HEART DISEASE PREDICTION USING CHI-SQUARE TEST AND LINEAR REGRESSION

Dinesh Kalla and Arvind Chandrasekaran

Department of Computer Science, Colorado Technical University, Colorado, USA

ABSTRACT

Heart disease is most common disease reported currently in the United States among both the genders and according to official statistics about fifty percent of the American population is suffering from some form of cardiovascular disease. This paper performs chi square tests and linear regression analysis to predict heart disease based on the symptoms like chest pain and dizziness. This paper will help healthcare sectors to provide better assistance for patients suffering from heart disease by predicting it in beginning stage of disease. Chi square test is conducted to identify whether there is a relation between chest pain and heart disease cases in the United States by analyzing heart disease dataset from IEEE Data Port. The test results and analysis show that males in the United States are most likely to develop heart disease with the symptoms like chest pain, dizziness, shortness of breath, fatigue, and nausea. This test also shows that there is a weak corelation of 0.5 is identified which shows people with all ages including teens can face heart diseases and its prevalence increase with age. Also, the tests indicate that 90 percent of the participant who are facing severe chest pain is suffering from heart disease where majority of the successful heart disease identified is in males and only 10 percent participants are identified as healthy. The evaluated p-values are much greater than the statistical threshold of 0.05 which concludes factors like sex, Exercise angina, Cholesterol, old peak, ST_Slope, obesity, and blood sugar play significant role in onset of cardiovascular disease. We have tested the dataset with prediction model built on logistic regression and observed an accuracy of 85.12 percent.

KEYWORDS

Chi-Square Test, R; Data Mining; Big Data; Linear Regression Analysis; Heart Disease; Risk Factor; Machine Learning; Cardiovascular Disease; Python; Logistic Regression; sklearn; Pandas, Numpy.

1. INTRODUCTION

Heart disease describes various conditions that can affect the heart. Multiple studies have found that heart disease is still a leading cause of death in the United States. They found that various causes contribute to a rise in heart disease rates. They stressed the significance of genetics, age, way of life, and past events. Statistics compiled by the federal government show that nearly half of all Americans have cardiovascular disease. Tobacco use, high cholesterol, and high blood pressure are the three big risk factors for developing heart disease. Heart disease is caused by more than just genetics. Many forms of heart disease can be prevented or treated with healthy lifestyle choices. Increased rates of heart disease are a direct result of these habits. Age and family history are factors that cannot be changed because they are genetically determined. While it is true that these risk factors cannot be eliminated, some steps can be taken to lessen the
likelihood of developing heart disease. Lifestyle choices, for instance, eating food rich in fats and trans fats can all be avoided.

This paper will analyse a dataset containing information about five different heart diseases. The data set is representative of a single large data set on cardiovascular disease thanks to the inclusion of twelve standard features. Researchers can use methods like machine learning on the dataset to learn more about the trend, identify the most at-risk populations, and discover other insights. This study will make use of visual representations to learn about the dataset. This will help the health ministry better provide care for patients suffering from heart disease by predicting the earliest stages of the disease. The dataset we are using to build heart prediction model contains 303 rows and 14 columns will all health-related data. We will use same dataset to check the prediction algorithm accuracy which is developed using logical regression.

2. RELATED WORK

A lot of effort has been put into developing disease prediction systems in hospitals, mostly utilizing data mining and machine learning. Heart Disease can be predicted utilizing the Multiple Regression Model, demonstrating the validity of Multiple Linear Regression [13]. The work is done on the data set of 3000 instances with 13 different attributes. 70% of the data is used for training purposes, while the remaining 30% is used for validation. Regression's classification accuracy is higher than competing algorithms, as demonstrated by the results.

Mangione’s research team created a heart disease prediction model that uses KStar, Multilayer perceptions, SMO, Bayes Net, and J48 [7]. Unlike KStar, SMO, Multilayer Perception, J48, and Bayes Net best utilize fold cross-validation. Those algorithms still haven't reached a level of good enough accuracy. As a result, the overall performance in terms of accuracy has increased, allowing for better decisions when diagnosing disease.

Methods to foretell chronic diseases by mining data in previous health records through the Decision tree, Support Vector Machines (SVM), Naive Bayes, and Artificial Neural Networks (ANN) are proposed [11]. A comparison study is conducted to determine which classifier has the highest accuracy. The experiment shows that SVM has the highest accuracy rate, while Naive Bayes is the best for diagnosing diabetes.

Different algorithms, for example, Naive Bayes, Classification Tree, ANN, SVM, and Logistic Regression can be used in predicting cardiovascular diseases [8]. Compared to other algorithms, Logistic Regression has the highest level of precision.

