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ABSTRACT 

 
Non-fungible token (NFT) bubbles are a problematic issue, and this study aims to predict NFT 

bubbles using an extended log-periodic power law singularity (LPPLS) model. The classic 

LPPLS model targets the endogenous nature of bubbles caused by the mimetic behavior of 

investors without external influences; however, the extended model attempts to incorporate 

exogenous influences. First, we compare the performance of the two models for NFT price 

prediction. The exogeneous variable in the extended model is cryptocurrency volatility. Then, 

we calculate the bubble confidence using both models. The results show that the explanatory 

power and forecasting accuracy of the extended model are superior in all projects. We also find 

that the bubble confidence indicator reinforces the results of bubble prediction.  
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1. INTRODUCTION 
 
The prediction of non-fungible token (NFT) bubbles is an industry-wide problem. Despite the 

strong growth of the NFT market, bubbles—faster-than-exponential price increases—have been 

causing crashes(see Section 3.1.3). All stakeholders (e.g., buyers, creators, and platformers) have 

been thrown into disarray. For buyers, prices are highly volatile, and the risk of substantial loss 
in a short time is high. As noted by Kong and Lin [1], the geometric mean of monthly returns for 

NFTs is 13.92% so far, whereas for stocks, bonds, and gold, they are 1.01, 0.61, and 0.63%, 

respectively. Meanwhile, the standard deviation of returns for NFTs is the highest (65.57%): 

approximately 14 times greater than that of stock returns. For NFT creators, bubbles are a 
disincentive to improving NFT quality. Hence, the mass production of low-quality NFTs for 

speculative purposes dominates creator motivations. On OpenSea, the world’s largest NFT 

marketplace, more than 80% of new NFTs generated using the free mint function were found to 

be fraudulent (i.e., plagiarized, spam, or fake), including many copyright violations [2]. 
Platformers also experience significant negative impacts from price fluctuations. According to 

DappRadar [3], OpenSea saw a 99% decline in trading volume in just four months in 2022. 

Obviously, there is a domain-wide demand for bubble prediction. This study responds to this 
societal demand.  

Notably, there are no current studies on NFT bubble prediction that consider both endogeneity 

and exogeneity. In the stock market, one line of research focuses on the endogenous and 
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exogenous nature of bubbles [4], [5], [6], endogeneity refers to a dramatic change in prices in 
one direction caused by mimetic investor behaviors without external shocks [7]. On the other 

hand, exogeneity refers to price changes caused by external shocks, such as the Nazi invasion of 

Western Europe in 1940 and the COVID-19 pandemic [7]. For NFTs, a few studies [8], [9] have 

focused on endogenous bubbles. However, none have considered both endogeneity and 
exogeneity [5], [10]. To answer this academic requirement is the aim of this study and its 

novelty.  

 
To answer the call for a combined model, this study answers two hypotheses: 

  

(1) Extending an existing model that focuses on endogenous bubbles to incorporate external 
variables improves the model’s explanatory power and forecasting accuracy.  

(2) The extended model reinforces the results of bubble prediction.   

 

To support these hypotheses, we use an extended log-periodic power law singularity (LPPLS) 
model that assumes rational expectations and investors who behave in irrational and mimetic 

manners. The mechanism by which the price of an asset rises rapidly and crashes due to the 

collective mimetic behaviors of investors is thus examined. Although the original LPPLS model 
targets the endogenous nature of bubbles, the extended model includes exogenous influences. 

The extended approach consists of three steps:   

 
(1) Using the concept of drawdown [10], we select NFT projects for LPPLS analysis.   

(2) We compare the performance of traditional vs. extended LPPLS models on NFT bubble 

prediction. The exogeneous variable is cryptocurrency volatility.   

(3) We calculate the LPPLS bubble confidence indicator [11] to appraise the potential for 
nearterm price decreases or increases based on price data from which external influences 

are eliminated. We then compare the indicators of both models.   

 
The results show that the explanatory power and forecasting accuracy of the extended model 

increase when external variables are considered. However, the explanatory power of the original 

model varies from project to project. We also find that a type-2 error in predicting the bubble risk 

may have occurred. That is, the exogenous factors may have offset the endogenous changes, 
causing the fluctuations to lose their bubble characteristics.  

