

David C. Wyld et al. (Eds): ARIN, CSITA, ISPR, NBIOT, DMAP, MLCL, CONEDU -2023

pp. 115-133, 2023. CS & IT - CSCP 2023 DOI: 10.5121/csit.2023.130711

A NOVEL EXPLOIT TRAFFIC

 TRACEBACK METHOD BASED ON
SESSION RELATIONSHIP

Yajing Liu, Ruijie Cai , Xiaokang Yin, and Shengli Liu

State Key Laboratory of Mathematical Engineering and Advanced Computing,

Zhengzhou 450001, China.

ABSTRACT

Vulnerability exploitation is the key to obtaining the control authority of the system, posing a

significant threat to network security. Therefore, it is necessary to discover exploitation from
traffic. The current methods usually only target a single stage with an incomplete causal

relationship and depend on the payload content, causing attacker easily avoids detection by

encrypting traffic and other means. To solve the above problems, we propose a traffic traceback

method of vulnerability exploitation based on session relation. First, we construct the session

relationship model using the session correlation of different stages during the exploit. Second,

we build a session diagram based on historical traffic. Finally, we traverse the session diagram

to find the traffic conforming to the session relationship model. Compared with Blatta, a method

detecting early exploit traffic with RNN, the detection rate of our method is increased by 50%,

independent of traffic encryption methods.

KEYWORDS

Exploit, Malicious Traffic Detection, Session Relationship, Traffic Analysis

1. INTRODUCTION

As software features continue to grow, so do the size of code and the number of security holes.
Attackers can use vulnerabilities to steal information, upgrade permissions, or even directly

control the operating system, posing a serious threat to network security. Therefore, it is

necessary to propose an exploit detection method.

To discover exploit behaviour, researchers proposed a series of detection methods for exploits[1]-

[12]. At present, there are two types of detection technologies for exploits: host-based detection

method and traffic-based detection method. Host-based detection methods often require detection
tools to be deployed on the host system and require high system permissions. The traffic-based

detection method is characterized by a large amount of data, rich information, and ease of

operation. It can be deployed in offline mode through port mirroring and only requires traffic
analysis. Therefore, this paper focuses on traffic-based detection methods. As early as 2007,

Polychronakis et al. [8] proposed a heuristic Detection method by using a complete processor

simulator to detect polymorphic shellcode in Network Intrusion Detection System (NIDS). But
unknown shellcode cannot be detected. Borders et al. [9] proposed Spector, a traffic load analysis

engine, which uses symbolic execution technology to extract meaningful API calls in shellcode

and generate the underlying disassembly code. In 2019, Kanemoto et al. [10] proposed an attack

detection method based on code simulation technology, combined with IDS rules to detect
whether remote shellcode attacks are successful. In 2020, Pratomo et al. [11] proposed Blatta, a

https://airccse.org/csit/V13N07.html
https://doi.org/10.5121/csit.2023.130711

116 Computer Science & Information Technology (CS & IT)

method of detecting early exploit traffic by using a cyclic neural network. The main idea is to
detect the first 400 bytes of the application layer and identify exploit traffic according to

shellcode characteristic bytes. In addition, Pratomo et al. [12] proposed a low-rate attack

detection method based on fine-grained network intelligence analysis, which detects attacks

through unsupervised learning of application layer information. However, the above traffic-based
exploit detection technologies are mostly based on the idea of load characteristic pattern

matching. shellcode characteristic code in traffic is used to detect exploits, which can be easily

avoided and cannot detect encrypted traffic.

In 2022, Trofti et al. proposed a traffic detection method for vulnerability exploitation tools. This

approach treats a network flow as a weighted directed interaction between a pair of nodes and
proposes a simple method that can be used to use connectivity graph features in unsupervised

anomaly detection algorithms. However, this method can only detect the traffic in the late stage

of vulnerability exploitation, and cannot construct a complete causal relationship.

To solve the above problems, we present a novel exploit traffic traceback method. First, we

construct the session relationship model using the session correlation in different stages of

vulnerability exploitation. Second, we build a session graph based on historical traffic. Finally,
we traverse the session graph to find the traffic that fits the session relationship model.The main

contributions are as follows:

(1) we propose a detection model based on session relationship, which can detect the whole

process of vulnerability exploitation traffic when the target's IP address is known;

(2) we propose SRG-ETDetector, a traffic traceback method based on the session

relationship. Unlike the existing methods, SRG-ETDetector is according to the idea of
causal association, which can not only detect the early and late traffic of vulnerability

exploitation simultaneously but also has nothing to do with the traffic encryption method.

(3) We simulate ten vulnerability exploitation, and the result shows that the detection rate of
our method is increased by 50% compared with Blatta, using a recurrent neural network

to detect early attack traffic, and the detection results are independent of the specific

cause of the exploited vulnerability and the traffic encryption method.

We organize the rest of this paper as follows. Section 2 introduces the definitions and categories

of vulnerability exploitation, shellcode, and their relationship. We propose a novel exploit traffic

detection method SRG-ETDetector in Section 3. In Section 4, we evaluate the performance of
ETDetecor in detecting vulnerability exploitation traffic compared with the state-of-the-art work.

It concludes in Section 5.

2. BACKGROUND

We first introduce the concepts related to vulnerability exploitation and classify common

vulnerability exploitation behaviour, and point out that our research objective is code execution

vulnerability exploitation. Secondly, shellcode-related concepts are introduced and classified
according to function. Finally, we introduce the concepts related to reverse shell and classify

reverse shell methods.

2.1. Vulnerability Exploitation Definition and Classification

Vulnerability exploitation is the behaviour that an attacker can access or destroy system data
under unauthorized circumstances by taking advantage of the lack of consideration in the design

of computer protocols, software, or hardware, or the flaws in the system security policy. As we

Computer Science & Information Technology (CS & IT) 117

all know, attackers usually exploit the vulnerability to obtain the target device system control
rights or to destroy the target device system availability. Specifically, it can be divided into the

following five types.

