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ABSTRACT 
 

This paper considers the problem of real-time estimating the moving target acceleration in frequency 

modulated continuous wave (FMCW) radar. Based on the accelerated target FMCW radar echo 

signal model, after utilizing KeyStone transform to eliminate the effect of range migration on the 

signal parameters estimation. An improved fractional Fourier transform (FrFT) and optimized the 

best matching rotation angle search strategy is proposed to estimate the chirp rate of doppler 

dimension echo signal related to the target acceleration. Compared with the traditional FrFT, the 

approach in this paper has less computation and significantly reduced processing time while 
ensuring estimation accuracy. The proposed method is demonstrated with simulation and 

measurement data. 
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1. INTRODUCTION 
 
Current-generation FMCW automotive radar can accurately measure the velocity of moving 

targets [1]. However, many targets with high acceleration exist in actual driving scenarios. The 

lack of acceleration information may cause the automated driving system to be unable to 
accurately predict the target state and make proper path planning and decisions, which leads to an 

increased probability of traffic accidents. Therefore it is necessary to implement real-time 

measurement of moving target acceleration in FMCW radar systems. 

 
Suppose the moving target is accelerated. Its echo signal in the doppler dimension can be 

regarded as a linear frequency modulated (LFM) signal. The acceleration estimation of the target 

can be turned into an LFM signal parameter estimation problem [2]. In addition, the range 
migration will affect the doppler dimensional signal phase, resulting in the signal being divided 

into multiple parts in the time-frequency plane and affecting the parameter estimation of the 

signal. The KeyStone transform is needed to decouple the range and doppler dimension before 
range FFT. 

 

The solutions of LFM signal parameter estimation can be divided into two categories: time-

frequency representation (TFR) and frequency-chirp rate representation (FCR) [9]. Short Time 
Fourier Transform (STFT) [3] as a typical example of linear TFR is widely used because of its 

simple and convenient implementation. Wigner-Ville distribution (WVD) [4] as representative of 

quadratic class TFR has perfect time-frequency concentration when estimating the mono-
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component signal parameter. However, WVD-based methods have cross-term problems when 
dealing with multi-component LFM signals. Although various methods have been proposed to 

reduce cross-term effects, such as Pseudo Wigner Distribution (PWD) [5], smoothed Pseudo 

Wigner Distribution (SPWD) [6]. These methods are realized at the expense of time-frequency 

resolution. In addition, TFR-based methods can not directly obtain the parameters estimation of 
the LFM signal. The line detection algorithms are additionally needed to get the signal chirp rate, 

such as the Radon-Wigner transform (RWT) [7], Wigner-Hough transform (WHT) [8]. This 

significantly increases the computational cost and limits the application in engineering. Lv’s 
Distribution (LVD) [9] as the FCR class method proposed in recent years. It can directly obtain 

the chirp rate of the LFM signal without additional calculations. Compared to WVD, LVD can 

avoid interference by cross terms and is more easily implemented in engineering. However, the 
maximum chirp rate estimation of LVD is affected by the sampling rate, which causes the 

estimated acceleration to be ambiguous. 

 

FrFT [10] as the generalization of the traditional Fourier transform, widely used in LFM signal 
detection and parameter estimation. FrFT converts the LFM signal from the time domain to the 

fractional Fourier domain by rotating the time-frequency plane. It has the best energy 

concentration in a specific fractional Fourier domain. Moreover, The discrete FrFT proposed by 
Ozaktas [11], Pei [12] makes FrFT can be implemented by FFT and chirp signal convolution. It is 

well suited for engineering applications. 

 
This paper proposes a new algorithm for LFM signal chirp rate estimation based on the FrFT. It 

simplifies the traditional FrFT and has a more concise form. And based on the feature that the 

fractional domain spectrum of the improved FrFT is symmetric on both sides of the optimal 

rotation angle. An optimized search strategy is applied to avoid the global search of the rotation 
angle, which significantly reduces the processing time. After implementing the algorithm in a 

radar system, the actual environment tests proved that the algorithm could effectively and 

accurately estimate the acceleration of a moving target. 
 