The rest of the paper is organized as follows. Section 2 discusses previous studies on the LPPLS 

model, Section 3 explains the drawdown construct, the LPPLS model, its extended version, and 
bubble confidence indicators, and Section 4 describes the data used for the analysis. Section 5 

then discusses the implications of the results, and Section 6 concludes this study.  

 

2. RELATED WORKS 
 
Sornette [12] was the first to apply LPPLS to financial markets, and its success has been tracked 

by many scholars in different markets. Gonçalves et al. [13] used LPPLS to analyze the 

Portuguese stock market. Johansen [14] did so for the US stock markets, and Indiran et al. [15] 
did so for Malaysia. Separately, Takagi [16] detected numerous bubbles forming in memetic 

stocks in the US, but he had difficulty predicting social media-induced exogenous rallies, as 

LPPLS is meant to detect only endogenous bubbles.  
 

In recent years, LPPLS has been applied to cryptocurrency and NFT markets. For 

cryptocurrency, Shu and Zhu [17] proposed an adaptive multilevel time-series LPPLS detection 

method to analyze a finer-than-daily timescale for Bitcoin (BTC) price data. Geuder et al. [18] 
revealed the existence of some frequent bubble periods in BTC prices. Regarding NFTs, Ito et al. 

[8] applied LPPLS to the time-series price data of major NFT projects and detected bubbles with 
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a discernable bubble confidence indicator. Wang et al. [9] used LPPLS for robustness testing in 
the detection of NFT bubbles using supremum augmented Dickey–Fuller (SADF) and 

generalized SADF tests.  

As can be inferred from the extension of the model in conventional markets, both endogeneity 
and exogeneity should be grasped in NFT markets. However, no studies have thus far made this 

attempt.   

 

3. METHODOLOGY 
 
In this section, we describe the drawdown concept[10], which is used to select NFT projects to 

which we apply the LPPLS model. Next, we explain the LPPLS model and how it is extended to 

incorporate external variables. Finally, we explain how to calculate the bubble confidence  
indicator.  

 

3.1. Drawdown for Capturing Downward Price Trends   
 

In this study, we apply the drawdown concept when selecting the NFT projects to be analyzed 

with LPPLS. Drawdown is needed because the target data for the LPPLS model must be 
carefully selected to ensure that the time range does not include a single crash. Otherwise, the 

LPPLS model will not fit the data after the crash. Furthermore, a key LPPLS parameter is the 

date of highest crash probability. Hence, if there are multiple crashes in the range, the data will 
fail to set a unique parameter. Therefore, it is necessary to remove data containing extant crashes.  

 

In this section, we describe the original and coarse-grained types of drawdowns. We then explain 

how to identify crashes from ordinary drawdowns. The variables in this section are listed in 
Table 1.   

 
Table 1. Drawdown variables.  

 

 
 

3.1.1. Original Drawdown for the Detail Trend  
 

Drawdown and drawup concepts were introduced by Johansen and Sornette [10] to capture 

trends in price fluctuations, as shown in Figure 1. Drawdown is the percentage of change from 

one local maximum to the next local minimum price. Thus, as long as prices continue to fall, it is 
considered a drawdown. A drawup, in contrast, is the percentage change in price from one local 

minimum to the next local maximum. Both are given, respectively, as follows:  
 



242         Computer Science & Information Technology (CS & IT) 

 
 

 
 

Figure 1. Drawdown using Ethereum Name Service data series 

 

3.1.2. Coarse-Grained Drawdown for Macroscopic Trends  
 

A coarse-grained drawdown is used to capture downward price trends based on the “big picture.” 

A sequence of price declines for which a drawdown is calculated can be terminated by any small 
price increase. Generally, price fluctuations contain a great deal of noise. Therefore, the original 

drawdown concept may not adequately capture downward price trends.   

