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ABSTRACT 
 
In this paper, the first-stage retrieval technology is studied from four aspects: the development 

background, the frontier technology, the current challenges, and the future directions. Our 

contribution consists of two main parts. On the one hand, this paper reviewed some retrieval 

techniques proposed by researchers and drew targeted conclusions through comparative 

analysis. On the other hand, different research directions are discussed, and the impact of the 
combination of different techniques on first-stage retrieval is studied and compared. In this way, 

this survey provides a comprehensive overview of the field and will hopefully be used by 

researchers and practitioners in the first-stage retrieval domain, inspiring new ideas and 

further developments. 
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1. INTRODUCTION 
 

First-stage retrieval technology is the process of matching and retrieving text information by 

using computers [2]. Today, Internet users are generally facing the problem of information 
overload. First-stage retrieval technology is an important auxiliary means to solve the problem of 

information overload, which can help humans obtain important information more quickly and 

accurately. As one of the research hotspots in the field of natural language processing, first-stage 
retrieval technology effectively improves the efficiency of browsing and processing information. 

 

In recent years, the development of deep learning technology has greatly affected the field of 

natural language processing. Researchers have used deep learning technology to improve 
traditional first-stage retrieval technology and meet the limitations of term-based retrieval 

systems. Traditional first-stage retrieval relies on term-matching techniques. However, term-

based retrieval systems have natural defects in dealing with polysemy, synonymy, and other 
issues between queries and candidate texts [83]. The information used by the traditional methods 

is mainly based on the correlation measure reflected by the statistical frequency of terms, and 

generally compares the surface level, but ignores the use of the discourse information and 
semantic information of the document. Deep models with sufficient model capacity have greater 

potential to learn these complex tasks compared to traditional shallow models. Because of these 

potential benefits and the expectation that deep learning might achieve similar success in first-

stage retrieval [14], there has been substantial growth in recent years in both academic and 
industrial work on applying neural networks to build retrieval models. 
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As deep learning technology has achieved a series of breakthroughs in distributed semantics, 
machine translation, and other tasks, the application of related methods in first-stage retrieval 

tasks has also attracted wide attention. The semantic representation of the document itself has a 

strong structure, and the semantic units are closely related to each other. The architecture based 

on a bi-decoder is currently the most popular because it can avoid tedious manual feature 
extraction and is simple to start training [4]. However, these methods require a larger training 

corpus than traditional methods. In addition, although deep learning methods have to a certain 

extent solved some problems previously existing in first-stage retrieval, the quality of retrieval 
candidate lists still falls short of the relevant requirements of human subjective evaluation. 

 

As an important research direction in the field of natural language processing, first-stage 
retrieval still faces a lot of problems. Half a century of continuous research has made significant 

progress in some first-stage retrieval tasks, but there are still many key problems to be solved to 

improve its application value and expand its application scope. Typically, the retrieval process of 

current first-stage retrieval systems is faced with the problems of poor ability to measure the 
relevance of query and candidate text and low retrieval efficiency. This leads to low correlation 

and poor real-time performance of the candidate sequences generated by retrieval. 

 

 
 

Figure 1. Retrieval results of a query in MSMARCO  
 

The real example shown in Figure 1 is used here to illustrate the problem, and the example is 

taken from the MSMARCO [134] dataset. The orange part is the information that the human 
writes the query to focus on, and the blue part is the information that the retrieval model gets 

from the "relevant" paragraph to focus on. We can see that the main purpose of the query is to 

ask for the definition and content of the "interaction between surface water and groundwater." 

However, among the top two results generated by the machine, the first paragraph only focuses 
on the term information of "groundwater" and "surface water," which does not capture the overall 

tendency and purpose of the query semantics. It can be said that the retrieval list generated by the 

machine and the real user query goal are inconsistent. And in this case, the positive candidate that 
meets the purpose of the user query has been ranked after 10. It can be said that the retrieval list 

generated by the machine is not ideal yet. 

 

We hope that in the future, computers can judge the relevance of queries and candidate texts like 
humans and can compile and retrieve a high-quality list of candidate texts. However, the poor 

ability of the first-stage retrieval system to measure the relevance of query and candidate text 
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often leads to the low ranking of the ideal item in the generated candidate list. These problems 
seriously damage the quality of retrieval. Low-quality candidate lists also create a lot of obstacles 

to the application of retrieval systems. Therefore, we urgently need to solve this critical problem. 