2. FMCW RADAR SIGNAL AND SYSTEM MODELS 
 

In order to measure target range and velocity, the FMCW radar will transmit a series of LFM 

signals (or chirp pulses) with a total number of N through the transmitting antenna (Tx). 

 
 

Figure 1.  FMCW continuous transmit pulses time-frequency figure 

 

As shown in Figure 1, the LFM signal with start frequency f0 and its frequency increases linearly 

at rate of K over the time duration Tp [1]. 

 

2.1. IF Signal Model 
 
The LFM signal transmitted by Tx can be expressed as: 

 

  ),0()]2(exp[ 2
0 pt TtKttfjtS    (1) 
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When the transmitted signal strikes the target, it will reflect back and be received by the receiving 
antenna (Rx). The signal received by the Rx can be seen as a version of the transmitted signal 

after time delay τ. That is: 

 

),0(]})()(2[exp{)( 2
0 pr TttKtfjtS    (2) 

 

When the radar system receives the signal reflected from the target, the echo signal is mixed with 
the transmitted signal through a mixer. The resulting signal is filtered low-pass to produce an 

intermediate frequency (IF) signal SI(t). The IF signal can be expressed as: 

 

),0(]})(2[{exp)()()( 2
0 prtI TtKtKfjtStStS     (3) 

 
Assuming that there exists a moving target in front of the radar, the initial radial distance between 

radar and target is R0. The target moves away from the radar with radial velocity v and constant 

radial acceleration a. Considering that the chirp pulse duration Tp is very short, the movement of 

the target within one chirp pulse is negligible. Only the movement between the two chirp pulses 
is considered. Therefore, the “Stop-and-Go” model is applied to establish for target echo signal. 

Based on the above assumption, one can get time delay of the nth chirp pulse: 
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where c is the speed of light. Substituting τn into IF signal SI(t) and neglecting the τ2 term in 
equation (3) (because τ2 ≈ c-2, its value is very small), the nth IF signal can be derived as follows: 
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To perform digital signal processing, the IF signal SI(t) is sampled with sampling frequency fs and 
sampling period Tc = 1/fs. Total M points are sampled. The sampled IF signal can be expressed as: 
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After sampling the IF signal for all periods, we can get an M*N two dimensional discrete time 
signal SI(m,n). One of the dimensions is fast time dimension (or range dimension) mTc and the 

another is slow time dimension (or doppler dimension) nTp. It is clear in equation (6), the 

frequency and phase of IF signal is: 
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In equation (7), due to the presence of 2KvnTp and Kan2Tp
2 terms, IF signal frequency is not a 

constant which is related to the chirp pulse period number n. So fast time and slow time coupled 

with each other. As a result, when the target is moving at high speed and acceleration, the central 
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of range spectrum envelope will be shifted significantly. This phenomenon leads to an additional 
phase error of the spectrum peak between the range cell shifts after the range FFT, affecting the 

estimation of the chirp rate along the doppler dimension signal.  

 

2.2. Range Migration Analysis 
 

Performing K points range FFT for discrete IF signal (6), one can get: 
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where PM(·) can be regarded as a discrete Fourier transform with a rectangular window of length 

M. The result is an asinc function, which is a discrete form of the continuous sinc function. The 

expression of PM(·) is: 
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Based on equations (9) and (10), one can get the peak phase φpeak of the range spectrum: 
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where kpeak denotes spectrum peak index. Furthermore, the IF signal doppler frequency fd can be 

viewed as the result of the derivation of phase φpeak with respect to slow time nTp. If the peak 
index kpeak is not dependent on variable nTp, the fd can be derived as: 
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Obviously, under the above assumptions, fd is a linear function of variable nTp, and the chirp rate 

is related to the acceleration of the target. By using the LFM signal parameters estimation 
algorithm, one can get the target acceleration estimated. But in practice, this is not a common 

scenario, the change of kpeak must be taken into account. 