 

Therefore, we introduce a threshold epsilon such that the coarse-grained drawdown reflects the 
rate of change from the local maximum to the local minimum, where the minimum is the point at 

which the first drawup larger than ε occurs after the local maximum. The local maximum is the 

point at which the first drawdown smaller than -ε occurs after the local minimum. ε is obtained 

by using the following 𝜎d:   

  

 
 

3.1.3.Crash as an Outlier  
 
Drawdowns large enough to be called “crashes” must be distinguished statistically from other 

relatively small or ordinary drawdowns. Johansen and Sornette [10] analyzed past markets and 
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showed that nearly all drawdowns were well-fitted based on a stretched exponential function. 
However, some drawdowns that are not well-fitted are considered outliers. The stretched 

exponential function is given as  

 
 R(Drawdown) = Adexp(−b|Drawdown|Z), (5) 
 

 where 𝐴d is a constant and 𝑏 = 𝜆-Z.  

 

Per Johansen and Sornette [10], by taking the logarithm of (5) for convenient and efficient 
fitting, the following equation is obtained: 

  

log R(Drawdown) = log Az− b|Drawdown|Z. (6) 
 
This model is calibrated for ordinary least squares (OLS) applications using the dogbox 

algorithm [20]. In this study, an outlier is a drawdown value that deviates from the fit of (6) in 

the 99.5% tail of the distribution.  
 

3.2. LPPLS Model  
 
The LPPLS model [12], [20], [21] is used to detect and predict bubbles (i.e., faster-than 

exponential increases in asset prices). We use the LPPLS extension for bubble prediction, which 

targets the average NFT prices of all projects. Although each NFT has a unique price, we treat 
them as homogeneous. The variables used for this work are shown in Table 2.  

 
Table 2. LPPLS model variables. 

 

 
 

3.2.1. Original LPPLS Model  

 
The LPPLS model [12], [20], [21] is written in a suitable form for fitting time-series data: 

 



244         Computer Science & Information Technology (CS & IT) 

 
  

where 𝐴 = ln[𝑝(𝑡c)] , 𝑡c denotes the critical time at which the bubble is likely to end, is the 

degree of super exponential acceleration, 𝜔 is the frequency of the oscillation, and 𝜙 is its 

period.  

 

Assuming that 𝑟(𝜏) = 𝜑(𝜏) = 0, the original LPPLS model is obtained as  

 

, (8) 
 

 where  

  

 
 

Using the method of Filimonov and Sornette [21], the nonlinear parameter, 𝜙, can be eliminated 

to obtain the following equation:  
 

 , (11) 
 
Where 
 

 
 

3.2.2. Extended LPPLS Model  
 

To extend the original model so that external effects can be considered, we loosen the 

assumption that 𝑟(𝜏) and 𝜑(𝜏) are equal to zero. Although both   and   equal zero in the 
original model, they are not zero in reality. As performed by Zhou and Sornette [5], we assume 

that 𝜑(𝜏) is a constant 𝜑, and we employ the historical volatility of a specified asset as a proxy 

for the volatility factor, 𝜎(𝜏). Note that we still assume that the interest rate is zero for 

simplification. However, please note that Hu and Li [6] used real values (i.e., the risk-free 

interest rate and deposit reserve rate in China).  

Therefore, we obtain  
 

 , (14) 
 
 where   
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Following Zhou and Soenette [5], we use the trapezoid scheme to integrate 𝜎(𝜏, 𝑛) as follows:  

 

 
 

As mentioned, the original LPPLS model cannot account for external impacts. Hence, we 

propose this extended model based on the cryptocurrency’s volatility.  

 
Although studies [22] and [23] showed that volatility transmission effects between 

cryptocurrencies and NFTs are limited, Ante [24] revealed that a BTC price shock caused an 

increase in NFT sales. Furthermore, between BTC and Ethereum (ETH), a bidirectional 
relationship between returns and long-term spillovers was found.   

 

Therefore, it is advisable to use cryptocurrency volatilities as the proxy for the volatility factor,  

𝜎(𝜏, 𝑛). Specifically, we use the historical volatilities for 7, 30, and 90 days of each BTC and 

ETH blockchain and compare the models while incorporating each external variable (see Section 

3.2.7 for model evaluation details).  

 

3.2.3.Calibration  
 

Both LPPLS models can be calibrated using OLS to minimize the sum of squared residuals using 
a modified Python module [25]. 

