣0 and 

one of its mates𝑢 ∈ 𝑀𝑎𝑡𝑒(𝑣0), meaning that initially we have 𝑃 = {𝑣0, 𝑢}with sprout set𝑆 =
𝑆𝑝𝑟𝑜𝑢𝑡(𝑣0)\{〈𝑣0, 𝑢〉}. As the path 𝑃 extends, the process keeps adding pairs of vertices to the 

alternating path𝑃, and appending sprouts to the stack 𝑆 along the extension of path 𝑃. If the path 

𝑃 hits another free vertex, then an 𝑀-augmenting path is identified and the searching process 
stops. Otherwise, the exploration process will continue until the path hits a dead end or an active 

vertex in 𝑃. The latter case indicates that the path 𝑃 forms a cycle. In either case, the path 𝑃 will 

make a detour. The algorithm concedes defeat if the stack of sprout 𝑆 is empty, otherwise it will 

retrieve the last sprout in 𝑆, namely an edge 𝑒 = 〈𝑣𝑠 , 𝑣𝑡〉, and replace the entire sub-path in 𝑃 

starting from𝑣𝑠  with the sequence 𝑣𝑠 , 𝑣𝑡 . The algorithm continues the searching process after 

making the detour. Table 1 lists each step of the searching process starting from the free vertex 

𝑣0 in the graph 𝐺 shown in Figure 4(a). 
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Table 1.The process of searching for an augmenting path through an odd cycle   

 

Steps Alternating Path 𝑷 Sprout Stack 𝑺 Remarks 

1  

(initialization

) 
𝑣00𝑣11 ∅ 

𝑣0 is the initial free vertex, add 

𝑣0, 𝑣1 to 𝑃. 

2 𝑣00𝑣11𝑣𝑎0𝑣𝑏1 〈𝑣𝑎 , 𝑣𝑒〉 Add 𝑣𝑎 , 𝑣𝑏 to 𝑃 and 〈𝑣𝑎 , 𝑣𝑒〉 to 𝑆. 

3 𝑣00𝑣11𝑣𝑎0𝑣𝑏1𝑣𝑐0𝑣𝑑1 〈𝑣𝑎 , 𝑣𝑒〉, 〈𝑣𝑐 , 𝑣𝑦〉 Add 𝑣𝑐 , 𝑣𝑑 to 𝑃 and 〈𝑣𝑐, 𝑣𝑦〉to 𝑆.  

4 𝑣00𝑣11𝑣𝑎0𝑣𝑏1𝑣𝑐0𝑣𝑑1𝑣𝑒0𝑣𝑎1 〈𝑣𝑎 , 𝑣𝑒〉, 〈𝑣𝑐 , 𝑣𝑦〉 
Add 𝑣𝑒 , 𝑣𝑎  to 𝑃 , the vertex 𝑣𝑎 

appeared twice in 𝑃with conflict 

parity, detect an odd cycle. 

5  (detour) 𝑣00𝑣11𝑣𝑎0𝑣𝑏1𝑣𝑐0𝑣𝑦1 〈𝑣𝑎 , 𝑣𝑒〉 

Make a detour around cycle. 

Retrieve sprout 〈𝑣𝑐, 𝑣𝑦〉  from 𝑆 , 

and replace the sequence 

𝑣𝑐 , 𝑣𝑑 , 𝑣𝑒 , 𝑣𝑎in 𝑃 with 𝑣𝑐, 𝑣𝑦. 

6  (dead end) 𝑣00𝑣11𝑣𝑎0𝑣𝑏1𝑣𝑐0𝑣𝑦1 〈𝑣𝑎 , 𝑣𝑒〉 The path hits a dead end at 𝑣𝑧 . 

7  (detour) 𝑣00𝑣11𝑣𝑎0𝑣𝑒1 ∅ 

Make a detour around the dead 

end 𝑣𝑧 . Retrieve sprout 〈𝑣𝑎 , 𝑣𝑒〉 
from𝑆, and replace the sequence 

𝑣𝑎 , 𝑣𝑏 , 𝑣𝑐 , 𝑣𝑦  in 𝑃  with 𝑣𝑎 , 𝑣𝑒 . 