(1) Code execution vulnerability exploitation. A code execution attack means that the
attacker uses the vulnerability of the application program to execute the code that

implements malicious functions by constructing special command strings.

(2) Authentication bypass vulnerability exploitation. An authentication bypass attack means
that the attacker uses the vulnerabilities in the login and identity authentication process of

the system to avoid the system authentication process, and logs on to the system as a

legal user without authentication information such as account and password.
(3) Privilege escalation vulnerability exploitation. A privilege escalation attack means that

the attacker uses the vulnerability to bypass the system Settings, perform file operations,

and set system information and other operations with higher privileges.

(4) Data leakage vulnerability exploitation. Data leakage attack refers to the attacker using
system vulnerabilities to view, copy, steal, modify, and other illegal operations on legal

user data without permission.

(5) Denial of service vulnerability exploitation. Unlike the above four attacks, denial of
service attacks do not aim to gain system permissions, but to prevent or weaken the

authorized use of the network, system, or application by exhausting system resources

such as CPU, memory, bandwidth, or disk space.

From the perspective of the attack chain [14], the relevance of the above five kinds of

vulnerability exploitation is shown in Figure 1Illustration of the five vulnerability exploitation

associations. As can be seen from Figure 2, a code execution attack is the most important
prerequisite and necessary attack path of the other four attack behaviors, so it is the most

important to study the vulnerability exploitation traffic detection method for the purpose of a

code execution attack. Therefore, this paper focuses on code execution vulnerability exploitation
as the research object.

Code execution
Authentication

bypass

Privilege

escalation

data leakage

DDoS

Figure 1. Illustration of the five vulnerability exploitation associations

2.2. Shellcode Definition and Classification

Shellcode refers to a code fragment with certain functions used in the code execution
vulnerabilities exploitation [15], which can achieve various functions according to the needs of

attackers, including modifying system Settings, starting shell interface, establishing remote

sessions, etc.

Shellcode has diversified as the battle between attack and defence escalates. Cheng et al.[16]In

terms of function, the shellcode is divided into four types: Execute Command (EC), Bind Shell

(BS), Reverse Shell (RS), and Executable Download and Execute (ED).

118 Computer Science & Information Technology (CS & IT)

Due to Intranet isolation and other reasons, the reverse shell is widely used in actual exploit
scenarios [17]. Therefore, we mainly analyse the malicious behaviour generated after the loading

of the Reverse Shell (RS) class shellcode, namely, reverse shell.

2.3. Reverse ShellDefinition and Classification

Stipovic et al. [18] defined a reverse shell as a piece of malicious code, whose function is to
establish a TCP connection from the controlled end to the control terminal and download the

payload to achieve permission upgrade.

There are many ways to implement reverse shell attacks in real applications, but their essence is
inseparable from network communication. Based on the types of communication protocols,

reverse shells can be divided into UDP-based reverse shells, ICMP-based reverse shells, TCP-

based reverse shells, and HTTP/HTTPS-based reverse shells. Since the network intrusion
detection system (NIDS) usually intercepts UDP and ICMP packets, the reverse shell based on

HTTP/HTTPS is mostly non-real-time interaction, so the reverse shell based on TCP is more

widely used in actual attack scenarios [19]. Therefore, this paper studies the reverse shell based
on the TCP protocol.

According to whether the content of the traffic load is visible, reverse shells based on TCP

protocol are divided into the encrypted shell and non-encrypted shell. According to the type of
shell returned, it can be divided into system shell, and other advanced shells, such as

Meterpreter[20]. Therefore, according to the different types of traffic encryption and the types of

shell returned, reverse shells based on TCP protocol can be subdivided into four categories,
namely non-encryption system shells, encryption system shells, non-encryption advanced shells,

and encryption advanced shells.

3. METHOD

This chapter proposes a vulnerability exploitation detection model based on traffic behaviour.

Firstly, the whole process of vulnerability exploitation was divided into stages according to the

relevant actors of the attack payload, and the possible malicious behaviours and their
corresponding traffic communication behaviour characteristics in each stage were analysed.

Secondly, the malicious behaviour correlation between adjacent stages and the corresponding

traffic session correlation characteristics were analysed. Then, based on the above characteristics,

a vulnerability exploitation detection model based on traffic behaviour analysis was proposed.
The model consists of two parts. The first part is responsible for locating the target IP address,

and the second part detects the whole process traffic of vulnerability exploitation based on

individual session characteristics and session relationships. Finally, we analyse the practical
application of the model.

3.1. Vulnerability Exploitation Behaviours Analysis

In this section, according to the attack steps, we divide the whole exploit process into payload

generation phase, payload delivery phase and payload execution phase, and analyse the behaviour
of each phase respectively.

Computer Science & Information Technology (CS & IT) 119

3.1.1. Behaviours Analysis during Payload Generation

Generating the payload is the first step in any exploit. In this phase, the actor is the attacker, and

the included attack steps are shown in Figure 2. Firstly, the attacker collects vulnerability related

information of the target device through vulnerability scanning and other methods, writes
shellcode according to the vulnerability type and trigger principle, and writes code segments that

need to be executed through the vulnerability exploitation according to the attack purpose, and

combines them into the attack payload, namely payload. The payload is then encoded, encrypted,
and so on. Typically, generating payloads is a local activity, meaning that there is no interaction

between the attacker and the target device that is reflected in the traffic. Although the attacker has

the action of scanning the target device for vulnerabilities in this stage, usually, this stage belongs
to the period when the attacker unilaterally collects target intelligence, and does not involve the

interaction behaviors directly related to vulnerability exploitation. Since the payload generation

phase and the latter two phases are not necessarily tightly coupled in time, only the payload

delivery phase and payload execution phase are considered for the time being when detecting the
vulnerability exploitation traffic.