Our survey paper aims to provide a comprehensive understanding of the field to benefit 

researchers and practitioners in the field of first-stage retrieval. 
 

2. BACKGROUND 
 

The goal of information retrieval is to provide the most relevant information to the user's query 
[94]. As Figure 2 shows, this task mainly consists of two stages: 1) The first-stage retrieval stage: 

filtering the text that is relevant to the query from the candidate set. 2) The ranking stage: re-

ranking the text produced in the previous stage according to the relevance score. 

 

 
 

Figure 2. The architecture of a modern information retrieval system 

 

In the first-stage retrieval stage, the retriever often needs to provide a set of documents related to 

the user's query from a large number of candidate data, so time efficiency and recall rate should 

be considered simultaneously. The techniques commonly used in this stage are vector space 
models [5], probabilistic models [6], learned ranking (LTR) models [7, 8], and pre-trained models 

such as Latent Semantic Indexing (LSI) [85], Latent Dirichlet Allocation (LDA) [86], and BERT 

[87]. 
 

In the ranking phase, the ranker adjusts the ranking obtained from the retrieval in the first phase 

based on the relevance score. Since the candidate text size is greatly reduced after filtering in the 
first stage, this stage focuses on improving the effectiveness of the results rather than efficiency. 

Traditional techniques at this stage include neural models such as RankNet [88], learned ranking 

[7, 8, 89], DRMM [40], and Duet [90]. These models leverage recent techniques such as 

reinforcement learning [91], contextual embedding [92], and attention mechanisms [93] to learn 
how to rank relevant texts based on a user's query terms [1]. 

 

Note that this work only focuses on the first stage of the retrieval system. 
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3. TERM-BASED RETRIEVAL 
 
Term-based retrieval directly matches terms in the query and the candidate text [102]. Its 

advantage is that it is simple and fast, but it cannot solve problems such as synonymy and 

polysemy in first-stage retrieval [103, 135]. Important concepts in the field of retrieval, such as 

TF-IDF [105, 106], are proposed in this field. In addition, the Query Likelihood model [107] and 
the divergence from randomness [108] proposed in recent years use probability and language 

modeling techniques to improve retrieval performance, which have attracted wide interest. Other 

methods, such as the TDM proposed by [104], have been proposed to improve the accuracy and 
efficiency of retrieval systems. 

 

3.1. Expansion Technologies 

 

Expansion technology is a traditional improvement technology in the field of term-based retrieval, 

which includes query expansion and candidate text expansion. Query expansion typically 
identifies related terms using the semantic relations of the lexicon [109]. The main contributions 

in the field of query expansion include representative methods such as using local models to 

incorporate the obtained relevance feedback into first-stage retrieval systems [110–114] and 

using query context information to improve retrieval performance [81]. Correspondingly, 
candidate text expansion improves retrieval performance by expanding the representation of 

candidate texts [115, 116]. Representative methods of candidate text expansion include extending 

candidate text representation with relevant terms [117], extending candidate text representation 
with large lexical databases [118], and extending text representation with semantically relevant 

terms or external collections [119, 120], etc. 

 

3.2. Topic Model 
 

Topic models are often used by researchers to improve text representation and indexing in first-
stage retrieval systems [1, 97, 100, 101]. For example, [95] introduces the concept of a 

generalized vector space model. This year, various topic models are often applied to first-stage 

retrieval. For example, researchers have proposed a new method for AD hoc retrieval that applies 
Latent Dirichlet Allocation to the indexing and language modeling stages [98]. Work [99] 

compares the performance of various topic models commonly used in first-stage retrieval, such as 

LDA and PLSA. Researchers in their work [96] describe the use of corpus statistics to improve 

ad-hoc first-stage retrieval systems. 
 

The topic model is a kind of generative model based on the Bayesian network that reduces the 

dimension of high-dimensional document data to latent topic space, defines each topic as a 
probability distribution specific to a given dictionary, and assumes that each document is 

composed of all latent topics and that the proportion of the mixture follows a multinomial 

distribution. In recent years, topic models have been widely used in document classification, 

social network text analysis, and other fields due to their excellent data dimensionality reduction 
ability and latent semantic mining ability. 