Starting from here, the path is in 
the clockwise direction of the odd 

cycle 𝑣𝑎 , 𝑣𝑏 , 𝑣𝑐 , 𝑣𝑑 , 𝑣𝑒. 

8  

(termination) 
𝑣00𝑣11𝑣𝑎0𝑣𝑒1𝑣𝑑0𝑣𝑥1 〈𝑣𝑑 , 𝑣𝑐〉 

If 〈𝑣𝑑 , 𝑣𝑥〉 is selected, add 𝑣𝑑 , 𝑣𝑥 

to 𝑃, the process may move to 𝑣𝑐 

or to 𝑣x , in the latter case, the 

augmenting path 

𝑣0, 𝑣1, 𝑣𝑎 , 𝑣𝑒 , 𝑣𝑑 , 𝑣𝑥  is identified 

and the process is stopped. If 
〈𝑣𝑑 , 𝑣𝑐〉 is selected then the next 

step is 8A.  

8A 𝑣00𝑣11𝑣𝑎0𝑣𝑒1𝑣𝑑0𝑣𝑐1 〈𝑣𝑑 , 𝑣𝑥〉 
If the process selects 〈𝑣𝑑 , 𝑣𝑐〉 
instead of 〈𝑣𝑑, 𝑣𝑥〉 in step 8, then 

add𝑣𝑑 , 𝑣𝑐to 𝑃, and 〈𝑣𝑑 , 𝑣𝑥〉 to 𝑆. 

9A 
𝑣00𝑣11𝑣𝑎0𝑣𝑒1𝑣𝑑0𝑣𝑐1

𝑣𝑏0𝑣𝑎1 
〈𝑣𝑑 , 𝑣𝑥〉 

Add 𝑣𝑏 , 𝑣𝑎  to 𝑃 , the vertex 𝑣𝑎 

appeared twice in 𝑃with conflict 

parity, detect an odd cycle. 

10A (detour 

and 

termination) 

𝑣00𝑣11𝑣𝑎0𝑣𝑒1𝑣𝑑0𝑣𝑥1 ∅ 

Make a detour around cycle. 

Retrieve sprout 〈𝑣𝑑, 𝑣𝑥〉 from 𝑆 , 
and replace the sequence 

𝑣𝑑 , 𝑣𝑐 , 𝑣𝑏 , 𝑣𝑎in 𝑃 with 𝑣𝑑 , 𝑣𝑥 . The 

augmenting path 

𝑣0, 𝑣1, 𝑣𝑎 , 𝑣𝑒 , 𝑣𝑑 , 𝑣𝑥 is identified 

and the process is stopped. 

 
The parity conflicts will not occur when the alternating path forms an even cycle. As Figure 5 

shows, there is only one 𝑀-alternating path transits the even cycle because the parity of the base 

vertex 𝑣𝑎  of the even cycle is odd with 𝜋(𝑣𝑎) = 1 . Unlike odd cycles, an even cycle is a 

legitimate two-colored 𝑀-alternating cycle, which is naturally compatible with the 𝑀-alternating 
path P. The odd cycle and even cycle displayed in Figure 4 and Figure 5, respectively, clearly 

demonstrate this key point. Table 2 provides the searching process starting from the free 
vertex𝑣0 in the graph shown in Figure 5.   
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Figure 5. The graph 𝐺with an even cycle. 

 
Table 2.The process of searching for an augmenting path through an even cycle  

 

Steps Alternating Path 𝑷 
Sprout 

Stack S 
Remarks 

1 

(initialization) 
𝑣00𝑣11 ∅ 

𝑣0is the initial free vertex, add 

𝑣0, 𝑣1 to 𝑃. 

2 𝑣00𝑣11𝑣20𝑣𝑎1 ∅ Add 𝑣2, 𝑣𝑎 to 𝑃. 

3 𝑣00𝑣11𝑣20𝑣𝑎1𝑣𝑏0𝑣𝑐1 〈𝑣𝑏 , 𝑣𝑦〉 
If the edge 〈𝑣𝑏 , 𝑣𝑐〉 is selected, add 

𝑣𝑏 , 𝑣𝑐  to 𝑃  and 〈𝑣𝑏 , 𝑣𝑦〉 to 𝑆 . 

Otherwise, the next step is 3A.  

