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ABSTRACT 
 
The primary goal of any organization involved in trading business is to maximize profits while 

keeping costs to a bare minimum. Sales forecasting is an inexpensive way to achieve the 
aforementioned goal. Sales forecasting frequently leads to improved customer service, lower 

product returns, lower deadstock, and efficient production planning. Because of short shelf life 

of food products and importance of product quality, which is of concern to human health, 

successful sales forecasting systems are critical for the food industry. The ARIMA model is used 

to forecast sales of a perishable orange drink in this paper. The methodology is applied 

successfully. ARIMA (0,1,1)(0,1,1)12 was concluded as the appropriate model. Model 

diagnostics were done; results showed that no model assumption was violated. Fitted values 

were regressed against observed values. A very strong linear relationship was evident with an 

R2 value of over 90% which is very plausible. 
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1. INTRODUCTION 
 

Forecasting plays a key role in decision-making and business planning. Probably, the most 
important function of business is forecasting. Demand forecasting in brief is an estimation of a 

supply chain constituent’s expected sales in a specified future period [1] A forecast is a starting 

point in planning. The objective of forecasting is to minimize the risk in decision making. To a 
large extent, success depends on getting those forecasts rightly, [2] gives some important 

forecasting applications for the strategic areas in business. Also, [2] explains the types of 

forecasts and managerial planning. From this explanation, it can be concluded that a distribution 

company aims to determine the optimal supply of orange drinks that minimizes costs or 
maximizes profits in the face of uncertain demand. In the case of more shipping than demand the 

company has undue costs caused by stocking, high returns, transportation, and other operational 

issues, or in the case of less shipping than demand the company has sales lost. [3] used machine 
learning to forecast horticultural sales and concluded that machine learning outperforms classical 

forecasting on horticultural sales. Classical forecasting methods for example Autoregressive 

Integrated Moving Average and Exponential Smoothing are nevertheless widely used in research 
and industry. Regardless of their rather simple concept, they often show a competitive 

performance. ([4],[5] , [6]). 
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[7] states that reliable forecasts are essential for a company to survive and grow. In a 
manufacturing environment, management must forecast the future demands for its products and 

on this basis provide for the materials, labor, and capacity to fulfill these needs. These resources 

are planned and scheduled well before the demands for the products are placed on the firm. 
Forecasting is the heart and blood of any inventory control system. A firm with hundreds or 

thousands of items must anticipate in advance demands that will occur against these items. This is 

needed to have the proper inventory available to fill customers’ demands as they come in. 
Management must plan several months for this inventory since procurement lead times from 

suppliers generally runs from one to six months. With each time, forecasts are needed for the 

months in the planning horizon. The forecasts are used to determine whether or not an order to 

the supplier is needed now and if so how large the order should be [7] explains that forecasting 
techniques can be categorized into three groups. The first is called qualitative, where all 

information and judgment relating to an item are used to forecast the item’s demands. This 

technique is often used when little or no demand history is available. The forecasts may be based 
on marketing research studies, the Delphi method, or similar methods. The second group is called 

causal, where a cause-and-effect type of relation is sought. Here, the forecaster seeks a relation 

between an item’s demands and other factors, such as business industrial, and national indices. 
The relationship is used to forecast the future demands of the item. The third group is called time 

series analysis, where a statistical analysis of past demands is used to generate the forecasts. A 

basic assumption is that the underlying trends of the past will continue into the future. This paper 

is primarily concerned with forecasting as it relates to time series analysis. In this context, the 
time series represents the demands recorded over past time intervals. The forecasts are estimates 

of the demands over future time intervals and are generated using the flow of demands from the 

past. This paper proceeds as follows. Section 2 gives the literature review, some theoretical 
structures for exponential smoothing models, and autoregressive integrated moving average 

(ARIMA) models. Section 3 includes comprehensive empirical results and analysis of orange 

drink circulation and results. Section 4 is the discussion and conclusion 

 

2. TIME SERIES ANALYSIS AND MODELLING STRATEGY 
 

The importance of predicting future values of a time series cuts across a range of disciplines. 

Economic and business time series are typically characterized by trend, cycle, seasonal, and 
random components. Powerful methods have been developed to capture these components by 

specifying and estimating statistical models. These methods comprise; log transformation, square 

root transformation exponential smoothing, and ARIMA, which are described by [9] and [10]. 