 

Based on different research purposes and methods, topic models are divided into supervised and 
unsupervised topic models. 1) Representative studies of unsupervised topic models include 

Latent Dirichlet Allocation (LDA) proposed by [20], in which models document words based on 

bags of words. In order to describe the correlation between topics, [21] proposed the Relevant 
Topic Model (CTM), which replaced the unreasonable Dirichlet distribution in the LDA model 

with the logical normal distribution and other works. 2) The most representative research in the 

supervised topic model includes [22]'s proposed supervised latent Dirichlet distribution model for 
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regression problems, but it can only deal with single-label documents. Based on the polynomial 
inverse regression model [23], Rabinovich et al. [24] proposed the Inverse Regression Topic 

Model (IRTM). Other related work will not be described. 

 

One idea [82] is to combine a topic model and clustering algorithm to generate topic-related 
candidate text clusters and construct topic-aware contrastive learning samples, so as to bridge the 

inconsistency between retrieval matching relevance and semantic similarity and improve the 

relevance measurement ability of the retrieval system. 
 

3.3. Other Term-based Technologies 

 
Other technologies related to term-based retrieval include lexical dependency, multilingual 

retrieval, and other models. The lexical dependency model mainly studies the relationship 

between terms in the text and their influence on retrieval performance [121]. Representative work 
includes proposing new term dependency weighting schemes [122–125] to improve model 

retrieval performance. In addition, [126] improved retrieval efficiency by capturing term 

relationships through a novel dependency language model. The method of combining kernel 
function with BM25 retrieval was proposed by [127] for first-stage retrieval relevance ranking. 

Multilingual retrieval models are another research hotspot in the field of information retrieval, 

which treats the retrieval task as a statistical translation problem [128]. Some representative 

works estimate statistical translation models using temporary information from mutual 
information or click volume data [129, 130]. In addition, theoretical analysis work in this field 

[131–133] has demonstrated the potential of using statistical translation models to improve 

information retrieval systems. 
 

4. DENSE RETRIEVAL 
 

With the application of deep learning in the field of retrieval, Dense vector Retrieval (DR) is used 

to improve retrieval performance in the first stage [3]. The DR model can be divided into the 
representation-based retrieval model and the interactive retrieval model. 

 

4.1. Representation-based Retrieval Model  
 

The basic assumption of the representation-based retrieval model is that the relevance between 

query and candidate text depends on the semantic composition of the text. Therefore, such 
models usually use deep neural networks as the representation functions φ and ψ of the query and 

the candidate text to obtain a high-level representation of the input query q and the candidate text 

t, and use some simple evaluation function g (such as Euclidean distance, cosine function or 
multilayer perceptron) to produce the final relevance score. 
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Figure 3. Schematic of the representation-based retrieval model 

 
Early applications of deep network structures in φ and ψ mainly include fully connected 

networks, convolutional networks, and recurrent networks. To the best knowledge of the authors, 

DSSM [15] is the first work to implement the functions of the representation functions φ and ψ 
using fully connected networks. This was followed by works such as Arc-I [16], CNTN [17], and 

CLSM [18], in which both φ and ψ used convolutional networks. Taking Arc-I as an example, the 

stacked convolutional layer and the Max pooling layer are applied to the input query q and the 

candidate text d respectively, to generate their high-level representations, and then the two 
representations are concatenated and an MLP is applied as the evaluation function g. CNTN 

adopts a similar structure to Arc-I, with the difference that a different evaluation function is used. 

However, recurrent networks have been used to implement φ and ψ in works such as LSTM-
RNN [19] and MV-LSTM [20]. 

 

With the extensive research and application of pre-trained deep language model technology, deep 
bidirectional language model Bert [21] and other models have become mainstream text 

representation encoders. Recent advances in natural language understanding have driven rapid 

advances in first-stage retrieval, and the pretraining-fine-tuning paradigm has been highly 

effective in learning text encodings. Recent works employ BERT-based models as deep 
bidirectional encoders to encode input text sequences into vector representations [22–28], and 

such models are also known as dense encoders or dual encoders. By fine-tuning the actual 

semantic vector similarity association, vectors can realize text comparison and retrieval through 
inner product methods. 