4 𝑣00𝑣11𝑣20𝑣𝑎1𝑣𝑏0𝑣𝑐1𝑣𝑑0𝑣𝑎1 〈𝑣𝑏 , 𝑣𝑦〉, 〈𝑣𝑑 , 𝑣𝑥〉 
Add 𝑣𝑑 , 𝑣𝑎  to 𝑃 , the vertex 𝑣𝑎 

appeared twice in 𝑃 with same 

parity, detect an even cycle. 

5 (detour and 

termination) 
𝑣00𝑣11𝑣20𝑣𝑎1𝑣𝑏0𝑣𝑐1𝑣𝑑0𝑣𝑥1 〈𝑣𝑏 , 𝑣𝑦〉 

Make a detour around the cycle. 

Retrieve sprout〈𝑣𝑑, 𝑣𝑥〉 from𝑆, and 

replace the sequence 𝑣𝑑 , 𝑣𝑎in 𝑃 

with 𝑣𝑑 , 𝑣𝑥. Theaugmentingpath 

𝑣0, 𝑣1, 𝑣2, 𝑣𝑎 , 𝑣𝑏 , 𝑣𝑐 , 𝑣𝑑 , 𝑣𝑥 is 

identified and the process is 

stopped. 

3A  (dead end) 𝑣00𝑣11𝑣20𝑣𝑎1𝑣𝑏0𝑣𝑦1 〈𝑣𝑏 , 𝑣𝑐〉 

If the edge 〈𝑣𝑏 , 𝑣𝑦〉 is selected, add 

𝑣𝑏 , 𝑣𝑦  to 𝑃  and 〈𝑣𝑏 , 𝑣𝑐〉to 𝑆 . Then 

the path 𝑃 hits a dead end at 𝑣𝑧 . 

4A  (detour) 𝑣00𝑣11𝑣20𝑣𝑎1𝑣𝑏0𝑣𝑐1 ∅ 

Make a detour around the dead end 

𝑣𝑧 . Retrieve sprout〈𝑣𝑏 , 𝑣𝑐〉 from𝑆 , 

and replace the sequence 𝑣𝑏 , 𝑣𝑦  in 

𝑃 with 𝑣𝑏 , 𝑣𝑐.  

5A 

(termination) 
𝑣00𝑣11𝑣20𝑣𝑎1𝑣𝑏0𝑣𝑐1𝑣𝑑0𝑣𝑥1 〈𝑣𝑑 , 𝑣𝑎〉 

Add 𝑣𝑑 , 𝑣𝑥 to 𝑃and 〈𝑣𝑑, 𝑣𝑎〉to 𝑆. 

The augmenting path 

𝑣0, 𝑣1, 𝑣2, 𝑣𝑎 , 𝑣𝑏 , 𝑣𝑐 , 𝑣𝑑 , 𝑣𝑥 is 

identified and the process is 

stopped. 
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Figure 6. The graph G with two nested odd-cycles. 

 

The searching process adaptively changes the directional alternating path according to the 

topology of the graph. The graph 𝐺 displayed in Figure 6 has two nested odd cycles. Starting at 

free vertex 𝑣0, the alternating path 𝑃 encountered odd cyclesfour times before it finds another 

free vertex 𝑣ℎ . The following sequence of the searching process reveals the resilience of the 

dynamic trunk𝑇 = {𝑃, 𝑆}. 

 