Collect information

Shellcode Malicious function

Generate payload

encoding/encryption

Figure 2. Illustration of attacker’s behaviours during payload generation

3.1.2. Behaviours Analysis during Payload Delivery

Once the payload is generated, we move on to the payload delivery phase. In this stage, the actor
is also the attacker. The main goal of the attacker is to send the payload to the target device,

which is mainly achieved by two ways.

(1) passive delivery, mainly represented by social engineering, which is characterized by
various forms of carriers and strong stealth, but the attack effect depends on the target

user's artificial choice and has uncertainty.

(2) Active delivery: the attacker has mastered the port opening status of the target device,
then he actively establishes a session, and sends payload-bearing packets to the target

device.

120 Computer Science & Information Technology (CS & IT)

In this paper, we ignore the impact of social engineering, and focus on the case where the attacker
actively accesses the port to deliver the attack payload. Its behaviour is shown in Figure 3.

Collect information

Send shellcode

Wait for results

Send malicious function

Figure 3. Illustration of attacker’s behaviours during payload delivery

Firstly, the attacker will obtain the port opening information of the target device through port
scanning and other means to prepare for the later establishment of network session connection.

After gathering enough intelligence, the attacker sends packets containing shellcode and exploit

code to the target device in turn. It is important to note that the shellcode and the attack code are

not necessarily sent together.

Taking the SMB remote code execution vulnerability CVE-2017-7494 as an example, there is a

sequence in which packets are sent.

Firstly, the attacker always initiated TCP connection actively, accessed the 445 port of the target

device, determined the version number of SMB protocol, and then anonymously logged in.
Through path traversal and other methods, the physical path of the shared directory of Samba

server was exploded, and whether the dynamic link library file containing malicious code could

be written was explored. Finally, the SMB protocol vulnerability function is_known_pipename()

does not check the special characters in the name of the anonymous pipe to load the dynamic link
library file using the name, so as to run malicious code to achieve the purpose of the attack. And

the packet containing malicious code may not be delivered in one time. Generally, for exploit

tools such as Metasploit, there are three types of attack payloads: single, stager, and stage,
depending on how they are delivered and run. The single is transmitted to the target device at one

time and can run independently. stager, on the other hand, is a transporter and is only responsible

for establishing a new connection between the target device and the attacker so that subsequent

attack payloads, called stages, can be delivered to the target device. The Stage is the actual
malicious code used to accomplish the purpose of the attack. The advantage of this method is that

it allows the attacker to use a smaller attack payload to load the actual malicious code, and makes

the communication mechanism and the final execution phase independent of each other, so there
is no need to copy the code, which can avoid the detection of anti-virus software on the target

device and improve the probability of successful execution of malicious code.

In terms of traffic, this phase may involve multiple sessions. First, the initial session is initiated

by the attacker to deliver shellcode and the first part of the attack payload to the target device.

Computer Science & Information Technology (CS & IT) 121

After the vulnerability is successfully triggered by the shellcode, the first part of the attack
payload is run, usually by creating a new session with the goal of transmitting further attack

payloads.

3.1.3. Behaviours Analysis During Payload Execution

After the payload is delivered to the target device, the payload execution phase begins. The main

purpose of the attacker in this phase is to wait for the execution result of the attack code, and the
main body of the behaviour is converted from the attacker to the target device. The flow of its

behaviour is shown in Figure 4.

Receive payload

Execute shellcode

Return result

Execute malicious

function

Figure 4. Illustration of target’s behaviours during payload delivery

This phase is the most important step of vulnerability exploitation and determines whether a
vulnerability exploitation is successful or not. In the payload delivery phase, after the attacker

initiates the first connection to the target device and sends the first attack payload, the target

device receives the packet containing shellcode and parses its contents. If the vulnerability is

successfully triggered, the malicious code following the shellcode is executed. For code
execution exploits, the first piece of malicious code after the shellcode usually establishes a new

connection between the target device and the attacker. In the Intranet environment, the new

connection is usually made by the way of the target device connecting back, which is easy to
break through the firewall and other protection products. In the case of segmented attack

payloads, the malicious code sent along with the shellcode is called a stager, or transporter, and is

responsible for connecting back to the attacker, establishing a new connection, and delivering the

actual code for the attack, the stage, to the target device. When the last stage is run on the target
device, the execution result is returned to the attacker, which represents the successful completion

of the exploit. Combined with the analysis of the attacker's behaviours in the delivery phase of

payload in Section 3.1.2, it is not difficult to see that the delivery phase and the execution phase
of payload are only different in the behaviour subject and have a certain temporal relationship.

However, the behaviour of the attacker transmitting the payload in segments and the behaviour of

the target device running the payload are tightly coupled, and the two phases occur alternately
until the last part of the malicious code is executed. Therefore, it is also tightly coupled on traffic

sessions.

In terms of traffic, similar to the payload delivery phase, this phase may also involve more than
one session. First, the initial session is initiated by the attacker to deliver shellcode and the first

part of the attack payload to the target device. After the vulnerability is successfully triggered by

the shellcode, the first part of the attack payload is run, usually by creating a new session with the

122 Computer Science & Information Technology (CS & IT)

goal of transmitting further attack payloads. The specific characteristics of the different sessions
in this phase and their relationship analysis are given in Section 3.2.

3.2. Session Relationship Analysis of Vulnerability Exploitation

According to the two conditions "whether the final instructions are executed on the target

machine immediately after the vulnerability is triggered" ("final instructions"refers to a series of
operations performed by the attacker to achieve persistence in subsequent stages, such as

downloading trojans, backdoors to the target machine, etc.) and"whether the target needs to

communicate with other terminals besides the attacker ", The session relationship of the last two

attack stages of vulnerability exploitation is roughly divided into four categories, and "execute
download Trojan command" is taken as an example to illustrate, where the attacker is A, the

target device is B, and other devices are C.

Considering the reverse shell type shellcode, which is mainly studied in this paper, the possible

session combinations for vulnerability exploitation are shown in Table 1.

For the first and fourth cases, since only one session is involved and multiple phases are included

in the session, whether the session is suspicious traffic can be determined by analysing the data

flow direction segmentation, packet length segmentation, etc.