Data Mining-Based System can be used efficiently to Predict Cardiovascular Disease [10]. Two of WEKA’s many applications are automatic disease diagnosis and service quality assessment in healthcare facilities. SVM, ANN, Naive Bayes, Association rule, and Decision Tree were among the algorithms utilized in the paper. The research paper suggests that SVM is the best data mining algorithm because it is efficient and precise.

Prediction and the Analysis of Heart Diseases Incidence can be achieved by utilizing Data Mining Method [5]. The primary goal is to automate the early diagnosis of heart disease by predicting when it will occur. In healthcare organizations, the proposed methodology is also crucial for dealing with experts who have lost their expertise. The presence or absence of heart disease is determined using different medical characteristics, for instance, blood sugar, age, and heart rate.
Non-linear classification algorithms can be utilized and adopted for predicting cardiovascular disease [6]. It is suggested that big data tools like Hadoop Distributed File System (HDFS), MapReduce, and Support Vector Machines (SVM) be used to predict cardiovascular disease accurately. This study examined how various data mining strategies could foretell cardiac conditions. It recommends using HDFS to distribute large datasets across multiple nodes, each of which can run the SVM prediction algorithm in parallel. The computation time for SVM is reduced by using it in a parallel fashion rather than in a sequential fashion.

Data mining and machine learning algorithms together can be used for predicting cardiovascular diseases [12]. The research purpose is to reveal previously hidden relationships using data mining methods. Gomathi et al. proposed using data mining methods for multi-disease prediction. Data mining is now an essential tool for diagnosing many diseases because it allows for a decrease in the number of necessary evaluations. The primary focus of this paper was predictions of chronic diseases like diabetes and cancer.

ANN algorithm can be utilized in data mining for heart disease prediction in all stages [4]. The rising cost of diagnosing cardiovascular disease has prompted the search for a more cost-effective method of early detection. After collecting data on vital signs like heart rate, blood pressure, and cholesterol, the prediction model can be used to estimate how the patient will fare in the future. Verification of the system's accuracy has been implemented in JavaScript. Machine Learning and Artificial Intelligence need to be incorporated into application to improve the performance of the Application [3]. Natural Language processing library plays significant role in building machine learning models [4]. Surveys need to be conducted to build a dataset which can used further for designing logistic regression model [13].

Zhou’s team proposed developing a prediction system to detect heart disease from patients' medical records [14]. The system was created with 13 input attribute risk features in mind. Data cleaning and integration followed the analysis of the dataset's information.

2.1. Design Model

We will use heart dataset which contains several health parameters from IEEE port. We have processed the datasets and split the dataset into train and test data. We need to train the machine learning algorithm using the training data then we will test the machine learning algorithm model with the test data.

![Figure 1. Logistic Regression Model using Machine Learning Algorithm](image-url)
We will use logistic regression model as we are planning to do binary classification. After training the regression model we will pass the new dataset and will check whether the person has heart disease or not. After comparing the dataset result, we will measure the accuracy of the machine learning algorithm.

2.2. Data Collection

Chou’s team compiled the data on cardiovascular disease for primary prevention of cardiovascular disease [3]. The primary goal of this data collection is to give scientists a large enough sample to work with to improve machine learning and data mining techniques, leading to better methods for diagnosing and treating heart disease. As can be seen in the table below, the dataset contains 1191 instances and 12 distinct attributes.

```
> attributes(heart_statlog_cleveland_hungary_final)
$names
```

The dataset is one of the large heart disease data sets because it contains 12 typical features. Researchers can use the dataset and methods like machine learning to learn more about the trend, identify the most at-risk populations, and so on.