They reveal that ARIMA gives more accurate out-of-sample forecasts on average compared to 
other smoothing methods, although ARIMA requires much more effort. [11] states that 

exponential smoothing originated in Robert G. Brown’s work as an OR analyst for the US Navy 

during World War II. [12] identify that the more sophisticated exponential smoothing methods 
seek to isolate trends or seasonality from irregular variation. Where such patterns are found, the 

more advanced methods identify and model these patterns. The models can then incorporate those 

patterns into the forecast. Exponential smoothing uses weighted averages of past observations for 
forecasting. The effect of past observations is expected to decline exponentially over time. [13] 

states that the exponential smoothing methods are relatively simple but robust approaches to 

forecasting. They are widely used in business for forecasting demand for inventories. Three basic 

variations of exponential smoothing are given simple exponential smoothing, trend-corrected 
exponential smoothing, and the Holt-Winters method. [14] states that the ARIMA method 

developed by [15] is one of the most noted models for time series data prediction and is often 

used in econometric research. The ARIMA method has been originated from the autoregressive 
(AR) model, the moving average (MA) model, and the combination of the AR and MA, the 

ARMA model. Compared with the early AR, MA, and ARMA models, the ARIMA model is 
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more flexible in application and more accurate in the quality of the simulative or predictive 
results. [15] highlight that in the ARIMA analysis, an identified underlying process is generated 

based on observations to a time series for generating a good model which shows the process-

generating mechanism precisely. 
 

[17] and [18] have considered that the only problem with ARIMA appears that the modeling is 

mathematically sophisticated in theory and requires a deep knowledge of the method. Therefore, 
building an ARIMA model is often a difficult task for the user, requiring training in statistical 

analysis, a good knowledge of the field of application, and the availability of an easy-to-use but a 

versatile specialized computer program. The BoxJenkins approach to modeling and forecasting 

time series data is but one of a large family of quantitative forecasting methods which have been 
developed in the fields 12 of operations research, statistics, and management science. Box-

Jenkins models are also known as ”ARIMA” models, the acronym standing for Autoregressive 

Integrated Moving Average. This terminology is made clear in the following sections. 
Exponential smoothing, linear regression, Bayesian forecasting, and generalized adaptive filtering 

are some of the other techniques which are termed ”extrapolative” forecasting [6]. Many of these 

methods have a common element; they utilize only the previous values of a series of numbers to 
forecast the future values of interest. Hence, they are referred to as univariate models, since the 

values from a single variable are used to predict the future values of the same variable. This is in 

contrast to multivariate models, where the variable of interest is also considered to depend on 

other variables 
 

2.1. ARIMA Model 
 
The ARIMA model is an extension of the ARMA modelling the sense that by including auto-

regression and moving average it has an extra function for differencing the time series. If a 

dataset exhibits long-term variations such as trends, seasonality and cyclic components, 
differencing a dataset in ARIMA allows the model to deal with them. Two common processes of 

ARIMA for identifying patterns in time-series data and forecasting are auto-regression and 

moving average. 
 

2.2. Autoregressive Process 
 
Most time series consist of elements that are serially dependent in the sense that one can estimate 

a coefficient or a set of coefficients that describe consecutive elements of the series from specific, 

time-lagged (previous) elements. Each observation of the time series is made up of random error 
components (random shock; at) and a linear combination of prior observations. 

 

2.3. Moving Average Process 
 

Independent from the autoregressive process, each element in the series can also be affected by 

the past errors (or random shock) that cannot be accounted for by the autoregressive component. 
Each observation of the time series is made up of a random error component (random shock, ϵ) 

and a linear combination of prior random shocks. 

 

2.4. Autoregressive Integrated Moving Average Process, ARIMA (p,d,q) 
 

A series Xtis called an autoregressive integrated moving average process of orders p,d,q, 

ARIMA(p,d,q), if Wt= ∇dXt, where Wtis the differenced time series. 
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We may define the difference operator ∇ as ∇Xt= Xt− Xt−1. Differencing a time series {Xt} of 

length n produces a new time series  of length n−d. If {Zt} is a purely random 

process with mean zero and variance σz
2, the general autoregressive integrated moving average 

process is of the form 
 

Wt= ϕ1Wt−1 + ϕ2Wt−2 + ... + ϕpWt−p + Zt+ θ1Zt−1 + ... + θqZt−q 

 

In terms of the backward shift operator, the ARIMA(p,d,q) process is 
 

Φp(B)Wt= Θq(B)Zt 

 
Remark: The autoregressive integrated moving average process is specifically for non-stationary 

time series. The differencing transformation is useful in reducing a nonstationary time series to a 

stationary one. 
 