However, in the case of multiple sessions, it is necessary to locate the traffic sessions in the

whole process of vulnerability exploitation through the characteristics of session node

association, session establishment time sequence, session establishment direction, session data
flow direction, packet direction sequence, packet payload length and size distribution, etc. The

comparison table contains 12 session relationships in the case of multiple sessions.

Table 1. 12 possible session combinations for vulnerability exploitation

In

de

x

Session

number

Session

relationship

Session1

function
Session2function

Session3

function

Reverse

shell

1 1 A-B
Send&executep

ayload
- - √

2 2 A-B, B-A Sendpayload Executepayload - ×

3 2 A-B, B-C Sendpayload Executepayload - ×

4 1 A-B

Send&executep

ayload，
reverseshell

- - √，A-B

5 2 A-B, B-A
Sendpayload，
reverseshell

Executepayload - √，A-B

6 2 A-B, B-C
Sendpayload，
reverseshell

Executepayload - √，A-B

7 2 A-B, B-A Sendpayload
Reverseshell&execute

payload
- √，B-A

8 2 A-B, B-C Sendpayload
Reverseshell&execute

payload
- √，B-C

9 3
A-B, B-A, B-
A

Sendpayload Reverseshell
Executepayl
oad

√，B-A

10 3
A-B, B-A, B-

C
Sendpayload Reverseshell

Executepayl

oad
√，B-A

Computer Science & Information Technology (CS & IT) 123

11 3
A-B, B-C, B-

A
Sendpayload Reverseshell

Executepayl

oad
√，B-C

12 3
A-B, B-C, B-

D
Sendpayload Reverseshell

Executepayl

oad
√，B-C

3.3. An Exploit Traffic Detection Model Based on Session Relationship

According to the content of Section 3.1 and 3.2, combined with the idea of "abductive causation
by effect", we propose a novel exploit traffic detection model based on traffic behaviour analysis.

Define that in time T, the set of all IP addresses appearing is I, and the set of all ports is P. The

session relation is constructed as a graph 𝐺 = (𝑉, 𝐸, 𝐹), where V is the node set and the elements

in the node set 𝑣𝑖 = (𝑖𝑝_𝑖, 𝑝𝑜𝑟𝑡_𝑖, 𝑓𝑙𝑎𝑔), 𝑖𝑝_𝑖 ∈ 𝐼, 𝑝𝑜𝑟𝑡_𝑖 ∈ 𝑃, 𝑓𝑙𝑎𝑔 ∈ {1,0}.The 𝑓𝑙𝑎𝑔 is the flag

bit; the default value is 0. If in the preliminary detection, node vi is the controlled target device,

that is, the target machine, then the flag bit 𝑓𝑙𝑎𝑔 = 1. E is the edge set, and the elements in the

edge set 𝑒 = (𝑣𝑖, 𝑣𝑗). F is the session feature set, and the elements in the session feature set 𝑓𝑖 =
(𝑖, 𝑑𝑖𝑟, 𝑝_𝑛𝑢𝑚, 𝑝_𝑑𝑖𝑟_𝑙𝑖𝑠𝑡, 𝑝_𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑒, 𝑝_𝑙𝑒𝑛_𝑙𝑖𝑠𝑡) , where 𝑖 is the session sequence

number, 𝑑𝑖𝑟 is the session setup direction, 𝑝_𝑛𝑢𝑚 is the number of data packets, and 𝑓𝑖 is the

number of data packets. 𝑝_𝑑𝑖𝑟_𝑙𝑖𝑠𝑡 represents the packet direction sequence,

𝑝_𝑏𝑦𝑡𝑒𝑠_𝑟𝑎𝑡𝑒represents the upload/download ratio, and 𝑝_𝑙𝑒𝑛_𝑙𝑖𝑠𝑡 represents the packet length
sequence.

The detection model is shown in Figure 5. Firstly, the traffic passing through the port in time T is
captured, and then the traffic is cut and stored in the form of sessions to filter out empty ACK

packets. Finally, the infected target device is located by detecting malicious traffic sessions

during the execution of payload. Then, the timestamp of the first SYN packet of the malicious
traffic session "triple handshake" during the payload execution phase is extracted, and the

historical traffic before this time is backtracked. According to the session relationship described

in Section 3.2, the traffic sessions in the whole process of vulnerability exploitation are located

through the characteristics such as the association of session nodes, the time sequence of session
establishment, the direction of session establishment, the direction of session data flow, the

sequence of packet direction, and the distribution of packet payload length and size, and the

integrated alarm information is output.

Different from the existing detection methods, the detection model proposed in this paper is

based on the idea of "causal association", and takes the result of vulnerability exploitation as the

breakthrough point. It can not only detect the malicious traffic generated in the late stage of
vulnerability exploitation, but also detect the traffic in the whole process of vulnerability

exploitation according to the session relationship. Since the detection basis of this model is the

session relationship characteristics of different stages of attack, as long as the specific analysis of
each stage of attack behaviour is carried out, the session relationship is summarized, and on this

basis the current session relationship graph model is extended, theoretically any kind of multi-

stage attack traffic can be detected.

In practical applications, considering that one of the main purposes of code execution

vulnerability exploitation is to obtain system control rights, and due to the restrictions of security

devices such as firewalls, reverse shell has become a common control means for attackers, so
detecting reverse shell traffic can be used as an entry point to locate target machines. Namely, the

first part can be implemented by the reverse shell traffic detection method. The second part

includes session classification, session relation graph construction and suspicious session
localization. The session classification is carried out according to the segmentation of the session

data stream, which can be realized by combining the sequence segmentation algorithm with the

124 Computer Science & Information Technology (CS & IT)

clustering algorithm. Session relationship graph construction and suspicious session localization
can be implemented by graph models.

Traffic preprocessing

 the ith session data traffic

segmentation

Data flow in one direction?

The packet length

segmentation is

analyzed

"A->B,A<->B,A->B"

Uniform length

segment?