<table>
<thead>
<tr>
<th>Serial Number</th>
<th>Attribute</th>
<th>Code Given</th>
<th>Unit</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Age</td>
<td>Age</td>
<td>In years</td>
<td>Numeric</td>
</tr>
<tr>
<td>2</td>
<td>Sex</td>
<td>Sex</td>
<td>1,0</td>
<td>Binary</td>
</tr>
<tr>
<td>3</td>
<td>Chest Pain Type</td>
<td>Chest Pain Type</td>
<td>1,2,3,4</td>
<td>Nominal</td>
</tr>
<tr>
<td>4</td>
<td>Resting Blood Pressure</td>
<td>Resting bp s</td>
<td>In mm Hg</td>
<td>Numeric</td>
</tr>
<tr>
<td>5</td>
<td>Serum Cholesterol</td>
<td>Cholesterol</td>
<td>In mg/dl</td>
<td>Numeric</td>
</tr>
<tr>
<td>6</td>
<td>Fasting blood sugar</td>
<td>Fasting blood sugar</td>
<td>1.0>120 mg/dl</td>
<td>Binary</td>
</tr>
<tr>
<td>7</td>
<td>Resting electrocardiogram results</td>
<td>Resting ecg</td>
<td>0,1,2</td>
<td>Nominal</td>
</tr>
<tr>
<td>8</td>
<td>Maximum heart rate achieved</td>
<td>Max heart rate</td>
<td>71-202</td>
<td>Numeric</td>
</tr>
<tr>
<td>9</td>
<td>Exercise induced angina</td>
<td>Exercise angina</td>
<td>0,1</td>
<td>Binary</td>
</tr>
<tr>
<td>10</td>
<td>Oldpeak=ST</td>
<td>Oldpeak</td>
<td>depression</td>
<td>Numeric</td>
</tr>
<tr>
<td>11</td>
<td>The slope of the peak exercise ST segment</td>
<td>ST slope</td>
<td>0,1,2</td>
<td>Nominal</td>
</tr>
<tr>
<td>12</td>
<td>class</td>
<td>target</td>
<td>0,1</td>
<td>Binary</td>
</tr>
</tbody>
</table>
Table 2. Nominal Attributes Description

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Male =1, Female = 0</td>
</tr>
<tr>
<td>Chest Pain Type</td>
<td>--Value 1: typical Angina</td>
</tr>
<tr>
<td></td>
<td>--Value 2: atypical Angina</td>
</tr>
<tr>
<td></td>
<td>--Value 3: non- Angina pain</td>
</tr>
<tr>
<td></td>
<td>--Value 4: asymptomatic</td>
</tr>
<tr>
<td>Fasting Blood Sugar</td>
<td>Fasting blood sugar>120mg/dl (True=1, False =0)</td>
</tr>
<tr>
<td>Resting electrocardiogram results</td>
<td>--Value 0: normal</td>
</tr>
<tr>
<td></td>
<td>--Value 1: having ST-T wave abnormality (ST Elevation / depression >0.05 mV /T-wave Inversions)</td>
</tr>
<tr>
<td></td>
<td>--Value 2: Definite ventricular left side hypertrophy by Estes criteria or showing probable</td>
</tr>
<tr>
<td>Exercise induced angina</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>The slope of the peak exercise ST</td>
<td>--Value 1: upsloping</td>
</tr>
<tr>
<td>segment</td>
<td>--Value 2: flat</td>
</tr>
<tr>
<td></td>
<td>--Value 3: down sloping</td>
</tr>
<tr>
<td>Class</td>
<td>Heart Disease = 1, Normal = 0</td>
</tr>
</tbody>
</table>

2.3. Exploratory Data Analysis

EDA performs a critical analysis to comprehend better data patterns and aid in detecting anomalies using visual representations of data, such as a histogram.

![Histogram](image)

Above figure shows data on chest pain has been graphically represented as a histogram. It is clear from Fig. 1 that there are two types of variables: categorical variables, such as the types of chest pains, and continuous variables, such as the severity of the pain. Ninety percent of the volunteers had heart disease, while 10 percent were healthy—more males than females reported experiencing symptoms of heart disease (chest pain) in this study.
Analyses can be performed on each variable classification to learn more about the factors that cause the rising incidence of heart disease in the United States [9]. It is evident that drawing a firm conclusion was challenging because of the asymmetry of the data. However, the analysis showed that males are more likely to develop heart disease than females. Persons with chest pain, ST slope, fasting sugar-related complications, and inactivity were at the highest risk for cardiovascular disease. Researchers also found that smoking was linked to a rise in the incidence of heart disease.

A correlation of 0.5 is considered to be weak. It shows that people of all ages, even pre-teens, can experience heart problems like chest pain. High correlations were found between fasting glucose, age, and the presence or absence of chest pain. The connection between the factors is purely
coincidental. Advanced machine learning systems can benefit from the variables. High or low blood sugar levels and diabetes contribute to various forms of heart disease. Cardiovascular disease is most common in the elderly. Figure 2 demonstrates a higher prevalence of heart disease among participants aged 65 and older. This indicates that the prevalence of heart disease increases with age.

We have also tested the dataset with the logistic regression prediction model which is developed using machine learning.