 

As shown in Figure 3, the representational retrieval model uses a dual encoder to map the query 
and the candidate text encoding into the same semantic vector space and constructs a matching 

function to score the matching degree of the query and the candidate text. The advantage of this 

method is that the representation vectors of all candidate texts can be calculated offline, and only 

the representation vectors of the query need to be calculated and then matched online, which has 
a small amount of calculation and a fast running speed [22, 24–26]. The disadvantage is that the 

representation vectors learned by the query and candidate text are static, which creates a certain 

semantic drift and makes the final matching accuracy low [22, 23, 25, 28]. 
 

Representational models can be further divided into two categories: 1) Single-vector 

representational models; 2) Multi-vector representational models. 

 
The single vector representation model uses a single vector to represent the query and the 

candidate text, respectively, which is the mainstream architecture in the current industry and the 
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point of academic focus. Representative works include DPR [29], RAG [30], RepBERT [31], 
CoRT [32], RocketQA [33], etc. 

 

A multi-vector representation retrieval model uses multiple vectors to represent text, mainly 

including representation based on different language granularities (words, short phrases, 
sentences, etc.) and vector expansion generation. Representative works include MUPPET [34], 

ME-BERT [35], ColBert [36], DensePhrases [37], etc. 

 
The advantage of this method is that the representation vectors of all candidate texts can be 

computed offline, while only the representation vectors of the query need to be computed and 

matched online, so the computational complexity is small and the operation speed is fast. The 
disadvantage is that the interaction between the query and the candidate text occurs only when 

the final match score is computed. The vectors learned for query and candidate texts are static 

and represented the same in different contexts, leading to a certain semantic drift and a lower 

final matching accuracy. 
 

4.2. Interactive Retrieval Model 
 

The underlying assumption of interactive retrieval models is that relevance is essentially about 

the relationship between a query and a candidate text, so learning directly from interactions is 

more effective than learning from individual representations. These models calculate correlation 
scores by defining interaction functions rather than representation functions and abstracting the 

interactions with a complex evaluation function g (i.e., a deep neural network).  

 

 
 

Figure 4. Schematic of the interactive retrieval model 

 

As shown in Figure 4, the interactive retrieval model adopts a cross-encoder. The query and 

candidate texts will be mutually calculated during encoding so that the encoding can better 
integrate contextual information and highlight key semantic content. The advantage of the 

interaction model is that it can achieve more fine-grained matching and effectively improve the 

matching effect. The disadvantage is that the candidate text cannot be encoded offline, and all the 

computations are done online, which is time-consuming to run. When comparing different 
interaction functions, they can be divided into two categories, namely, nonparametric interaction 

functions and parametric interaction functions. 

 
Non-parametric interaction functions refer to functions that reflect the distance between inputs 

without learnable parameters, such as binary indicator functions, cosine similarity functions, dot 

product functions, and radial basis functions [38]. Another part of the work defines the 
interaction between a word vector and a set of word vectors, such as the matching histogram 

mapping in DRMM [39] and the kernel pooling layer in K-NRM [4, 40]. 
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Parametric interaction functions use parametric interaction functions to learn a similarity function 
from data. The parameterized interaction function is usually adopted when the training data is 

sufficient because it can improve the flexibility of the model while reducing its complexity. For 

example, Arc-II [41] uses convolutional layers to enable the interaction between two phrases. 

Match-SRNN [42] introduces neural tensor layers to model complex interactions between input 
words. State-of-the-art work on interactive models is BERT-based models [43] that use attention 

as an interaction function, learning interaction vectors (i.e., the [CLS] vector) between inputs. 

 
This method uses a cross-encoder to interactively calculate the query and candidate text during 

the encoding process so that the encoding can better fuse the context information and highlight 

the key semantic content. The specific interaction scheme includes the early multi-level similarity 
calculation and the current different granularity interaction calculation based on the attention 

structure. The advantage of this interaction model is that it can achieve more fine-grained 

matching and effectively improve the matching effect. The disadvantage is that the candidate text 

cannot be encoded offline and all computations are done online, which is poor in real-time. 
 