Add session i to session

diagram G

Last session？

Locating the target device

The current graph G is traversed and the

suspicious edge set SE is constructed

Integrate alarm information

Output alarm

information

Next session

否

YES

YES

YES

NO

NO

NO

YES

Capture traffic

Figure 5. Vulnerability exploitation traffic detection model based on traffic behaviour

3.4. Framework of SRG-ETDetection

We propose a code execution vulnerability exploitation detection method based on session
relations, SRG-ETDetetcion, and the overall framework is shown inFigure 6, which includes four

Computer Science & Information Technology (CS & IT) 125

modules including data preprocessing, reverse shell detection, session classification, and
vulnerability exploitation traffic detection. This section describes the functions and

implementation details of each module in detail.

01010101

01010101

01010101

.pcap

Packet

reassembly

Packet

parsing

Packet

filtering

01010101

01010101

01010101

.pcap

文献[13]

Output target

devices list

Session classification

Feature extraction

Identify target
Anomaly

 detection

Data preprocessing module
Reverse shell traffic

detection module
Anomaly detection module

Exploit traffic trace

Figure 6. The framework of SRG-ETDection

(1). Data preprocessing module

The specific workflow of this module is shown in Figure 24. Firstly, the collected raw traffic was
parsed by the traffic processing tool SplitCap.exe, and the TCP data bidirectional flow was

merged into a complete communication session according to the five-tuple < source IP, source

port, destination IP, destination port, protocol >. Then, the first SYN packet and other packets
whose payload length is greater than 0 in the TCP connection establishment phase are filtered

out, and the information of each packet such as quintuple, timestamp and payload length is

extracted. On this basis, the packet interval sequence, packet length sequence and packet

direction sequence of each session are obtained, and the related work is implemented by

Algorithm 1. See Table for the pseudocode of Algorithm 1.

Table 3. Data preprocessing module Algorithm 1 pseudocode

Algorithm 1：

Input: session_j
Output: delt_j, len_j, dir_j

for packet_i; packet_i in session_j; i++:

if packet_i.TCP.SYN=0
&packet_i.TCP.len=0:

pass;

else:

delt_j.append(packet_i_delt);

len_j.append(packet_i_len);

dir_j.append(packet_i_dir).

126 Computer Science & Information Technology (CS & IT)

(2). Reverse shell detection module

The purpose of detecting reverse shell traffic is to confirm the target device, so it is independent

of the specific method of detecting reverse shells. Due to the detection effect, deployment
method, detection efficiency and other reasons, we choose Metasploit reverse shell traffic

detection method proposed in literature [13] to realize reverse shell traffic detection, and then

locate the target device.

(3). Vulnerability exploitation traffic detection module

The module includes session classification sub-module, feature extraction sub-module, and

anomaly detection sub-module.

Among them, the session classification sub-module is responsible for dividing the sessions into
three categories: normal traffic, suspicious single session and suspicious multiple session

according to the data flow and packet length segmentation, which are stored in different folders

respectively. It is convenient for subsequent feature extraction and anomaly detection. The key of
the session classification sub-module is to segment the data packets in the session according to

the arrival time, that is, to segment the time series of the session data packets, which is realized

by Algorithm 2, and the relevant pseudocode is shown in Table .

Table 4. Session classification module Algorithm 2 pseudocode

Algorithm 2：

Input:time serieT，max_error

Output: Seg_TS

Fori=1; i<length(T);i++:

Seg_TS=concat(Seg_TS, create_seg-moment(T[i:i+1]));

Fori=1; i<length(Seg_TS);i++:

Merge_cost(i)=calculate_error([merge(Seg_TS(i). Seg_TS(i+1))])

 While(min(merge_cost)<max_error):

 index=min(merge_cost);

Seg_TS(index)=merge(Seg_TS(index),Seg_TS(index+1));

delete(Seg_TS(index+1));

 Merge_cost(index-1)=calculate_error(merge(Seg_TS(index-1),Seg_TS(index)));

 Merge_cost(index)=calculate_error(merge(Seg_TS(index),Seg_TS(index+1))).

The feature extraction sub-module extracts session features and builds a session relationship

graph, which is stored in matrix form for anomaly detection.

The anomaly detection sub-module is responsible for traversing the session relationship graph

constructed by the feature extraction module. According to the 12 session combination situations

summarized in Section 3.2, it traces back the traffic at the early stage of vulnerability
exploitation, integrates all the current suspicious session information, and uses the bi-selecting K-

Computer Science & Information Technology (CS & IT) 127

means algorithm to hierarchical process the traffic and visualize the attack process. To visually
show the traffic behaviour characteristics of the whole process of vulnerability exploitation.

4. EXPERIMENTS AND RESULTS

This chapter first introduces the general framework of our method and describes the functions
and implementation details of all modules in detail. Then, we simulated ten vulnerability

exploitation experiments. Compared with Blatta, a method based on a recurrent neural network to

detect early exploit traffic. Results show that the detection rate of the proposed method is greatly
improved, and the detection effect is not affected by the specific causes of vulnerabilities

exploited and traffic encryption methods.

4.1. Data Set

Since the vulnerability exploitation traffic in the public data set usually only consists of shellcode
delivery phase sessions, and the detection of our method relies on shellcode execution results,

namely reverse shell session detection, it cannot be verified by exploit traffic in the public data

set.

Therefore, in the end, we selected the traffic generated by the artificial reverse shell experiments

to train the decision tree model and conducted ten code execution loophole exploit reverse shell

experiments using the Metasploit penetration test framework. We collect the traffic generated in

the process for tests and select the laboratory exit traffic as the background traffic. SeeTable for

related vulnerability numbers and reverse shell methods. Among them, the traffic data using the
Meterpreter module in Metasploit has a unique encapsulation format, which cannot directly

obtain meaningful information in the payload content. Therefore, in the verification experiment,

regardless of whether the traffic uses SSH and other encryption protocols, the traffic is

considered encrypted traffic.