1. 𝑃 = 𝑣00𝑣11𝑣𝑎0𝑣𝑏1𝑣𝑐0𝑣𝑓1𝑣𝑔0𝑣𝑐1 

𝑆 = {〈𝑣𝑎 , 𝑣𝑒〉, 〈𝑣𝑐 , 𝑣𝑔〉} 

2. 𝑃 = 𝑣00𝑣11𝑣𝑎0𝑣𝑏1𝑣𝑐0𝑣𝑔1 

𝑆 = {〈𝑣𝑎 , 𝑣𝑒〉} 

3. 𝑃 = 𝑣00𝑣11𝑣𝑎0𝑣𝑏1𝑣𝑐0𝑣𝑔1𝑣𝑓0𝑣𝑑1𝑣𝑒0𝑣𝑎1 

𝑆 = {〈𝑣𝑎 , 𝑣𝑒〉, 〈𝑣𝑓 , 𝑣𝑐〉} 

4. 𝑃 = 𝑣00𝑣11𝑣𝑎0𝑣𝑏1𝑣𝑐0𝑣𝑔1𝑣𝑓0𝑣𝑐1 

𝑆 = {〈𝑣𝑎 , 𝑣𝑒〉} 

5. 𝑃 = 𝑣00𝑣11𝑣𝑎0𝑣𝑒1 

𝑆 = ∅ 

6. 𝑃 = 𝑣00𝑣11𝑣𝑎0𝑣𝑒1𝑣𝑑0𝑣𝑓1𝑣𝑔0𝑣𝑐1𝑣𝑏0𝑣𝑎1 

𝑆 = {〈𝑣𝑏 , 𝑣ℎ〉} 

7. 𝑃 = 𝑣00𝑣11𝑣𝑎0𝑣𝑒1𝑣𝑑0𝑣𝑓1𝑣𝑔0𝑣𝑐1𝑣𝑏0𝑣ℎ1 

 𝑆 = ∅ 
/* augmenting path identified successfully. */ 

 

4. THE DFS ALGORITHM 
 

In this Section, we summarize the DFS algorithm and describe the details of the searching 

process. The algorithm consists of two phases: a growing phase and a pruning phase. The 

alternating path 𝑃 and the sprout stack 𝑆 will be updated in both phases. 
 

Input: A general graph 𝐺(𝑉, 𝐸), a color configuration 𝐶(𝑀) = {𝑀, �̅�(𝑀)}of graph 𝐺(𝑉, 𝐸) with 

a current matching 𝑀, and a free vertex 𝑣0 ∈ �̅�(𝑀). 
 

Idea: Explore a trunk 𝑇 = {𝑃, 𝑆} from the𝑀-exposed vertex 𝑣0, stretching the alternating path 𝑃 

and the sprout stack 𝑆 as far as possible. In each step, an ordered pair of vertices (𝑣𝑎 , 𝑣𝑏)will be 
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added to the alternating path 𝑃; the first vertex 𝑣𝑎 is an 𝑠-root with even parity in 𝑃. The edge 

𝑒 = 〈𝑣𝑎 , 𝑣𝑏〉  is a sprout selected from the set 𝑆𝑝𝑟𝑜𝑢𝑡(𝑣𝑎) ; the rest edges in 𝑆𝑝𝑟𝑜𝑢𝑡(𝑣𝑎)\
{〈𝑣𝑎 , 𝑣𝑏〉} will then be added to 𝑆. If a dead end was detected or a cycle was formed, the trunk 𝑇 

will make a detour according to the last sprout in stack 𝑆 . Declare a failure if 𝑆  is empty, 

otherwise continue the process to reach another free vertex that yields an augmentation.    
 

Initialization: 𝑃 = {𝑣0, 𝑣1}, 𝑆 = 𝑆𝑝𝑟𝑜𝑢𝑡(𝑣0)\{〈𝑣0, 𝑣1〉}. 
 

Iteration: (Growing Phase) If the next pair of vertices 𝑣a, 𝑣b extended from the current 

alternating path 𝑃 are not in 𝑃, then perform the following updating operation: 

 

𝑃 = 𝑃 ∪ {𝑣𝑎 , 𝑣𝑏}, 

𝑆 = 𝑆 ∪ 𝑆𝑝𝑟𝑜𝑢𝑡(𝑣𝑎)\{〈𝑣𝑎 , 𝑣𝑏〉}. 

 

(Pruning Phase) When a dead end or a cycle was found, stop if 𝑆 = ∅ and there is no 𝑀-

augmenting path from 𝑣0, otherwise, retrieve the last sprout 〈𝑣𝑎 , 𝑣𝑏〉 from 𝑆, eliminate all vertices 

after 𝑣𝑎 in the path 𝑃 = 𝑣0, ⋯ , 𝑣𝑎 , ⋯ , 𝑣𝑥and replace them with 𝑣𝑎 , 𝑣𝑏. Update trunk 𝑇 as follows 

and continue the searching process:  

𝑃 = 𝑣0, ⋯ , 𝑣𝑎 , 𝑣𝑏, 

𝑆 = 𝑆\{〈𝑣a, 𝑣b〉}. 