 

5. CURRENT CHALLENGES 
 

5.1. Deficiencies in Text Representation 
 

Recent advances in natural language understanding have driven rapid advances in first-stage 
retrieval, and the pretraining-fine-tuning paradigm has been highly effective in learning text 

encodings. In recent years, most of the state-of-the-art BERT-based series models have been used 

as deep bidirectional encoders to encode the input text sequence into a vector representation, 
which is also known as dense encoders or dual encoders. By fine-tuning the actual semantic 

vector similarity association, vectors can realize text comparison and retrieval by inner product 

and other methods. 

 
Current first-stage retrieval systems that balance quality and efficiency generally encode text 

sequences such as sentences and paragraphs into a single dense vector representation by fine-

tuning deep language models to achieve efficient text comparison and retrieval. In addition to the 
large amount of data and complex techniques required for effective training in the fine-tuning 

stage, another key problem is that the internal attention structure of advanced bidirectional 

language encoding models in the NLU field cannot directly meet the output requirements of 

dense retrieval encoders, and further aggregation of text information into a single dense 
representation is required. Existing works solve this problem in a mild way, which can be 

summarized into two categories: 1) Selecting the fine-tuned CLS vector (BERT preset) as the 

representation of the entire text; 2) The final output sequences of standard pre-trained 
bidirectional language encoding models are simply fused into a single vector: sequence averaging, 

Max pooling, etc. 

 
It is worth noting that the above two ways of obtaining a single vector representation of the text 

have certain defects: 1) For the method of using Bert's preset CLS vector as a single dense 

representation of the text, the underlying assumption is that CLS can well integrate the context 

information of the text token sequence, thus providing a global representation of the text. 
However, this method lacks sufficient theoretical basis and experimental support. From the 

perspective of theoretical origin, CLS is a preset vector added to the first place of the input text 

by BERT, which is applied to the NSP task, one of the two pre-training tasks of BERT. In the 
NSP task, the final hidden state of CLS is passed through the MLP as the sentence pair coherence 

score. Due to the lack of consistency between the pre-training task and the downstream text 
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representation task serving retrieval, CLS does not have the natural advantages of text 
representation. From the perspective of experimental analysis, the recent Sentence-BERT 

experiment shows that the CLS method is significantly worse than simple average pooling in the 

sentence vector generation task for similarity evaluation. 2) For the method of simply fusing the 

output sequences of the final layer of the standard pre-trained bidirectional language encoding 
model, there are the following defects: the spatial anisotropy of the representation vector is 

aggravated, and the semantic distribution of the representation space is fuzzy. 

 

5.2. The Asymmetry of Query-Text 
 

The application scenarios of first-stage retrieval mainly include ad-hoc retrieval, question 
answering, community question answering, and other applications such as product search, 

sponsored search, etc. In ad-hoc retrieval and question answering, which is the most widely used 

scene, there is a key problem that hinders the development of semantic matching: the query and 
the candidate text often have obvious differences in length, semantic information asymmetry, and 

syntactic structure dissimilarity. Taking the MSMARCO dataset in the field of reading 

comprehension released by Microsoft as an example, the average length of the query sentence is 
10, and the average length of the candidate paragraph is 120, which is an order of magnitude 

different. The above asymmetry brings difficulties to the retrieval semantic matching task. 

 

In the early technology of the bag-of-words model in the field of retrieval, the relevance measure 
was based on the common term frequency. At the same time, due to the short query sentence and 

few key terms, the matching terms are too restrictive. Based on this, query expansion technology 

emerges as the need arises, which alleviates this problem to a certain extent. Query expansion 
mainly includes expansion based on lexical relations [78, 79], expansion based on concepts [80], 

and relevance feedback methods [81]. With the development of deep learning, the combination of 

traditional query expansion methods and deep learning is an idea for this project. 
 

6. FURTHER DIRECTIONS 
 

6.1. Joint Research on Contrastive Learning and First-Stage Retrieval 
 

Contrastive learning is a discriminative representation learning framework based on the idea of 

contrast, which is mainly used for unsupervised representation learning. Similar to the Masked 

Language Model in deep language models, contrastive learning, as a framework for 
representation learning using unlabeled data, is not limited to a specific model category. 