2.5. Seasonal Auto-regressive Integrated Moving Average Process 
 
Let s, be the number of observations per season. Then the time series, Xt, is called a seasonal 

autoregressive integrated moving average process of orders p,d,q, seasonal orders P,D,Q and 

seasonal period s, if it satisfies; 
 

 
 

Where , and ϕp(B) and θq(B) are polynomials in B of order p 

andq, that is ; 

 
 

We identified the stationary component of a data set by performing the Ljung and Box test. We 

tested this hypothesis by choosing a level of significance for the model adequacy and compared 

the computed Chi-square  values with the  values obtained from the table. If the 

calculated value is less than the actual   value, then the model is adequate, otherwise not. The 

Q(r) statistic is calculated by thefollowing formula: 

 

 
 

wheren is the number of observations in the series and r(j) is the estimated correlation at lag j. 

Furthermore, we tested the data to specify the order of the regular and seasonal autoregressive 
and moving average polynomials necessary to adequately represent the time series model. For 

this purpose, model parameters were estimated using a maximum likelihood algorithm that 

minimized the sums of squared residuals and maximized the likelihood (probability) of the 
observed series. The maximum likelihood estimation is generally the preferred least square 

technique. The major tools used in the identification phase are plots of the series, correlograms 

(plots of autocorrelation and partial autocorrelation verses lag) of the autocorrelation function 

(ACF) and the partial autocorrelation function (PACF).The ACF and the PACF are the most 
important elements of time series analysis and forecasting. The ACF measures the amount of 

linear dependence between observations in a time series that are separated by a lag k. The PACF 

plot helps to determine how many autoregressive terms are necessary to reveal one or more of the 
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following characteristics:time lags where high correlations appear, seasonality of the series, and 
trend either in the mean level or in the variance of the series. In diagnostic checking, the residuals 

from the fitted model were examined against their adequacy. This is usually done by correlation 

analysis through the residual ACF plots and by goodness-of-fit test using means of Chi-square 
statistics. At the forecasting stage, the estimated parameters were used to calculate new values of 

the time series with their confidence intervals for the predicted values. 

 

2.6. Performance Valuation 
 

To choose the best model among the class of plausible model, the estimated parameters were 
tested for their validity using, ACF , PACF, Probability Plot and Histogram of residuals, a time 

series plot of observed and fitted values and other error statistics such as coefficient of 

determination( R2) were analysed. 
 

2.7. Data Source 
 
The data used in this research is historical data of monthly sales of cases of the perishable drink 

from a small drink manufacturing company in Harare, Zimbabwe which among other products 

manufactures the perishable orange drink. Each case contains 24 bottles of the drink. The 
company intends to minimise losses due to returns of the drinks as result of reduced shelf life.  

 

3. RESULTS AND ANALYSIS 
 

 
 

Fig.1: Time Series Plot Of Demand of Perishable Orange Drink- Original Data 

 

Visual inspection of the plot shows that the series is dynamic. So need is there to transform the 

data so as to make it stationary. 
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Fig.2: ACF Plot of Original Data 

 

ACF of most lags are very high, there is evidence of positive and negative autocorrelation. This is 

a typical ACF plot of a non stationery time series. Thus a model cannot be fitted at this stage. 
This further affirms need to transform the data. 

 

 
 

Fig.3: PACF plot of Original Data 

 
The PACF plot shows a number of significant spikes, which is typical of a non stationary series. 

Thus we have to transform the data to make it stationary. 
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Fig.4: Time series plot of Differenced Data of Perishable Orange Drink 

 
Visual inspection of the plot reveals that the differenced series fluctuates around zero, thus the 

data is now stationary 

 

 
 

Fig.5: ACF plot of Differenced Data 

 
The ACF shows a significant spike at lag 2 and there is evidence of negative dumped oscillations 

with the rest of the ACF’s essentially zero, hence a seasonal ARIMA model is suggested 
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Fig.6: PACF plot of Differenced Data 

 
PACF plot shows a significant spike at lag 2 which is seasonal and there is evidence of negative 

dumped oscillations with the rest of the PACFs essentially zero, hence a seasonal ARIMA model 

is also suggested. 