  

3.2.4.Evaluation  
 

To compare the original and extended LPPLS models using each explanatory variable, we apply 

the Akaike information criterion (AIC)[26]and adopt the model with the minimum AIC value. 
As performed by Zhou and Sornette [5], AIC is calculated by fitting models (11) and (14) with 

each external factor (see Section 4). We also calculate the adjusted R2 from (11) and (14) to 

compare the models’ explanatory power. Finally, we test the significance of each external 
explanatory factor by fitting each model (14) and calculating the p-values of the external factor 

coefficients.  

 
Although these tests require that residual errors be i.i.d. with a Gaussian distribution and that the 

errors remain somehow dependent, the tests are still helpful in comparing relative model 

performance [5], [6].  

 

3.2.5. Bubble Confidence Indicator  

 

We use the bubble confidence indicator [11] to detect and predict bubbles. This index shows how 
well the targeted data fit the price movements from empirical bubble evidence from previous 

studies [11], [27], [28]. The larger the bubble confidence indicator, the more reliable the pattern 

(i.e., a crash is more likely).  
 

A bubble confidence indicator for a given 𝑡’ is calculated using the following steps:  

  

(1) Iterate calibration for each time window where the start time, 𝑡(, moves toward the end 

time, 𝑡’, with a specific step, 𝑑𝑡. In this study, we set the initial time range as 120 days 

and 𝑑𝑡 as 5 days, following Ito et al. [8]. Thus, each 𝑡’ has 24 time windows.   
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=  
[ 0 < 0 ] ∗ 

 

(2) Count the number of cases in which 𝐵 < 0 for each 24-calibration outcome, 

denoted as [𝐵< 0]count  

(3) Count the cases in which the parameters satisfy the conditions listed in Table 4 and name 

them as [𝐵< 0]∗count, as derived from previous studies [11], [27], [28].  (4)Obtain the 
bubble confidence indicator as  

 
 bubbleindicator Count, (19) 

[0 < 0]Count 
 

A higher bubble confidence indicator means that the price is likely to experience faster-

thanexponential growth [29].  
 

The bubble confidence indicator assumes that if a bubble is endogenous, the parameters must 

satisfy certain conditions, and the conditions are obtained inductively from empirical evidence 

[11], [27], [28]. Therefore, there are two drawbacks. Even if no apparent endogenous bubble 
trend is detected, it may only be offset by exogenous influences, and the hidden endogenous 

bubble may continue to grow. Furthermore, an apparent endogenous fluctuation may actually be 

a false endogenous detection caused by exogenous influences.  
 

To test for these errors, we first calculate the bubble confidence indicator by fitting the original 

LPPLS model to the price data for each NFT project. We then calculate the indicators by fitting 
the original LPPLS model to the processed price data from which external effects are eliminated 

using the 𝐷 and 𝜐(𝑡) from (12). The model from which we adopt the 𝐷 and 𝜐(𝑡) depends on the 

comparison. If both calculate higher values, then there is a strong possibility that an endogenous 

bubble is occurring.  
 

Table 3. Filtering conditions for each item in calculating the bubble confidence indicator.  

 

 
 

4. DATA 
 

To compare the results with those of previous studies [8], the data used for our analysis included 

the same projects and periods as [8]. Namely, we used data from four major NFT projects: 

Decentraland (from March 19, 2018, to December 20, 2021), CryptoPunks (from May 17, 2018, 
to December 12, 2021), Ethereum Name Service (from May 4, 2019 to December 20, 2021), and 

ArtBlocks (from November 27, 2020 to December 20, 2021). These price data are available at 

https://nonfungible.com/ [30].  
 

We used the same processed data as Ito et al., provided by the Non-Fungible Corporation [30]. 

These data include weekly moving averages and average daily values of all NFT projects [8]. 
Notably, NFTs are not necessarily traded frequently, and huge price differences can be found 

within the same project.   

 

Regarding the volatility of cryptocurrency data, we applied the historical volatilities of 7, 30, and 
90 days per BTC and ETH. These data are available at https://finance.yahoo.com/ [31].  
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5. RESULTS 
 

5.1. Selection of NFT Projects for the LPPLS Model  
 

First, we obtained coarse-grained draw downs for the four NFT projects. Then, we extracted 

crash points by fitting a stretched exponential function with a 99.5% distribution point to indicate 

a crash. Figure 2 illustrates the coarse-grained drawdown points for ArtBlocks, some of which 
were considered crashes. Decentraland, CryptoPunks, and Ethereum Name Service did not 

indicate crashes, regardless of the epsilon value set.  