 

In the pruning phase, we implicitly claim that if the edge 〈𝑣𝑎 , 𝑣𝑏〉 ∈ 𝑆then the vertex 𝑣𝑎 ∈ 𝑃. This 

claim is always valid because the vertex 𝑣𝑎and the edge 〈𝑣𝑎 , 𝑣𝑏〉 ∈ 𝑆𝑝𝑟𝑜𝑢𝑡(𝑣𝑎) were added to 𝑃 

and 𝑆, respectively and simultaneously, in the growing phase. 

 

The algorithm terminates when no augmenting paths exist. The searching process halts when 

either an augmenting path was identified, or every alternating path starting from a free vertex was 
inspected and returned with an empty sprout stack. We show in the following lemma that all 

possible alternating paths starting from a free vertex 𝑣0 will be visited if the exploration process 

ends with an empty sprout stack. 
 

Lemma 2. If an alternating path 𝑃 starting from a free vertex 𝑣0 ends the searching process with 

an empty sprout stack 𝑆 = ∅, then 𝑃has visited every alternating path starting from 𝑣0. 

Proof. Suppose 𝑄 = 𝑣0, ⋯ , 𝑣𝑥 , 𝑣𝑎 , 𝑣𝑏  is the shortest alternating path that 𝑃  has never visited, 

where 𝜋(𝑣𝑎) = 0 and 𝜋(𝑣𝑏) = 1. Then neither 𝑃has visited the alternating path 𝑄′ = 𝑣0, ⋯ , 𝑣𝑥, 

because 〈𝑣𝑥 , 𝑣𝑎〉 ∈ 𝑆𝑝𝑟𝑜𝑢𝑡(𝑣𝑥)but it was eventually disappeared in the final sprout set 𝑆 =
∅.That is, if 𝑃 has visited𝑄′ = 𝑣0, ⋯ , 𝑣𝑥then it certainly has visited 𝑄 = 𝑣0, ⋯ , 𝑣𝑥 , 𝑣𝑎 , 𝑣𝑏through 

the sprout 〈𝑣𝑥 , 𝑣𝑎〉, which is impossible according to our assumption. On the other hand, if 𝑃 has 

never visited𝑄′ = 𝑣0, ⋯ , 𝑣𝑥, then this contradicts our assumption that 𝑄 = 𝑣0, ⋯ , 𝑣𝑥 , 𝑣𝑎 , 𝑣𝑏is the 

shortest alternating path that 𝑃 has never visited.∎ 

 

In the DFS algorithm, we assume that if a free vertex 𝑣0failed to find another free vertex through 

an alternating path, then 𝑣0will never access any other free vertices, even if other augmenting 

paths modified the graph configuration. By definition, any alternating path in a maximum 

matching 𝑀 should contain at most one 𝑀-exposed vertex. This point can be further elaborated 

by the Gallai-Edmonds decomposition of a graph 𝐺, in which every 𝑀-exposed vertex 𝑣0 of a 

maximum matching𝑀is locked up in an odd component of 𝐺. This isolation property ensures that 

repeating an exploring process starting from the same free vertex 𝑣0is not necessary.  
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The Sylvester’s graph is a good example to illustrate the isolation property of free vertices in a 

maximum matching 𝑀. As Figure 7 shows, the three odd components 𝐺1,𝐺2, 𝐺3 of graph 𝐺are 

connected by a vertex 𝑣𝑎, we observe the following properties: 

 

1. Deleting 𝑣𝑎,𝑀 covers all but one vertex of each odd component 𝐺𝑖 , 𝑖 = 1,2,3. 

2. 𝑀covers the vertex 𝑣𝑎. 

3. If 𝑀 matches one of the free vertices in 𝐺𝑖 , 𝑖 = 1,2,3, with 𝑣𝑎, then the other two free vertices 

in 𝐺𝑗 , 𝑗 ≠ 𝑖, will be isolated, and they cannot be connected by an alternating path. 

 

 
 

Figure 7. A Maximum Matching of The Sylvester’s Graph. 