Table 5. Description of experimental data set

index scenario Network behaviors Traffic type and quantity

1

Normal users

surfing the

Internet

Browse the web

SSH login

Transfer file

Remote desktop

Background traffic

(38512)

2
Unencrypted

reverse shell

Metasploit modules unencrypted

system shell

Unencrypted reverse

shell traffic (77)

3
Encrypted

reverse shell

Metasploit module encryption

system shell, Meterpreter

advanced shell

Encrypted reverse shell

traffic (39)

4.2. Comparison Method

The questions answered in this section are:

RQ1: Can SRG-ETDetector detect both the shellcode delivery phase and shellcode exploitation

phase traffic?

RQ2: Are the results of SRG-ETDetector interpretable?

128 Computer Science & Information Technology (CS & IT)

In order to answer RQ1, experiment 1 is conducted in this paper. Firstly, the attacker is simulated
to exploit the vulnerability ten times of code execution and reverse the malicious behaviour of the

shell. Then, the traffic is collected and mixed with the normal Internet access traffic of users in

the data set in Section 4.1. When selecting the comparison method, considering that the detection

objective of this paper is to discover code execution vulnerability exploitation behaviour through
traffic, among the existing detection methods described in the introduction, the ones that are

closest to the detection objective of this paper are literature [11], and literature [11]is also the

most recent. Therefore, the detection results of code execution vulnerability exploit traffic were
compared with the results of the literature[11].

In order to answer RQ2, experiment 2 is conducted in this paper. Based on the bi-selecting K-
means algorithm, hierarchical analysis is carried out on exploit using two-stage traffic, and visual

processing is carried out on exploit using two-stage session traffic respectively, so as to visually

show the behaviour characteristics of traffic transmission in the process of code execution

vulnerability exploit, so as to prove the interpretability of test results.

4.3. Evaluation Criteria

In this section, the detection rate of encrypted traffic, non-encrypted traffic, and all vulnerability

exploitation traffic is used to evaluate the performance of our method. The higher the detection

rate, the lower the probability of code execution vulnerability exploitation behaviour escaping
detection, that is, the better the detection method effect.

Within the defined time 𝑇 , the total number of occurrences of code execution vulnerability

exploitation behavior is 𝑁, where the number of occurrences under traffic encryption condition is

denoted as 𝑁_𝑐𝑟𝑦𝑝𝑡𝑒𝑑 , and the number of occurrences without encryption is denoted as

𝑁_𝑛𝑜𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑. The number of code execution vulnerability exploitation behaviors detected is

𝑀, where the number of encrypted traffic is denoted as 𝑀_𝑐𝑟𝑦𝑝𝑡𝑒𝑑 and the number of non-

encrypted traffic is denoted as 𝑀_𝑛𝑜𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑. The three detection rates are defined as follows.

𝑟𝑎𝑡𝑒_𝑐𝑟𝑦𝑝𝑡𝑒𝑑 =
𝑀_𝑐𝑟𝑦𝑝𝑡𝑒𝑑

𝑁_𝑐𝑟𝑦𝑝𝑡𝑒𝑑
 (1)

𝑟𝑎𝑡𝑒_𝑛𝑜𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 =
𝑀_𝑛𝑜𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑

𝑁_𝑛𝑜𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑
 (2)

𝑟𝑎𝑡𝑒_𝑡𝑜𝑡𝑎𝑙 =
𝑀

𝑁
 (3)

4.4. Results Analysis

4.4.1. Comparison of Detection Results of Ten Code Execution Vulnerabilities Exploitation

Reverse Shell Traffic

Experiments 1 is to compare the effect of code execution vulnerabilities detection in ten actual
application scenarios. The vulnerability types used in the experiment include remote command

execution vulnerability and buffer overflow vulnerability and the reverse shell includes both

encrypted and non-encrypted types. To verify the detection effect of the method in this paper on

encrypted traffic, four kinds of reverse shell encrypted traffic are included in the experiment. The
implementation methods include encrypting "one-sentence reverse shell" traffic through

OpenSSL, encrypting traffic through SSL and RC4-related modules in Metasploit, and the traffic

of the Meterpreter session shell is also invisible in plain text. In different periods of the day, the

Computer Science & Information Technology (CS & IT) 129

target machine that normally communicates with the network is used for code execution
vulnerabilities to make it reverse shell. At the same time, Wireshark is run to collect all the traffic

passing through the target machine during the experiment for detection, as shown in Table 4. To

exclude the influence of the target operating system type on the detection effect, the two target

operating systems used in the experiment were Windows XP and Kali 2017. Finally, the results

of the detection of code execution vulnerabilities using reverse shell traffic are shown in Table .

Table 6. Comparison of detection results of ten vulnerability exploitation attacks

index
Vulnerability types and CVE number, and

the specific ways to get a reverse shell
encrypted

Whether the exploit traffic is

detected

Blatta[11]
SRG-

ETDetetcor

1

Remote code executionvulnerability,CVE-

2021-22205,

Bash

× √ √

2
Buffer overflow vulnerability,MS17-

010,Python
× √ √

3

Remote code executionvulnerability,CVE-

2020-17530,

Perl+OpenSSL

√ √ √

4
Remote code executionvulnerability,CVE-
2019-15107,linux/x64/shell/reverse_tcp

× √ √

5

Buffer overflow vulnerability,

MS17-010,

windows/shell_reverse_tcp

× √ √

6

Buffer overflow vulnerability,

CVE-2017-7494,

python/shell_reverse_tcp_ssl

√ × √

7

Remote code executionvulnerability,CVE-

2019-0708,

windows/Meterpreter/reverse_tcp

√ × √

8

Buffer overflow vulnerability,

CVE-2017-7494,

linux/x64/Meterpreter/reverse_tcp

√ × √

9
Remote code executionvulnerability,CVE-
2019-0708,

windows/Meterpreter/reverse_http

√ × ×

10

Remote code executionvulnerability,CVE-

2019-0708,

windows/Meterpreter/reverse_tcp_rc4

√ × √

The experimental results show that only 5 exploits of code execution were detected in literature
[11], while the method in this paper detected 9 exploits, and rate_total increased by 40%. For the