 

In the past two years, contrastive learning has started to set off a wave in the field of computer 
vision. MoCo [44], SimCLR [45], BYOL [46], SimSiam [47], and other model methods based on 

contrastive learning ideas have emerged one after another. As an unsupervised representational 

learning method, contrastive learning has outperformed supervised learning on some tasks in the 

field of computer vision. Since then, there have been some follow-up works in the field of natural 
language processing, such as ConSERT [48], SimCSE [49], etc., which use the idea of 

contrastive learning to learn sentence representation, and reach a level beyond SOTA in the 

evaluation of the Semantic Text Similarity Matching (STS) task. 
 

The application method of contrastive learning in the field of text representation usually 

compares an example with its semantically similar example (a "positive example") and its 
semantically dissimilar example (a "negative example"). By designing the model structure and 

contrastive loss, the representations corresponding to semantically similar examples are closer in 
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the representation space, and the representations corresponding to semantically dissimilar 
examples are farther away in order to achieve the effect of class-like clustering. 

 

The goal of contrastive learning applied to text representation is to learn a high-quality semantic 

representation space from data. In recent years, BERT-flow [76] and BERT-whitening [77] and 
other works have analyzed the problems of space collapse in text representation space and 

proposed improved methods. Recent work [48] has proposed two indicators to measure the 

quality of representation space: alignment and uniformity. Alignment requires that 
representations of similar examples be as close as possible in space, while uniformity requires 

that representations of dissimilar examples be uniformly distributed on the hypersphere. Since the 

uniform distribution has the highest information entropy, the more uniform the distribution is, the 
more information is retained, and the representation space satisfying alignment and uniformity is 

considered to be more ideal. 

 

Some important works on contrastive learning in the field of text representation, such as 
ConSERT and SimCSE, focus on sentence representation and are evaluated on the STS task of 

text similarity matching. We have directly grafted the above works into the first-stage retrieval 

task, and the evaluation results show that the above works are not improving as expected. There 
is a certain difference between the "relevance" of semantic matching in the retrieval domain and 

the "similarity" between sentence pairs. In the widely used ad-hoc retrieval and traditional 

question-answering tasks, the length and semantics of the query sentence and the candidate text 
are asymmetric, and the grammatical structure is different. The positive query-candidate text pair 

does not strongly depend on the global semantic and syntactic structure similarity. On the 

contrary, in the STS series of tasks, the target score is strongly related to the semantic, 

grammatical, and length similarity of the sentence, which may be the main reason for the failure 
of the direct grafting of contrastive learning in the field of sentence similarity to the retrieval 

field. 

 

6.2. Joint Research on Knowledge Distillation and First-Stage Retrieval 
 

With the development of deep learning, the performance of many NLP tasks has reached 
unprecedented levels. Researchers believe that complex models can significantly improve the 

learning performance of deep learning tasks, but at the same time they consume a lot of storage 

space and computing resources. To solve this problem, the method of model compression greatly 
alleviates the problem of insufficient computing resources and storage space, and the knowledge 

distillation method is a specific method under model compression. 

 

 
 

Figure 5. Schematic of the general framework for knowledge distillation 
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The knowledge distillation model adopts the method of transfer learning, as shown in Figure 5. 
By using the output of the pre-trained Teacher model as a supervision signal to train another 

simple Student model, the complex model can be viewed as a large-scale network structure 

obtained under strong constraints. Distillation aims to extract a small application-side model from 

a complex, large-scale model. The difficulty is to reduce the structure of the network while 
retaining the knowledge in the network. Hinton proposed a way to preserve generalization ability 

when converting complex models to small-scale models [50]: introduce soft targets to maximize 

the amount of information in complex models, i.e., entropy. The entropy value of discrete data is 
the highest in the case of equal probability, which is close to the case of equal probability so that 

the soft target can obtain more information and a smaller gradient variance in the training process 

to facilitate the small-scale model's ability to complete the training with fewer data and a smaller 
learning rate. 