3. **TECHNICAL APPROACH**

3.1. **Inference**

The primary objective of the research is to examine the heart disease dataset so that we can predict the window stage of heart disease. Thanks to the prediction, the government will be able to save lives by proactively treating heart disease before it becomes life-threatening.

```r
## Pearson's Chi-squared test

## data: table(prjdata$chest.pain.type, 
## prjdata$target)

## X-squared = 334.42, df = 3,
## p-value < 2.2e-16
```

Based on the results of the Chi-square test presented above, it is highly unlikely that the two groups are independent. That is why this study rejects the "null hypothesis" explanation. It is safe to say that there's a five percent definitive link between chest pain and the onset of heart disease. The association between specific types of chest pain and the onset of heart disease is thus meaningful. At the same time, it shows evidence linking certain factors to cardiovascular disease at the 5% confidence level.

3.2. **The Best Model**

Here's a quick rundown of the dataset model: Under residuals, one can see the mean, median, and quartile estimates for each variable.
Results from the model analysis shown above can be used to check if the model is adequate for developing the prediction tool. The significance level of the statistical tests was set at 5%. Therefore, we are justified in dismissing types 3, chest pain, type 4, and ST. Slope 2 and type 2 have a strong correlation with cardiac disease. At the 5% significance level, the p-value for the association between chest pain and ST is extremely small. The null hypothesis for these tests—exercise angina sex 1, ST.slope 1, old peak, and cholesterol—should also be rejected. The evaluated p-values are greater than the statistical threshold of 0.05. We conclude that these factors play a role in the onset of cardiovascular disease.

3.3. Prediction

Recall, true positive, and hit rate were the tests used to categorize the predictive results as positive. This reveals the conditions that are either 100% present or 100% absent in each sample taken during data collection (true positive or false positive).

```r
> # Prediction
> pt <- predict(mymodel, train, type = 'response')
> head(pt)
1    0.001
2    0.001
3    0.001
4    0.001
5    0.001
6    0.001
```

Sensitivity 97.5%
Specificity 65.4%

```
> diag(tab2)
actual
predicted 0 1
0 70 3
1 37 119
> 1-sum(diag(tab2))/sum(tab2)
[1] 0.1746725
```

The selection process took place in accordance with the correlation outcomes discovered in the data set analysis. Specifically, based on the randomized forest classification method, the Boruta
Feature Selection (BFS) algorithm was able to use the same selection procedure. This allowed for the collection of the most fundamental aspects of the dataset.

The test's sensitivity affects identifying the false positives related to cardiovascular disease and other heart diseases [1]. If one is trying to find people who might have heart disease, for instance, and their test results lead them to construct a predictor machine, they can rest assured that the number of false positives will be low. The predictor machine aggregates all available data for a given dataset. After receiving the data, a shadow copy is created. The results from the data set are then communicated to an unnamed classifier per the machine's instructions. The machine inputs the factors that matter most and then uses those factors to rank the rest. If a person is tested and the results come back positive while still valid, then the person is safe. However, the person may experience negative side effects, such as anxiety, as a result. The identified person must have cardiac issues determined by the predictor machine's diagnostic. Therefore, the machine should provide the highest possible risk of having the condition.

3.4. Logistic Regression Model

We have developed logistic regression model using machine learning algorithm. We have trained the model using the dataset which contains 303 rows and 14 column with heart related data.

- Heartdata.describe()

From the above dataset we can find some insights like 25 percent of the inputs in the dataset are of age 45 and heart disease is observed majorly from the people who are above 45 of age.

- model = LogisticRegression()
- model.fit(A_train, B_train)
- A_train_prediction = model.predict(A_train)
- training_data_accuracy = accuracy_score(A_train_prediction, B_train)
 Accuracy on Training data : 0.8512396694214877
- A_Test_prediction = model.predict(A_Test)
- testing_data_accuracy = accuracy_score(A_Test_prediction, B_Test)
 Accuracy on Testing data : 0.819

4. DISCUSSION

According to official statistics, nearly half of all Americans have some form of cardiovascular disease. There are several factors at play here. Smoking, unhealthy habits in general, being overweight or obese, getting older, having diabetes, high blood pressure, a family history of these
conditions, and not getting enough exercise are all risk factors. Most of the United States' largest healthcare costs have been related to cardiovascular disease. Those who do make it through this ordeal are regular hospital in patients who need a lot of TLC to keep their hearts from failing. Deaths from cardiovascular causes are a major economic setback because they represent a loss of potentially productive minds[2]. In the U.S, coronary heart disease affects both adults and children at a higher rate than any other form of the disease.