four exploits under the condition that the traffic is not encrypted, the corresponding traffic can be

detected in literature [11] and the method in this paper, and there is no significant difference in

the rate_noncryped index. However, for the 6 times of code execution vulnerability exploitation
under traffic encryption conditions, only 1 time was detected in literature [11], while the method

in this paper detected 5 times, and rate_crypted increased by about 66.7%. This is because the

method in literature [11] detects based on traffic load. In the case of unencrypted traffic, plaintext
features of shellcode in the load can be extracted; however, in the case of encrypted traffic, the

content of the payload is invisible, and effective information cannot be extracted effectively, so

encrypted traffic cannot be detected. However, the method in this paper extracts traffic behavior
characteristics independent of load content. Even under the condition of traffic encryption, as

130 Computer Science & Information Technology (CS & IT)

long as the TCP protocol is used, the traffic communication behavior characteristics conform to
the law, and it can be effectively detected.

According to Table , the ninth vulnerability exploitation was not detected by either method.

Through the analysis, the time code execution exploit reverse module is Windows/Meterpreter
shell attack/reverse_http. The basic function implemented by this module is similar to the

Windows/Meterpreter/reverse_tcp module, that is, the Windows target machine returns the

Meterpreter session shell, but the former implements communication based on TCP protocol,
while the latter implements communication based on HTTP protocol. In terms of traffic, the

former is a TCP long connection initiated by the target machine. The latter is multiple HTTP

short connections initiated by the target machine. The reverse shell detection method adopted in
literature [13]is suitable for reverse shell traffic at the transport layer based on TCP protocol.

Reverse shell traffic based on HTTP protocol communication is fundamentally different from it

in session, so it cannot be used to detect it. Since the ultimate purpose of detecting reverse shell

traffic in this paper is to locate the target machine, there is no restriction on the specific methods
to achieve reverse shell traffic detection. Therefore, for the reverse shell traffic implemented by

HTTP/HTTPS protocol, supplementary experiments were carried out by combining with some

existing vulnerabilities and using tool traffic detection methods. The results show that as long as
the reverse shell traffic can be detected and the target machine can detect the whole process of

vulnerability exploitation traffic according to the session relationship, there is no significant

impact on the detection results. Therefore, in practical applications, accurate positioning of the
target machine can be realized in combination with the detection methods of reverse shell against

other protocols, to realize the detection of vulnerability exploitation traffic.

4.4.2. The Vulnerability Exploits the Traffic Stratification Results

Experiment 2 is to stratify the detected code execution vulnerability exploitation traffic using the

bisecting K-means algorithm and visualize the code execution vulnerability exploitation traffic,
thus further proving the interpretability of the classifier. The preset number of clusters in the bi-

selecting K-means algorithm is set to 4, and the two-phase traffic of buffer overflow vulnerability

CVE-2017-7494 reverse shell is stratified, and the results are shown in Figure 7and Figure

8respectively.

Figure 7shows the traffic stratification results of the shellcode delivery phase. In the shellcode

delivery phase, the main purpose of the attacker is to transmit the shellcode to the target. The data
packets sent by the attacker are mostly concentrated in the early stage of the session, the packet

length is large, and the data flows to the target. Correspond to the blue, green, and purple clusters

in Figure 7. At this time, the target passively receives the shellcode, so there are only response
packets. Response packet payloads are typically shorter compared to shellcode, corresponding to

the yellow clusters in Figure 7.

Computer Science & Information Technology (CS & IT) 131

Figure 7. The traffic stratification results in the shellcode delivery phase

Figure 8 shows the hierarchical result of reverse shell traffic for the python/shell_reverse_tcp_ssl

module. During the shellcode execution phase, the target returns the encryption shell. In the
session establishment phase, the data packets of both sides interact frequently, and the length of

the data packets is symmetric because the encryption protocol is negotiated. This process is very

transient and corresponds to the yellow cluster in Figure 8. After the reverse shell is successful,
the attacker usually executes the command to obtain the target information, and the overall data

flow to the attack side. Usually, the packets carrying commands are short in length and relatively

scattered. However, the target machine needs to return the corresponding execution results

according to different commands, so the length of the data packets carrying the execution results
is different, corresponding to the green cluster, blue cluster, and purple cluster above the X-axis

in Figure 8.

Figure 8. The traffic stratification results in the shellcode execution phase

132 Computer Science & Information Technology (CS & IT)

5. CONCLUSIONS

This paper proposes SRG-ETDetector, an exploit traffic detection method based on session

relationship graph analysis. Compared with the existing exploit traffic detection methods based

on pattern matching of the payload, SRG-ETDetector can accurately detect the exploit session

according to the effect of shellcode execution, independent of the specific cause of vulnerability
and traffic encryption methods. It is a pity that our method is currently applicable to detecting

code execution vulnerability exploits with traffic for the whole phase. We plan to analyse other

exploit behaviours to expand the application scope of our method and realize real-time detection
in the future.

ACKNOWLEDGEMENTS

The authors would like to thank everyone, just everyone!

REFERENCES

[1] D. Kong, D. Tian, Q. Pan, P. Liu, and D. Wu, “Semantic aware attribution analysis of remote

exploits,” Security and Communication Networks, vol. 6, no. 7, pp. 818–832, 2012.

[2] J. Wu, A. Arrott, and F. C. Colon Osorio, “Protection against remote code execution exploits of

popular applications in windows,” 2014 9th International Conference on Malicious and Unwanted
Software: The Americas (MALWARE), 2014.

[3] P. Parrend, J. Navarro, F. Guigou, A. Deruyver, and P. Collet, “Foundations and applications of

Artificial Intelligence for Zero-day and multi-step attack detection,” EURASIP Journal on

Information Security, vol. 2018, no. 1, 2018.