 

Definition. In a graph 𝐺(𝑉, 𝐸), for 𝑆 ⊆ 𝑉(𝐺), let 𝑁𝐺(𝑆) denote the set of vertices in 𝐺 − 𝑆which 

have at least one neighbour in 𝑆, and let 𝐺[𝑆] denote the subgraph of 𝐺 induced by 𝑆. The graph 

𝐺 is factor-critical if 𝐺 − 𝑣 has a perfect matching for every vertex 𝑣 ∈ 𝑉(𝐺). A matching in 𝐺 

is near-perfect if it matches all but one vertex of 𝐺. 
 
A factor-critical graph is connected, and has an odd number of vertices. Simple examples include 

odd-length cycle 𝐶𝑛  and the complete graph 𝐾𝑛 of odd order 𝑛.  

 

Definition. In a graph 𝐺(𝑉, 𝐸), let 𝐵 be the set of vertices covered by every maximum matching 

in 𝐺, and let 𝐷 = 𝑉(𝐺) − 𝐵. The set 𝐵is further partitioned into 𝐵 = 𝐴 ∪ 𝐶, where 𝐴is the set of 

vertices that are adjacent to at least one vertex in 𝐷, and 𝐶 = 𝐵 − 𝐴.  The Gallai-Edmonds 

decomposition of 𝐺 is the partition of 𝑉(𝐺) into three mutually disjoint subsets 𝑉 = 𝐴 ∪ 𝐶 ∪ 𝐷.  
 

Theorem 2 (Gallai-Edmonds Structure Theorem[14]) Let 𝐴, 𝐶, 𝐷  be the sets in the Gallai-

Edmonds Decomposition of a graph 𝐺(𝑉, 𝐸). Let 𝑇1, ⋯ , 𝑇𝑙 be the components of 𝐺[𝐶], and 𝐺1, 

⋯ , 𝐺𝑘  be the components of 𝐺[𝐷] . If 𝑀  is a maximum matching in 𝐺, then the following 
properties hold:  

1. Each 𝑇𝑖 , 𝑖 = 1,2, . . . , 𝑙, is an even component, and𝑀 restricts to a perfect matching on 𝑇𝑖 . 
2. Each 𝐺𝑖 , 𝑖 = 1,2, . . . , 𝑘, is an odd component, which is factor-critical, and𝑀 restricts to a near-

perfect matching on 𝐺𝑖 . 
3. 𝑀 completely matches 𝐴 into distinct components 𝐺1, ⋯ , 𝐺𝑘 of 𝐺[𝐷].  ∎ 

A detailed proof of this theorem is given by Lovász and Plummer in[1, 2], and a short proof is 

provided by West in [15]. The property 3 in the above theorem can be explained by Hall’s 

Theorem. Contracting each component 𝐺𝑖of𝐺[𝐷] to a single vertex𝑣𝑔,𝑖, we define an auxiliary 

bipartite graph 𝐻(𝐴 ∪ 𝑌, 𝐸𝐻) as follows:  

 

𝑌 = {𝑣𝑔,1, 𝑣𝑔,2 ⋯ , 𝑣𝑔,𝑘}, and 𝐴 = {𝑣𝑎,1, 𝑣𝑎,2  ⋯ , 𝑣𝑎,ℎ}, 
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𝐸𝐻 = {(𝑣𝑎,𝑗 , 𝑣𝑔,𝑖)| 𝑣𝑎,𝑗 ∈ 𝐴ℎ𝑎𝑣𝑖𝑛𝑔𝑎𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝐺𝑖}. 

 

In the Gallai-Edmonds decomposition and a maximum matching𝑀  of a general graph 𝐺,  as 

Figure 8 illustrates, the isolated 𝑀 -exposed vertex in 𝐺1 cannot access to that in 𝐺4  by any 

alternating paths. It can be shown that Hall’s condition |𝑆| ≤ |𝑁𝐻(𝑆)|  holds for any 𝑆 ⊆
𝐴 [16], thus the 𝑀 restricts to a matching on bipartite graph 𝐻that covers 𝐴. 

 

 
 

(a) The decomposition 𝑉 = 𝐴 ∪ 𝐶 ∪ 𝐷. 

 

 
 

(b) Auxiliary bipartite graph𝐻. 

Figure 8. The Gallai-Edmonds decomposition of a general graph 𝐺. 