 
Consider a single TX radar system example. The chirp pulse parameters are as follows:              f0 

= 77GHz; fs = 5000sps; Tp = 110us; K = 40MHz/us; N = 256. The target initial velocity and 

acceleration are set to 0m/s and 30m/s2. Performing range FFT for all chirp pulse periods. The 
index of range spectrum peak for each period is shown in Figure 2(a). All peaks appear at 273 

range cell. Figure 2(b) is the result of unwrapping phase for spectrum peaks. Without range cell 

shift, the peak phase is a quadratic function of chirp periods index n. Compared to Figure 2, 

Figure 3 shows the spectrum peak index and phase for target acceleration 300m/s2. There exist 
three shifts in range cell. Furthermore, the phase also have shifts at the same position. 
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(a) peak index for all chirp periods 
 (b) peak phase without range cell shift 

 

Figure 2.  Range FFT results without range migration 

 

 

 

 
 

(a) peak index for all chirp periods 
 (b) peak phase without range cell shift 

 

Figure 3.  Range FFT results with range migration 
 

If we represent the peak phase of the above two cases in the time-frequency plane, the result is 

shown in Figure 4. When range cell shift is not present, the doppler signal is linearly distributed 

in the time-frequency plane as shown in Figure 4(a). Comparatively, when range cell is shifted, 
the doppler signal time-frequency distribution is divided into four segments, which is depicted in 

Figure 4(b). Ideally, the chirp rate of each segment is still the same. However, when there is noise 

in the signal, the chirp rate of each segment may vary greatly. In this case, the estimation error is 
much larger. 

 

 

 

 
 

(a) peak index for all chirp periods 
 

 

(b) peak phase with range cell shift 

Figure 4.  Doppler dimensional signal time-frequency distribution 



180         Computer Science & Information Technology (CS & IT) 

2.3. KeyStone Transform 
 

The KeyStone transform is well known in the field of synthetic aperture radar (SAR) for its 

capability of eliminating moving target range migration. According to the introduction in the 
previous section, the FMCW radar also has similar problems and affects the acceleration 

estimation of moving targets. Therefore, the KeyStone transform is applied before range FFT to 

decouple the fast and slow time. Based on the principle of KeyStone transform, putting the slow 
time terms in equation (6) together, one has: 
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Re-scale the slow time axis for each fast time sample point by follow transformation: 
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Applying the scaling operator to (13), one can get: 
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Equation (15) indicates that for the new slow time n'Tp, the coupling between the slow time and 

fast time has been removed. By performing range FFT on (15), the central signal spectrum 

envelope will be located at 2R0K/c, which is only related to the initial distance of the target R0. 
That is, the range FFT for all chirp periods will peak at the same index. The range spectrum peak 

phase and doppler frequency can be re-expressed as: 
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From the above equation, it can be seen that after KeyStone transform, without kpeak term 

influence, the doppler dimension signal changes to LFM signal that chirp rate only related to 

target acceleration.  
 

The KeyStone transform can be implemented by the Chirp-Z transform and realization details can 

be referred to [13]. This paper will not discuss its implementation. In the following, we will 
analyze how to estimate the LFM signal chirp rate by improved FrFT. 

 

3. THE LFM SIGNAL CHIRP RATE ESTIMATION VIA IMPROVED FRFT 
 

3.1. Fractional Fourier Transform 
 

Firstly, let us briefly reviews the definition of FrFT. Consider a mono-component LFM signal f(t). 
For the convenience of derivation, the initial frequency of the f(t) is set to 0. 
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The formal FrFT of f(t) at an arbitrary rotation angle α is given by equation (19): 
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where Kα(t,u) is the transform kernel and defined by (20): 
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FrFT can be divided into the four steps: 

 

(1) Perform de-chirp operation by modulate with a chirp exp(jπt2cotα). 
(2) Perform scale Fourier transform of the de-chirped signal by the scale factor cscα. 

(3) Perform another modulate operation with chirp exp(jπu2cotα). 

(4) Multiply amplitude factor cot1 j . 

 

The FrFT can be regarded as the process of signal projection on different chirp base functions. 