[4] Homoliak, M. Teknös, M. Ochoa, D. Breitenbacher, S. Hosseini, and P. Hanacek, “Improving

network intrusion detection classifiers by non-payload-based exploit-independent obfuscations: An

adversarial approach,” ICST Transactions on Security and Safety, vol. 5, no. 17, p. 156245, 2019.

[5] L. Chen, S. Sultana, and R. Sahita, “HeNet: A deep learning approach on Intel® processor trace for

effective exploit detection,” 2018 IEEE Security and Privacy Workshops (SPW), 2018.

[6] S. Biswas, M. M. H. K. Sajal, T. Afrin, T. Bhuiyan & M. M. Hassan1, (2018) "A study on remote

code execution vulnerability in web applications", International Conference on Cyber Security and

Computer Science (ICONCS’18), 2018.
[7] F. M. Mokbal, W. Dan, A. Imran, L. Jiuchuan, F. Akhtar, and W. Xiaoxi, “MLPXSS: An integrated

XSS-Based Attack Detection Scheme in web applications using multilayer perceptron technique,”

IEEE Access, vol. 7, pp. 100567–100580, 2019.

[8] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos, “Network-level polymorphic shellcode

detection using emulation,” Journal in Computer Virology, vol. 2, no. 4, pp. 257–274, 2006.

[9] K. Borders, A. Prakash, and M. Zielinski, “Spector: Automatically analyzing Shell Code,” Twenty-

Third Annual Computer Security Applications Conference (ACSAC 2007), 2007.

[10] Y. Kanemoto, K. Aoki, M. Iwamura, J. Miyoshi, D. Kotani, H. Takakura, and Y. Okabe, “Detecting

successful attacks from ids alerts based on emulation of Remote Shellcodes,” 2019 IEEE 43rd Annual

Computer Software and Applications Conference (COMPSAC), 2019.

[11] B. A. Pratomo, P. Burnap, and G. Theodorakopoulos, “Blatta: Early exploit detection on network
traffic with recurrent neural networks,” Security and Communication Networks, vol. 2020, pp. 1–15,

2020.

[12] B. Pratomo, “Low-rate attack detection with intelligent fine-grained network analysis,” dissertation,

2020.

[13] P. Irofti, A. Patrascu, and A. I. Hiji, “Unsupervised abnormal traffic detection through topological

flow analysis,” 2022 14th International Conference on Communications (COMM), 2022.

[14] T. Yadav and A. M. Rao, “Technical aspects of cyber kill chain,” Communications in Computer and

Information Science, pp. 438–452, 2015.

[15] J. C. Foster, M. Price, and S. McClure, Sockets, Shellcode, porting & coding: Reverse

engineering exploits and tool coding for security professionals. Rockland: Syngress Pub., 2005.

Computer Science & Information Technology (CS & IT) 133

[16] T.-H. Cheng, Y.-D. Lin, Y.-C. Lai, and P.-C. Lin, “Evasion techniques: Sneaking through your

intrusion detection/prevention systems,” IEEE Communications Surveys & Tutorials, vol. 14,

no. 4, pp. 1011–1020, 2012.

[17] H. A. Noman, Q. Al-Maatouk, and S. A. Noman, “Design and implementation of a security analysis

tool that detects and eliminates code caves in windows applications,” 2021 International Conference
on Data Analytics for Business and Industry (ICDABI), 2021.

[18] I. Stipovic , “Antiforensic techniques deployed by custom developed malware in evading anti-virus

detection,” https://arxiv.org/abs/1906.10625, 2019.

[19] C. Leka, C. Ntantogian, S. Karagiannis, E. Magkos, and V. S. Verykios, “A comparative analysis of

VirusTotal and desktop antivirus detection capabilities,” 2022 13th International Conference on

Information, Intelligence, Systems & Applications (IISA), 2022.

[20] M. Denis, C. Zena, and T. Hayajneh, “Penetration testing: Concepts, attack methods, and defense

strategies,” 2016 IEEE Long Island Systems, Applications and Technology Conference (LISAT),

2016.

AUTHORS

Yajing Liu (1998-), female, master candidate, Cyberspace Security Academy,

Information Engineering University. The research fields include malicious traffic

detection and machine learning.

Ruijie Cai (1990-), male, master, lecturer of Cyberspace Security Academy, Information

Engineering University. The research fields include network security, binary code

analysis, and vulnerability mining.

Xiaokang Yin (1993-), male, Ph.D., Cyberspace Security Academy, Information

Engineering University. The research fields include network security, binary code

analysis, and machine learning.

Shengli Liu (1973-), male, Ph.D., professor and doctoral supervisor of Cyberspace

Security Academy, Information Engineering University. The research fields include

network attack detection and network infrastructure security.

© 2023 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

	Abstract
	Keywords
	Exploit, Malicious Traffic Detection, Session Relationship, Traffic Analysis

	1. Introduction
	2. Background
	2.1. Vulnerability Exploitation Definition and Classification
	2.2. Shellcode Definition and Classification
	2.3. Reverse ShellDefinition and Classification

	3. Method
	3.1. Vulnerability Exploitation Behaviours Analysis
	3.1.1. Behaviours Analysis during Payload Generation
	3.1.2. Behaviours Analysis during Payload Delivery
	3.1.3. Behaviours Analysis During Payload Execution

	3.2. Session Relationship Analysis of Vulnerability Exploitation
	3.3. An Exploit Traffic Detection Model Based on Session Relationship
	3.4. Framework of SRG-ETDetection

	4. Experiments and Results
	4.1. Data Set
	4.2. Comparison Method
	4.3. Evaluation Criteria
	4.4. Results Analysis
	4.4.1. Comparison of Detection Results of Ten Code Execution Vulnerabilities Exploitation Reverse Shell Traffic
	4.4.2. The Vulnerability Exploits the Traffic Stratification Results

	5. Conclusions
	Acknowledgements
	References
	Authors