 

3.1. Parameter Estimation 
 
Final Estimates of Parameters 

 

Type Coef SE Coef T P 

MA 1 0.9707 0.0321 30.21 0.000 

SMA 12 0.6533 0.0660 9.90 0.000 

Constant -0.00181 0.01501 -0.12 0.904 

 
Differencing: 1 regular, 1 seasonal of order 12 Number of observations: Original series 167, after 

differencing 154 Residuals: SS = 8667.31 (back forecasts excluded) MS = 57.40 

DF = 151 Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag 12 24 36 48 

Chi-Square 99.2 232.2 326.0 405.3 

DF 9 21 33 45 

P-Value 0.000 0.000 0.000 0.000 

 

Thus the fitted model is SARIMA(0,1,1)(0,1,1)12 
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3.2. Model Diagnostics 
 

 
 

Fig.7: Residual Plot for Differences 

 
The normal probability plot is almost a straight line, an indication that the normality assumption 

has not been violated. A plot of residuals against fitted values shows no pattern and the histogram 

of residuals also indicates that the normality assumption has not been violated. Hence the fitted 

model is good and thus can be used for forecasting. 
 

 
 

Fig.8: ACF of residuals for Differences 

 

Figure 8 ACF plot has no significant spikes suggesting that there might be no possible additional 
parameters which may have been omitted in this model. 
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Fig.9: PACF of residuals for Differences 

 
Figure 9, The PACF plot of residuals refuses any significant spikes suggesting that there might be 

no possible additional parameters that may have been omitted in this model. Since the fitted 

model appears good enough, it can be used for forecasting future demand of the perishable 
orange drink. 

 

3.3. Inference Based on the Model 
 

3.3.1. Forecasts from period 159 

 
Period Forecast Lower Upper Actual 

159 847.49 783.94 911.04 892.00 

160 836.74 752.93 920.55 903.00 

161 896.10 795.37 996.84 966.00 

162 897.13 782.01 1012.25 937.00 

163 881.36 753.45 1009.26 896.00 

164 869.28 729.77 1008.80 858.00 

165 831.16 683.39 983.87 817.00 

166 808.89 670.91 991.40 827.00 

167 826.39 639.32 978.55 797.00 

168 828.86 639.23 1013.47  

169 830.30 609.70 1024.07  

170 831.37 591.24 1050.89  

171 833.43 573.95 1072.51  

172 834.99 557.99 1092.21  

173 836.55 543.07 1111.99  

174 838.11 529.03 1130.03  

175 839.67 515.73 1147.19  

176 841.23 503.09 1163.60  

177 842.79 491.03 1179.36  

178 842.79 479.47 1194.55  

179 844.35 487.93 1209.23  

180 845.91 468.36 1223.45  

181 847.47 457.67 1236.26  
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The fitted values compares well with the observed values, thus the fitted model is reliable. 
 

 
 

Fig.10: Time Series plot of Observed and Fitted Values 

 
 

Fig.11: Scatter plot of Fitted values against Observed Values 

 

3.4. Regression Analysis: Fitted Values versus Sales 
 

The scatter plot of fitted values against observed values suggests a positive linear relationship. 

 

Method 
 

Rows unused 1 
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Analysis of variance 

 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 1 150339 153391 1500.63 0.000 

Error 165 165303 1002   

Total 166 1668694    

 

Model Summary 

R- sq R-sq(adj) R-sq(pred) 

90.09% 90.03% 89.84% 

 

Coefficients 

Term Sales Se Coef T-Value  

Constant 48.4 18.4 2.62 0.009 

Sales 0.9360 0.0242 38.74 0.000 

 

Regression Equation 
 

Fitted Values = 48.4 + 0.9360 × Sales 

 

The coefficient of determination value is 90.09% indicates that the fitted model accounts for 
about 91% of the variation in the fitted values. Thus the fitted seasonal ARIMA model which 

generated the fitted values must me appropriate and hence can be used to forecast sales values. 

 

4. DISCUSSIONS AND CONCLUSIONS 
 

This study demonstrates how ARIMA time series and Regression models are useful to study and 

forecast sales for a particular company. This paper demonstrates also how the Time Series 

Forecasting System can be used to construct a model of forecasting. The ARIMA(0,1,1)(0,1,1)12 

predicted the data considerably well and gave reliable forecasts. According to the data presented, 

this model was best in forecasting the sales, but could not tell why the sales will contain outliers. 

The Time Series forecasting system helped construct a model, the ARIMA time series and the 
Regression, which is effective for forecasting and can be applied to other businesses in order to 

plan their sales. However, it would be interesting to do further research on the factors that 

influence the sales, such as the growth of the population of consumers, the industrial growth in 
the region, the immigration, and so on; this would consolidate better this company’s planning.  
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