The energy intensity of signal in FrFT domain reflects the degree of similarity between the signal 

and chirp base functions. It will peak at the optimal rotation angle only when the parameters of 
the chirp base functions match the sought signal. 

 

3.2. Improved Fractional Fourier Transform 
 

Step 1 includes a chirp modulation, which makes FrFT adaptive to process the LFM signal. Step 

2 transforms the signal from the time domain to the FrFT domain. Step 3 and 4 are performed to 
guarantee the FrFT additivity of rotation property and energy conservation property. The 

additivity property is important in some applications, but our purpose is to obtain the signal chirp 

rate. Whether Step 3 is performed or not does not significantly affect the results. In consideration 
of saving hardware resources, we combine Step 1, Step 2 and 4 to form an improved FrFT. The 

improved FrFT and its kernel can be expressed as: 
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Since the improved FrFT no longer has the rotational additive property after omitting Step 3, we 

set the rotation angle scope from 0 to π. This is sufficient to cover the possible scope of the 
unknown parameters LFM signal chirp rate. 

The improved FrFT is a special form of LCT. If we set a special parameter matrix 
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we can derive some important properties of improved FrFT, which are essential to the subsequent 

analysis. 

 

(1) The time-shift property 
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(2) The frequency-shift property 
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(3) The invertibility property 
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(4) The energy conservation property 
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Similar to FrFT, the improved FrFT can also be expressed in terms of the WVD. The WVD of 
signal f(t) is defined as:  
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Applying the time shift property to the f*(2t - τ) term of the above equation: 
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Then use frequency-shift property to compute inner integral in equation (28) and make the 

change of variable ε = u + 2ωsinα, it comes to: 
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Finally, making following change of variables from (t,ω) to (u,v): 
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The final result can be obtained as: 
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From the perspective of axis rotation, the improved FrFT of signal can still be seen as the result 

of rotating the t - f axis to the u - v axis. Compared to the traditional FrFT, the difference is only 
reflected in the position of the v-axis. The rotation of the signal from the time t-axis to the u-axis 

is entirely the same. That is say, after performing improved FrFT, the spectral support interval of 

the signal in u-axis is the same as traditional FrFT. It can be represented in Figure 5. 
 

 
 

Figure 5.  Representation of LFM signal in the t-f and u-v plane 

 
The blue line in Figure 5 is the distribution line of the signal in the time-frequency plane, whose 

angle with the time axis t is β. The width of the signal in the time-frequency plane can be 

expressed as: 
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Considering the improved FrFT with rotation angle α. ρu in Figure 5 is the projection length of 

the LFM signal in the u-axis after the transformation. According to the geometric relationship in 

Figure 5, the expression of ρu can be obtained as: 
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Since the angle between signal and the time axis is fixed, the magnitude of ρu is related to the 

rotation angle α. When α = β + π/2, the width of the support interval becomes a dot where the 
energy of the signal is concentrated. Otherwise, the energy is divided equally by the support 

interval, which approximates a rectangle inside the support interval, and outside the rectangle, the 

energy of the signal drops sharply. The expressions for the energy magnitude in the support 
interval are derived following by definition of improved FrFT. 

When the rotation angle α is the finite length LFM signal f(t) optimal rotation angle, i.e.             α 

= -arccot(-K). Equation (21) can be turned into: 
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From the equation (34), it can be seen that the transformation of the signal at the optimal rotation 
angle results in a sinc function. The peak is located at u = f0cscα. 

When α ≠ -arccot(-K), after some derivations of equation (21), one can get: 
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where c(T) and s(T) can be expressed as: 
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T1 and T2 can be expressed as: 
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Compared with conventional FrFT, the spectral amplitude of the signal in the improved FrFT 

support interval is equal to FrFT. The difference between them is only in the phase term. But this 

will not affect our aim to search for the optimal rotation angle. The spectral amplitude of signal 
can be expressed as: 
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Consider the case where the spectrum amplitude is the maximum. Due to the assumption that the 
initial frequency of the signal is 0 in the above, it will peak at 0 in u-axis. Substituting u = 0 into 