 

Work on knowledge distillation for model compression inspired by human teacher-student 

interactions has recently been extended to ideas such as teacher-student learning [51], mutual 
learning [52], assisted instruction [53], lifelong learning [54], and self-learning [55]. Extensions 

to knowledge distillation have focused on the compression of deep neural networks, and the 

resulting lightweight student networks can be easily deployed in applications such as visual 
recognition, speech recognition, and natural language processing. Furthermore, knowledge 

transfer from one model to another in knowledge distillation can be extended to other tasks such 

as adversarial attacks [56], data augmentation [57, 58], data privacy and security [59], etc. 
 

The representative works of knowledge distillation applied to first-stage retrieval include TCT-

ColBERT [60], TRMD [61], Margin-MSE loss [62], RocketQA [33], etc. The application in the 

RocketQA model helped it obtain the SOTA of the representation architecture-based question-
answering retrieval model. 

 

The current representative applications of knowledge distillation in the field of first-stage 
retrieval are as follows: 1) Training a high-performance cross-encoder MC (teacher encoder) 

from the original training set of retrieval tasks. Combined with the negative example mining 

training strategy, for each query, the target dual encoder MD(student encoder) randomly extracts 

difficult negative examples from the top k relevant texts retrieved from MC. This design is to 
adapt the cross-encoder to the distribution of results retrieved by the dual encoder, thus 

prompting the cross-encoder to be used in a subsequent step to optimize the dual encoder. 2) The 

general framework of knowledge distillation is directly applied to text encoders with similar 
frameworks to achieve model compression and efficiency optimization. For example, ColBert, a 

Bert-based dual-encoding retrieval model with a 12-layer Transformer block with advanced 

retrieval performance, is compressed to a 6-layer DistilBERT-based model through knowledge 
distillation technology. 

 

First-stage retrieval models mainly include pointwise, pairwise, and listwise in terms of learning 

objectives. Among them, pointwise reduces the problem of ranking relevance in retrieval to a set 
of classification or regression problems. Specifically, given a set of query and candidate texts and 

their corresponding associated annotations, the pointwise learning objective tries to optimize the 

ranking model. In contrast to pointwise, where the final ranking loss is the sum of the losses for 
each document, pairwise is calculated based on the permutation of all possible document pairs. 

Listwise builds a loss function that directly reflects the final ranking performance of the retrieval 

model, and instead of comparing two documents at a time, it computes a ranking loss based on 
each query and its list of candidate texts. 
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In the work of combining knowledge distillation techniques to train first-stage retrieval models, 
there is a lack of targeted work on how to reconstruct the supervised signal, which needs further 

research. 

 

6.3. Applications of Asymmetric Semantic Models 
 

6.3.1. Semantic Expansion of Query 
 

There are two methods in the semantic expansion of query: (1 Global approach: query expansion 

and refactoring without considering the initial return of the original query, such as optimization 

based on synonyms. (2 Local methods: The query is modified according to the initial results of 
the original query matching, such as relevance feedback and pseudo relevance feedback, and 

indirect relevance feedback.  

 

6.3.2. Text Segmentation Technologies for Candidate Texts 
 

Using text segmentation techniques, multiple-vector representations are generated for candidate 
texts. A long candidate text often involves several topics or multiple aspects of the same topic. If 

the semantic structure of the text can be automatically divided, and the semantic segment can be 

used as the basic processing unit of retrieval, it will greatly improve the phenomenon that the 

mainstream text retrieval technology takes the whole candidate text as the basic processing unit, 
and the text retrieval can be detailed from the original document level to the semantic segment 

level. Text segmentation technology can automatically identify a text as several semantic 

paragraphs with independent meaning according to semantic relations and distinguish them with 
tags for further analysis. 

 

We believe that if we want to apply the text segmentation model to the first-stage retrieval 
framework, the most fundamental issues to be solved are the topic similarity measure and 

boundary search strategy: considering text similarity, region similarity, semantic paragraph 

length, a similarity weighting strategy based on sentence pair distance, and other clues to 

characterize the topic similarity, the appropriate boundary search strategy is selected on this basis 
to obtain performance advantages. 

 

7. STRATEGIES & METRICS  
 

7.1. Training Strategies 
 
First-stage retrieval models can be divided into three categories from the aspect of training 

strategy: supervised, semi-supervised and weakly supervised learning. 