 

Since each odd component𝐺𝑖 is factor-critical, and any vertex of𝐺𝑖can be the one unmatched by a 

maximum matching𝑀. Thus, the only unmatched vertex in each odd component𝐺𝑖can either be 

matched with a vertex𝑣𝑎 ∈ 𝐴, or be isolated in the odd component𝐺𝑖. Therefore, any free vertex 

can only be the source of an augmenting path at most once in the DFS algorithm. Since the initial 

number of free vertices is upper bounded by the order of 𝑂(𝑛), and the length of each alternating 

path 𝑃is proportional to the number of edges 𝑚 = |𝐸|, the complexity of the DFS algorithm is 
given in Theorem 3. 

 

Theorem 3. The DFS algorithm can determine a maximum matching of a general graph in 

𝑂(𝑚𝑛)time with space complexity 𝑂(𝑛). 

 

Experiments were conducted to verify the performance of our maximum matching algorithm. A 

set of Δ-regular graphs with 𝑛 vertices and  𝑚 =
Δ𝑛

2
 edges was randomly generated. Figure 9 

shows the experimental results of average running time, in which 25 graphs were randomly 

generated for every pair of (Δ, 𝑛), 𝑛 = 100, 200, . . . , 2500 and Δ = 3, 4, 5. These experimental 

results confirm the performance of our maximum matching algorithm given in Theorem 3. As 
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shown in Figure 9, for each set of graphs under consideration, the running time of our algorithm 

is on the order of 𝑂(𝑛2)for a given degree Δ. 

 

 
 

Figure 9. The running time of the maximum matching algorithm. 

 

5. CONCLUSION 
 
The fundamental problem of finding maximum matching in general graphs is the existence of 

odd cycles, or blossoms. Instead of shrinking blossoms, this paper proposed a deflection 

algorithm to cope with the parity conflicts caused by odd cycles. This new algorithm achieves 

𝑂(𝑚𝑛)  time complexity with 𝑂(𝑛) data structure. This newly proposed algorithm is 

complementary to Edmonds’ blossom algorithm in two important aspects: depth-first search 

(DFS) versus breadth-first search (BFS), and deflection from blossoms versus shrinking of 

blossoms. In the future, we will explore the application of this method to maximum matching of 
weighted graphs. 

 

ACKNOWLEDGEMENTS 
 

The authors would like to thank Professor Shahbaz Khan of Department of Computer Science 

and Engineering, Indian Institute of Technology, Roorkee, India, for many useful criticism and 
suggestions. 

 

REFERENCES 
 
[1] Lovász, László& Plummer, Michael D. (1986)Matching Theory, Vol. 29, Annals of Discrete 

Mathematics,North-Holland, Amsterdam. 

[2] Lovász, László& Plummer, Michael D.(2009) Matching Theory, Vol. 367, American Mathematical 

Society. 

[3] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009)Introduction to Algorithms, 

MITpress. 

[4] Hopcroft, John E. & Karp, Richard M., (1973) “An 𝑛5/2  algorithm for maximum matchings in 

bipartite graphs”,SIAM Journal on Computing, Vol. 2, No. 4, pp. 225–231. 

[5] Edmonds, Jack, (1965) “Paths, trees, and flowers”,Canadian Journal of Mathematics, Vol. 17, pp. 
449–467. 



Computer Science & Information Technology (CS & IT)                                        129 

[6] Gabow, Harold N., (1976) “An efficient implementation of Edmonds’ algorithm for maximum 

matching ongraphs”,Journal of the ACM (JACM), Vol. 23, No. 2, pp. 221–234. 

[7] Gabow, Harold N. &Tarjan, Robert E., (1985)“A linear-time algorithm for a special case of disjoint 

set union”,Journal of Computer and System Sciences, Vol. 30, No. 2, pp. 209–221. 

[8] Micali,Silvio&Vazirani, Vijay V., (1980) “An 𝑂(√|𝑉||𝐸|) algorithm for finding maximum matching 

ingeneral graphs”, in the 21st Annual Symposium on Foundations of Computer Science (1980), pp. 

17–27, IEEE. 

[9] Vazirani, Vijay V., (1994) “A theory of alternating paths and blossoms for proving correctness of 

the𝑂(√|𝑉||𝐸|)general graph maximum matching algorithm”,Combinatorica, Vol. 14, No. 1, pp. 71–

109. 