the equation (38) and assume that 1cot  KTd
. The Fresnel integral in equation (38) have 

c(T) = s(T) ≈ 0.5. Then we can obtain the maximum spectral amplitude expression: 
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When the spectral support interval is [-ρu/2, ρu/2], taking u = ±ρu/2 into equation (38), one can get: 
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From equation (40), we can obtain that when the support interval is ρu, the amplitude becomes 
half of the maximum value. Furthermore, the value of the Fresnel integral function fluctuatingly 

decreases with the increase of cotKTd
. The shape of the spectrum is closer to a rectangle, 

and energy of the signal is mainly concentrated in the support interval. While outside the support 

interval, the amplitude of the signal spectrum is very small [15]. 

 
We have derived the spectral characteristics of the continuous signal above. But in practice, we 

are dealing with discrete signals. So it is necessary to consider the spectral characteristics of the 

discrete signals. The discrete improved FrFT can be implemented using the FFT-based algorithm 

proposed by Ozaktas [11]. This algorithm needs to normalize the dimensional before calculation. 
Since the time and frequency domain have different magnitudes. For the convenience of 

calculation, both of them are converted into a normalized domain. Define the normalization 

factor 
sd fTS / , the signal time domain interval [-Td/2, Td/2] and frequency domain interval [-

fs/2, fs/2] is converted to [-Δx/2, Δx/2], where 
sd fTx  . In normalized dimensional the sample 

interval changes to 1/Δx and the number of samples is N, where N = Δx2. 

 
Based on the assumptions of method II in [11]. To satisfy the sampling theorem, the signal needs 

to be twice interpolated. After interpolating the signal using sinc interpolation algorithm and 

some algebraic manipulations similar in [11]. The discrete improved FrFT can be written as: 
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where m is the discrete sampling point of FrFT domain, m∈ [-M, M]. It can be recognized that 
equation (41) is the result of convolving the signal f(t) with exp(jπt2cotα) after modulated by 

exp[jπt2(cotα-cscα)]. The improved FrFT requires only one signal twice interpolation and 

extraction, one chirp signal multiplication and one signal convolution operation. 

Replace f(n/2Δx) = Aexp[jπK(n/2Δx)2] in equation (41) and set K = -cotα0: 
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When m = 0 in equation (42), we can obtain the maximum amplitude of the discrete signal 
spectrum: 
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Denote the energy of the signal f(t) by E and applying the energy conservation property (26): 
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where α0 is the optimal rotation angle and have α0 = β + π/2. After normalization, the geometric 

relationship in Figure 5 changes to: 
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In the normalized domain, the sample interval is 1/Δx. And we can get the number of sampling 

points M of the signal in support interval M = ρuΔx. In the support interval, the signal energy can 
be approximated as being equally divided by the sampling points M. Hence we can obtain the 

following: 

 

MmXE
2

)(


  (48) 

 

Combining equation (44) with equation (48), one has: 
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3.3. Optimal Rotation Angle Search Strategy 
 

Similarly to FrFT, the improved FrFT also need to scan for all rotation angles and search for 

peaks in the formed α-u plane. However, this kind of method has two shortcomings. On the one 
hand, when the parameter estimation accuracy is high, it needs to set a smaller search step size, 

which leads to a very time-consuming calculation of improved FrFT and peak search in the two-

dimensional plane. On the other hand, storing this data in the radar hardware system is very 

memory consuming. In order to avoid performing improved FrFT for each value of α, we employ 
an improved search strategy to reduce the computational cost while ensuring the accuracy of 

signal parameter estimation. 

 
From equation (49), the spectral amplitude of the signal in the FrFT domain is symmetric on both 

sides of the optimal rotation angle. We can simplify the process using this feature by applying a 

two-level search. First, perform the improved FrFT with a larger step size. Search the location of 
the peak and compare the peak with the difference in amplitude between the left and right sides. 

According to the symmetry property, the optimal rotation angle will appear on the side with a 

smaller values of difference. Then perform the improved FrFT on this side with smaller step size. 

Repeat the above steps until the expected accuracy. 
 