The research found that males were likelier to experience heart disease than females. Heart disease can occur in people with fasting blood sugar levels and a heart rate that fluctuates irregularly. The prevalence of heart disease in the U.S has increased as a result of factors including inactivity and smoking. The moderate association of 0.5 suggests that children as young as 12 can experience chest pain due to heart disease. There is a robust correlation between getting older and suffering from chest pain. In this study, participants over 65 had a higher risk of heart disease and a higher mortality rate from cardiovascular causes.

The model of the data set summarizes the results, which helps establish whether or not the model analysis can yield a prediction machine. The p-value for this sample is higher than the statistical threshold. This supports the notion that all the investigated factors are important contributors to the increase of cardiovascular disease. To estimate one's risk of developing heart disease, one must first determine the true positive rate in each sample. The model of the data set's correlation results was then subjected to a filtering process. The method used to cut was based on picking out the most telling features of the dataset.

The predator machine gathers all the information gathered about a person during their testing to create a "shadow copy." An unnamed classifier is applied to the data, and the highest score is evaluated. The computer determines a person's lifetime risk of developing heart disease and declares the person safe if the results are good and valid.

However, there are restrictions on what can be done to keep heart disease at bay. You cannot make someone younger to keep them from getting heart disease. Decreased immunity is a common side effect of getting older. Reduced immunity makes people more likely to get sick from infections, and heart disease is a real risk, especially for those over 65 who have put on a lot of weight. Physical activity is less effective at preventing heart disease in people of that age. Furthermore, one's genetic makeup cannot be changed. A person's place of birth cannot be altered[7]. This suggests that inheriting a propensity for weight gain is possible. It is also possible that there is a history of early-onset heart disease in their family that could recur.

On the other hand, people should be encouraged to prioritize their health and marry people who come from healthy backgrounds to spread those genes to future generations. At last, gender is immutable. Whether to a male or female, the process of giving birth is natural and cannot be altered. Men need to know why they are more likely to contract heart disease than women. Estrogen helps women by making them less vulnerable to cardiovascular disease. Keeping this in mind, they ought to take measures to avoid joining the heart disease statistics. All it takes is for them to commit to a healthier way of life.

5. CONCLUSION

The evaluated p-values are greater than the statistical threshold of 0.05. We conclude that these factors play a role in the onset of cardiovascular disease. the tests indicate that 90 percent of the participant who are facing severe chest pain is suffering from heart disease where majority of the successful heart disease identified is in males and only 10 percent participants are identified as healthy. We have also developed logical regression model based on the machine learning
algorithm and we have tested the data using trained data and test data which was developed from dataset. The accuracy of logistic regression model based on training data is 85.12 percent and accuracy of the test data is approximately 82 percent. In conclusion, heart disease symptoms might differ for men and women. Men will probably have chest pains. On the other hand, women tend to have experience different kinds of symptoms together with chest discomfort, for example, shortness of breath, fatigue, and nausea. However, cardiovascular disease can be avoided. It is still necessary to stress the value of prevention over treatment, even with the help of a prediction computer. For cardiovascular health, it is important to check one’s blood sugar and cholesterol levels. Regular exercise helps burn calories, reducing the danger of obesity-related heart disease. Heart health is improved, and blood flow is increased due to regular exercise. Eating healthy can help you keep the weight off and protect your heart from the damage caused by atherosclerosis. Informing people of the risks associated with smoking is important because it can lead to serious health problems, including heart disease. Limiting your alcohol intake is another strategy for lowering your risk of developing heart disease. Last but not least, people should learn to cope with stress, as it raises their risk of developing the disease. Stress can precipitate heart disease by increasing blood pressure and should be controlled with exercise or meditation. If people consciously decide to adopt heart-healthy practices, the measures above may be effective in the fight against and reduction of the prevalence of heart disease. Age and cholesterol play significant role heart disease which means higher the value higher the chances of heart diseases.

REFERENCES

AUTHORS

Dinesh Kalla is currently working at Microsoft as Big Data and Azure Cloud Escalation Engineer and has 8 years of industry experience as a .Net Developer, BI Developer and Azure Cloud Engineer. His main areas of expertise and research interest are in Big Data Analytics, Data Science, Machine Learning, Artificial Intelligence, IOT and Cybersecurity. He published several papers related to Chatbots and cybersecurity threats in international Journals. He completed his Masters in University of New Haven and currently pursuing his Doctoral Degree in Computer Science specialized in Big Data from Colorado Technical University.

Arvind Chandrasekaran from Texas, USA. Presently working for PPG Healthcare for the past six years. I have also been pursuing Doctorate in Computer Science (Big Data Analytics) from Colorado Technical University for the past two years, having completed 54 credits; I’m looking to achieve the same by this year.