 

The following analytical results were obtained for the three crypto services. Although proper 
data extraction would improve LPPLS model fitting, even for these projects, extending the data 

extraction and their pretreatments was outside of the scope of this study. This may provide a 

future research opportunity in the near future.  
 

 
 

(a)  

 

 
 

(b)  
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(c)  

 
Figure 2. Coarse-grained drawdowns in ArtBlocks: (a) 𝜀 = 𝜎/4, (b) 𝜀 = 𝜎/2, and (c) 𝜀 = 𝜎. 

 

 
 

Figure 3. Stretched exponential function for drawdowns in ArtBlocks  
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Table 4. Logarithmic parameters of the stretched exponential function for ArtBlocks. 

 

ε  A  b  z  

σ/4  63.336  4.894  1.040  

σ/2  41.271  4.986  1.403  

σ  41.855  4.780  1.263  

 
Table 5. Largest ArtBlockscrash.  

 

Rank  Size  Start Date  

1  −0.745  3/15/2021  

2  −0.730  1/9/2021  

3  −0.670  5/21/2021  

 

5.2. Comparison of Original and Extended Models  
 

When comparing the original LPPLS and extended models based on each explanatory variable, 
we calculated the AIC[26]and adjusted the R2 values by fitting models (11) and (14) to each 

external factor. We also tested the levels of significance for each external explanatory factor by 

fitting model (14) and calculating the p-value of each external factor’s coefficient.  

The results revealed the following:   
 

(1) As listed in Table 13, each adjusted R2 in the extended model was higher than that of the 

original, and the AIC shrank in the extended models. This means that the explanatory power and 
forecasting accuracy, respectively, increased when the external variables were considered.   

(2) For each project, the extended model was superior for detecting 90-day BTC volatility in 

Decentraland, 30-day ETH volatility in CryptoPunks, and seven-day ETH volatility in Ethereum 

Name Service.  
(3) The explanatory power of the original model was much higher for CryptoPunks (Table 

6-b) than for Decentraland (Table 6-a) and Ethereum Name Service (Table 6-c).   

(4) In each best case, the external factor had a positive effect in Decentraland (Table 6-a), 
while it was negative in CryptoPunks (Table 6-b) and Ethereum Name Service (Table 6-c). 

The implications inferred from these results are as follows:  

(1) Assets are more sensitive to the cryptocurrency with which NFTs are traded.  
(2) Owing to the fact that some projects had a good fit in the original model, the LPPLS 

model’s assumption of mimetic irrational investors may be valid.  

(3) Considering that there are collection-oriented NFTs and others for practical applications, 

a cross-sectional study based on these characteristics may be needed in the future (see Section 6).  
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Table 6. Adjusted R2, AICs,and significance test results of the original and extended models.  

(a) Decentraland  

 

Model  Original     Extended    

External 

variable  
-  

7-day  

BTC  

volatility  

30-day  

BTC  

volatility  

90-day  

BTC  

volatility  

7-day  

ETH  

volatility  

30-day  

ETH  

volatility  

90-day  

ETH  

volatility  

Coefficient 

t-value  
-  

64.017 

***  

−3.120 

***  

64.453 

***  

−17.506 

***  

−18.617 

***  

−19.517 

***  

Adjusted 
R2 

0.579  0.763  0.584  0.770  0.656  0.665  0.669  

AIC  3,403  2,612  3,3878  2,575  3,124  3,089  3,071  

N  1,373  1,373  1,373  1,373  1,373  1,373  1,373  

 
(b) CryptoPunks  

 

Model  Original     Extended     

External 

variable  
-  

7-day  
BTC  

volatility  

30-day  
BTC  

volatility  

90-day  
BTC  

volatility  

7-day  
ETH  

volatility  

30-day  
ETH  

volatility  

90-day  
ETH  

volatility  

Coefficient 

t-value  
-  

−3.266 

***  
−1.946  

−7.784 

***  

−17.852 

***  

−19.529 

***  

−19.363 

***  

Adjusted 

R2 
0.969  0.954  0.954  0.970  0.963  0.974  0.973  

AIC  2,169  2,688  2,694  2,138  2,412  1,932  1,987  

N  1,314  1,314  1,314  1,314  1,314  1,314  1,314  

 
(c) Ethereum Name Service 

 