[10] Tarjan, Robert E. (1983)Data Structures and Network Algorithms,Society for industrial and Applied 

Mathematics. 

[11] Berge, Claude, (1957) “Two theorems in graph theory”,Proceedings of the National Academy of 

Sciences ofthe United States of America, Vol. 43, No. 9, pp. 842–844. 

[12] Lee, Tony T., Wan, Y., & Guan, H., (2013) “Randomized ∆-edge colouring via exchanges of 

complexcolours”,International Journal of Computer Mathematics, Vol. 90, No. 2, pp. 228–245. 

[13] Wang, L., Ye, T., Lee, Tony T., & Hu, W., (2018) “A parallel complex coloring algorithm for 

scheduling ofinput-queued switches”, IEEE Transactions on Parallel and Distributed Systems, Vol. 

29, No. 7,pp. 1456-1468. 

[14] Gallai, Tibor, (1963) “Kritische graphen ii”,Magyar Tud. Akad. Mat. Kutato Int. Kozl., Vol. 8, pp. 
373–395. 

[15] West, Douglas B.,(2011) “A short proof of the Berge–Tutte formula and the Gallai–Edmonds 

structuretheorem”,European Journal of Combinatorics, Vol. 32, No. 5, pp. 674–676. 

[16] West, Douglas B. (2001)Introduction to Graph Theory, Prentice-Hall, Inc., Upper Saddle River. 

 

AUTHORS 

 
TONY T. LEE received the BSEE degree from National Cheng Kung University, 

Taiwan, and the M.S. and Ph.D. degrees in electrical engineering from the Polytechnic 

Institute of New York University (now Tandon School of Engineering, New York 

University), Brooklyn, NY, USA.  From 2013 to 2017, he was a Zhiyuan Chair Professor 

with the Electronics Engineering Department, Shanghai Jiao Tong University. From 1993 

to 2013, he was a Chair Professor with the Information Engineering Department, The 
Chinese University of Hong Kong. From 1991 to 1993, he was a Professor of electrical 

engineering with the Polytechnic Institute of New York University. From 1989 to 1991, he was an adjunct 

Associate Professor with the Department of Electrical Engineering of Columbia University, New York. He 

was with AT&T Bell Laboratories, Holmdel, NJ, USA, from 1977 to 1983, and with Bellcore (now 

Telcordia Technologies), Morristown, NJ, USA, from 1983 to 1993. He is currently a Professor with the 

School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen). He is a Fellow of 

IEEE and HKIE. He has received many awards, including the 1989 Leonard G. Abraham Prize Paper 

Award from the IEEE Communication Society, and the 1999 National Natural Science Award from China. 

He has served as an Editor of the IEEE TRANSACTIONS ON COMMUNICATIONS, and an Area Editor 

of the Journal of Communication Network. 

 
 

Dr. Bojun Lu received her Bachelor’s degree in Mathematics and Applied Mathematics 

from the University of Science and Technology of China (USTC), China in 2008, and her 

Ph.D. degree at the Department of Systems Engineering and Engineering Management 

from The Chinese University of Hong Kong (CUHK), Hong Kong in July 2014. After 

graduation, Bojun enriched her industrial experiences in quantitative finance industry 

with positions of quantitative researcher for around three years. She joined the CUHK-

Shenzhen with a Lecturer position in January 2018, and is promoted as Assistant 

Professor (Teaching) in 2022. Her teaching area includes applied mathematics, mathematical statistics, and 

combinatorial mathematics. Her research interests include algorithms and theory in matching problems 
with possible real-world applications, methodologies in multivariate data analysis, quantitative finance, 

lattice theory and possible applications in cryptography encoding and decoding. 



130         Computer Science & Information Technology (CS & IT) 

Hanli Chu received his Bachelor’s degree in Electronic Information Engineering from the  

Chinese University of Hong kong, Shenzhen (CUHKSZ).In September 2021, he started his 

master programme study in Computer Information Engineering at CUHKSZ. His research 

interests include image classification, semantic segmentation, etc.   

 
 

 

 

 

 

 

© 2023 By AIRCC Publishing Corporation. This article is published under the Creative Commons 

Attribution (CC BY) license 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 


	Abstract
	Keywords
	Maximum Matching, Augmenting Path, Blossom, Trunk, Sprout