 

Supervised learning is the most commonly used learning strategy, where query and candidate text 
are labeled. This data can be used as feedback through expert evaluation, crowdsourcing, or 

gathering from user interactions with search engines. With supervised training strategies, we can 

train a model using any learning objective currently in the domain, such as pointwise or pairwise. 
However, due to the limited labeled data, researchers can only learn models with a limited 

parameter space under this training paradigm, which motivates the work on learning first-stage 

retrieval from limited data [63, 64]. 

 
Weakly supervised learning refers to a learning strategy where the labels of the query and 

candidate text are automatically generated using traditional term retrieval models such as BM25 

[4]. Pseudo-labels for training first-stage retrieval models were first proposed by Asadi et al. [65]. 
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Recently, Dehghani et al. proposed using weak supervision to train neural first-stage retrieval 
models and observed a 35% improvement over BM25, which plays the role of weak labeling. 

 

Semi-supervised learning has been widely studied in the field of first-stage retrieval. In the field 

of neural models, fine-tuning a weakly supervised model using a small amount of labeled data 
[66] and learning to control the learning rate [67] is an example of a semi-supervised ranking 

method. Recently, Li et al. [68] proposed a neural model that combines supervised and 

unsupervised loss functions, where the supervised loss controls query candidate text mismatch 
errors, while the unsupervised loss calculates candidate text reconstruction errors. 

 

7.2. Loss Function 
 

First-stage retrieval models can be divided into three categories in terms of loss function: 

pointwise, pairwise, and listwise. 
 

7.2.1. Pointwise 

 
The idea of pointwise is to reduce the problem of ranking relevance in retrieval to a set of 

classification or regression problems. The advantage of pointwise is twofold. 1) Compute a 

pointwise ranking objective based on each query and candidate text separately, making it simple 

and easy to scale. 2) The outputs of neural models learned with pointwise loss functions are often 
of practical significance and value in practice [4, 69]. For example, in sponsored search, by 

learning a model of cross-entropy loss and click-through rate, we can directly predict the 

probability that a user will click on a search ad, which in some use cases is more important than 
creating a good result list. However, the goal of pointwise is considered less effective for 

standard retrieval, mainly because there is no guarantee that an optimal ranking table will be 

generated when the model loss reaches a global minimum [70]. 
 

7.2.2. Pairwise 

 

Pairwise focuses on optimizing the relationship between query and text. In contrast to pointwise, 
pairwise is calculated based on the permutation of all possible document pairs [71]. Since the 

performance of most retrieval tasks is evaluated based on the ranking of relevant documents, 

pairwise is very effective in many tasks. However, in practice, pairwise document preference 
does not always lead to an improvement in the final ranking metric for two reasons: 1) It is 

impossible to build a ranking model that can predict document preference correctly in all cases; 

2) When computing most existing ranking metrics, not all document pairs are equally important 

[4]. This means that the performance of pairwise prediction is not equal to the performance of the 
final retrieval result as a list. Given this problem, research [72] further proposed the goal of 

learning to rank. 

 

7.2.3. Listwise 

 

The idea of listwise is to build loss functions that directly reflect the final ranking performance of 
the retrieval model. Instead of comparing two documents at a time, the listwise loss function 

computes the ranking loss based on each query and its list of candidate texts. While column-

listwise is generally more efficient than pairwise, its higher computational cost often limits 

applications. Listwise is suitable for the stage of re-ranking (fine-tuning) a small set of candidate 
texts. Listwise targets have become increasingly popular since many current practical search 

systems employ neural models to rerank documents [73–75]. 
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8. CONCLUSIONS 
 
This survey provides a comprehensive overview of first-stage retrieval. We cover a wide range of 

topics, from earlier term-based retrieval methods to recent dense vector retrieval methods, and 

discuss the connections between them. In terms of structure, we focus on the current hot spot in 

the field: deep retrieval model learning, and summarize the model training strategies and loss 
functions commonly used in this field. In addition, the survey highlights current difficulties in the 

field and points to promising directions for future research. Overall, we hope this survey can 

motivate new ideas by reviewing past representative work, and we are expecting significant 
breakthroughs will be achieved for first-stage retrieval in the near future. 
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