Model Original Extended   

External 

variable 
- 

7-day 

BTC 
volatility 

30-day 

BTC 
volatility 

90-day 

BTC 
volatility 

7-day 

ETH 
volatility 

30-day 

ETH 
volatility 

90-day 

ETH 
volatility 

Coefficient 

t-value 
- 

−8.931 

*** 

−8.690 

*** 

−8.341 

*** 

−9.788 

*** 

−11.369 

*** 

−11.361 

*** 

Adjusted 

R2 
0.622 0.664 0.664 0.663 0.707 0.669 0.667 

AIC 1,953 1,839 1,840 1,841 1,707 1,825 1,830 

N 962 962 962 962 962 962 962 

 
Coefficient t-values are of the external variables. *** shows the significance level at the 1% confidence 

level. 

 

5.3. Comparison of Bubble Confidence Indicators  
 
We calculated the bubble confidence indicators for the original data using the logarithm of the 

weekly moving average price of each NFT project (Fig. 4-a, b, c) and the processed price data 

from which external effects were eliminated using the 𝐷  and 𝜐(𝑡) in (12) and shown in (Fig. 
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4a',b', and c'). The model 𝐷  and 𝜐(𝑡) parameters adopted were determined by comparing the 
model evaluation results.   

 

Overall, the original indicator correctly detected endogenous bubbles because the trends revealed 
by the indicators were roughly aligned. However, as in July 2022 with CryptoPunks, the original 

bubble confidence indicator did not detect a high endogenous risk; however, the indicator from 

the processed data did.  
 

Therefore, a type-2 error may have occurred when predicting the bubble risk based on the 

confidence indicators calculated from the original data. However, a more realistic bubble 

confidence indicator might not be determined, as we did not examine the bubbles using multiple 
approaches (see Section 6).  

 

 
 

(a) Decentraland (the bubble confidence indicator calculated from the original price data)  

 

 
 

(a') Decentraland (the bubble confidence indicator calculated from the processed price data)  

 

 
 

(b) CryptoPunks (the bubble confidence indicator calculated from the original price data)  

 



252         Computer Science & Information Technology (CS & IT) 

 
 

(b') CryptoPunks (the bubble confidence indicator calculated from the processed price data)   

 

 
 

(c) Ethereum Name Service (the bubble confidence indicator calculated from the original price data)  

 

 
 

(c') Ethereum Name Service(the bubble confidence indicator calculated from the processed price data)  

 
Figure 4. Results of the bubble confidence indicator of the original and processed data  

 

6. CONCLUSION 
 

Our conclusions are summarized as follows:  

(1) Using the concept of drawdown, we successfully selected NFT projects to fit LPPLS 

analysis appropriately.   
(2) We extended the original LPPLS model by incorporating external variables to improve 

its explanatory power and forecasting accuracy.  

(3) By comparing the two kinds of confidence indicators, the results of endogenous bubble 
detection were confirmed.   

 

Notably, the methods used to select appropriate NFT projects can be improved. For example, a 
crash might also be defined by considering its course-grained time horizon. It may also be 

possible to use the LPPLS model to analyze projects by cropping the period to be analyzed.  

 



Computer Science & Information Technology (CS & IT)                                        253 

 

 

Moreover, there is room to consider additional explanatory variables. Cryptocurrency  volatilities 
were employed in this study as explanatory variables, but as noted, their relationship with NFT 

prices remains unclear. Notably, an attention index that reflects public interest in a given project 

could be leveraged as an alternative variable.  
 

We showed that bubble confidence indicators can appear differently depending on whether 

external variables are considered. However, this did not necessarily improve the predictive 
power of the model. We must continue to examine the bubbles using different approaches (e.g., 

Metcalfe’s Law) for triangulation purposes.  

 

Finally, because only a few projects were covered, it was difficult to make cross-sectional 
comparisons that considered the characteristics of each project. By broadening the scope in the 

future, it may be possible to identify project characteristics that influence their susceptibility to 

internal or external influences.  
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