4. SIMULATION 
 

Example 1: The process of estimating the LFM signal chirp rate of the improved FrFT algorithm 
is shown in this example. Consider an LFM signal exp(jπ2000t2) which is sampled with 
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parameters fs = 4000Hz, Td = 1s. Set the step size of coarse search to 0.01, and the result is shown 
in Figure 6(a). It is clear from the figure that order 1.3 is the optimal order. Comparing the 

difference between the 1.3 order and its left and right side orders. We can determine that the 

optimal rotation order is in (1.29, 1.30). In this scope continue performing the improved FrFT 

with a smaller step size of 0.001. The results are shown in Figure 6(b). 
 

 

 

 
 

(a) Coarse search result 
 (b) Concise search results 

Figure 6.  The improved FrFT two-level search 

 

The maximum amplitude order in the Figure 6(b) is 1.295. From the relationship between the 
rotation order p and the chirp rate of the signal K = -cot(pπ/2)fs/Td. We can get the estimation of 

the chirp rate is 1998.7Hz/s. The estimation error is 1.3Hz/s. 

 
Example 2: To evaluate the improved FrFT performance, we add Gaussian white noise to the 

signal in Example 1. The signal to noise ratio (SNR) varies from −10 to 5dB. For each SNR value, 

total 1000 trials are performed. Figure 7 shows that the improved FrFT and search strategy still 
has good estimation performance at -6dB noise condition.  

 

 
 

Figure 7.  RMSE versus SNR for the chip rate 

 

Example 3: This example is to demonstrate the efficiency of the improved algorithm. The same 

signal from Example 1 is used and adds -5dB noise. Compare the improved FrFT algorithm with 
the conventional FrFT of 0.01, 0.001 and 0.0001 step sizes. The estimated errors and processing 

times are shown in the Table 1. Simulation results indicate that the improved FrFT can achieve 

the accuracy of traditional FrFT in 0.0001 step size, and the processing time is 1/3500 of the 

original. 
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Table 1.  Comparison of the efficiency between improved algorithm and traditional FrFT 

 

Algorithm Step Size 
Estimated Chirp 

Rate (Hz/s) 

Estimated Error 

(Hz/s) 

Running Time 

(s) 

Conventional FrFT 0.01 2038.6 38.6 0.82 

Conventional FrFT 0.001 1991.3 8.7 10.68 

Conventional FrFT 0.0001 1998.7 1.3 138.52 

Improved FrFT - 2001.5 1.5 0.04 

 

5. EXPERIMENTAL RESULTS 
 

In order to demonstrate the effectiveness of the proposed algorithm in real scenarios. We 

implemented the algorithm in the TI 2243p cascade radar system and tested it in a reality 
situation. The test environment is shown in Figure 8. 

 

 
 

Figure 8.  Acceleration measurement experiment scenario 

 

In the experiment, a car was located in front of the radar. After the experiment started, driving the 
car made acceleration and deceleration motions while turning on the radar to collect the data. In 

order to verify the accuracy of the radar data, we placed an acceleration sensor on the car for data 

comparison while the car was driving. After saving the radar and sensor data, the acceleration 
change curve of both is drawn by Matlab. The result is shown in Figure 9. 

 

 

 

 
(a) The first set of experimental measurements 
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(b) The second set of experimental measurements 

 
Figure 9.  Actual scenario car acceleration measurement results 

 

The experimental results prove that this paper's algorithm can effectively measure a moving 

target's acceleration. The estimation accuracy can reach 0.2m/s2. In addition, the improved FrFT 
can greatly reduce the data processing time. The processing time of one frame is about 50us, 

which meets the real-time requirement of the radar system. 

 

6. CONCLUSIONS 
 
This paper proposes a method to measure the acceleration of moving targets for FMCW radar. 

This method first addresses the problem of range migration in FMCW radar system. Then a more 

concise and efficient improved FrFT is performed to obtain the chirp rate of the signal and 
accordingly get the acceleration estimate. Simulation with Matlab and actual scenario tests are 

presented to validate the proposed method. 
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