
David C. Wyld et al. (Eds): NLPML, AIAP, SIGL, CRIS, COSIT, DMA -2023

pp. 91-98, 2023. CS & IT - CSCP 2023 DOI: 10.5121/csit.2023.130808

ENHANCE CALLING DEFINITION SECURITY

FOR ANDROID CUSTOM PERMISSION

Lanlan Pan1, Ruonan Qiu, Zhenming Chen, Gen Li, Dian Wen, and

Minghui Yang

Guangdong OPPO Mobile Telecommunications Corp. Ltd., Guangdong

518000, China

ABSTRACT

Custom permission is an important security feature of Android system. Permission resource

app defines the custom permission. Resource provider app can share the app resources

with the resource consumer apps which have gained the custom permission. However, evil

app may potentially make permission squatting attacks, get ahead of legitimate permission

source app to define the custom permission. If permission squatting attack is successful,

then evil app can gain the access to the resource shared by resource provider app, and

finally lead to security vulnerabilities and user data leakage. In this paper, we propose a

scheme to provide permission source validation for the resource provider apps, which can

enhance the calling context security for android custom permission, resistant to permission
squatting attack, and suitable for app’s self-protection.

KEYWORDS

Android, App, Custom, Permission, Squatting, Security

1. INTRODUCTION

Custom permission is an important security feature of Android system to limit app’s access to

sensitive data [1][2][3]. Any app can use custom permissions to share its resources with other

apps, system provides the permission-based access control. Android system fully trusts the
permission source app which first defined the custom permission by default.

However, evil app may potentially make permission squatting attacks, get ahead of legitimate
permission source app to define the custom permission. Resource provider app just uses the

custom permission directly, without any other more permission source validation to identify the

permission is defined by evil app. Therefore, evil app will gain the access to the resource shared

by the victim resource provider app, and finally lead to security vulnerabilities and user data
leakage [4][5][6].

In this paper, we propose a scheme to provide permission source validation for the resource
provider apps, which can be resistant to permission squatting attack, and suitable for app’s self-

protection. The remainder of this paper is organized as follows. In section 2, we describe the

permission squatting attack. In section 3, we discuss about the related work. In section 4, describe
our permission source validation scheme in detail. Finally, in section 5, we discuss our work and

conclude the paper.

http://airccse.org/cscp.html
https://airccse.org/csit/V13N08.html
https://doi.org/10.5121/csit.2023.130808

92 Computer Science & Information Technology (CS & IT)

2. PERMISSION SQUATTING ATTACK

2.1. App Roles in Custom Permission Scenario

As Table 1 shows, we define 4 app roles in the custom permission scenarios:

 Permission Source App defines a custom permission.

 Resource Provider App declares to provide some resources to the apps which have gained

the custom permission defined by permission source app.

 Resource Consumer App requests to consume some resources which provided by resource

provider app.

 Evil App is developed by the attacker, makes permission squatting attacks, gets ahead of
legitimate permission source app to define the custom permission.

Table 1. App Roles.

App Role Description Example App Name

Permission Source App The app that defines a permission. App P

Resource Provider App The app that declares to provide some resources. App R

Resource Consumer App The app that requests to consume some resources. App C

Evil App The app that is developed by the attacker. App E

2.2. Sample of Custom Permission Usage

User has installed app P, app R, and app C.

Permission source app P defines a permission "com.srv.appP.JUSTFORTEST":

<permission

android:name="com.srv.appP.JUSTFORTEST"

android:label="JUSTFORTEST"
android:protectionLevel="signature"

/>

Resource provider app R declares a provider, only the apps which gained the

"com.srv.appP.JUSTFORTEST" permission can access the provider.

<provider

android:authorities="com.srv.sourceprovider"

android:name="com.srv.appR.sourceprovider"

android:permission="com.srv.appP.JUSTFORTEST"

android:exported="true"

/>

Resource Consumer app C obtains the "com.srv.appP.JUSTFORTEST" permission, to access the

"com.srv.appR.sourceprovider" provider.

<uses-permission

android:name="com.srv.appP.JUSTFORTEST"

 />

Computer Science & Information Technology (CS & IT) 93

2.3. Permission Squatting Attack

User has installed resource provider app R, but hasn't installed permission source app P.

Resource provider app R declares a provider, only the apps which gained the

"com.srv.appP.JUSTFORTEST" permission can access the provider.

<provider

android:authorities="com.srv.sourceprovider"

android:name="com.srv.appR.sourceprovider"
android:permission="com.srv.appP.JUSTFORTEST"

android:exported="true"

/>

Attacker developed an evil app E, and coax user into installing app E.

User hasn't installed permission source app P, therefore, app E can define a permission

"com.srv.appP.JUSTFORTEST".

<permission
android:name="com.srv.appP.JUSTFORTEST"

android:label="JUSTFORTEST"

android:protectionLevel="signature"

/>

Finally, app E can obtain the “com.srv.appP.JUSTFORTEST” permission, to access the
"com.srv.appR.sourceprovider" provider, which may lead to user data leakage. Moreover,

because of permission definition collision, the user can’t not install permission source app P if

app E has existed.

We perform squatting attack evaluation describe in this section on 6 mobile devices from the

following manufacturers: Google, Huawei, OPPO, Samsung, Vivo, and Xiaomi. As Table 2

shows, all the 6 mobile devices are affected by squatting attack. Our experiment code can be
found in [7].

Table 2. Squatting Attack Evaluation Result.

Manufacturer Device Model Operation System Squatting Attack

Google Pixel 3 Android 12 ✓

Huawei P40 HarmonyOS 2.0.0 ✓

OPPO Find X5 Pro Android 13 ✓

Samsung Galaxy S20 5G Android 12 ✓

Vivo iQOO 7 Android 13 ✓

Xiaomi Mi 10 Android 12 ✓

3. RELATED WORK

Existing Android custom permission security research has discussed the permission squatting

attack, mostly focus on the permission vulnerabilities detection, and system access control policy
improvement on permission.

94 Computer Science & Information Technology (CS & IT)

Reverse Domain Style Permission Name. Talegaon, S., et al. [5] suggest to regulate custom

permission name with the reverse domain style. However, the attacker can develop evil app with

the same application name of legitimate app.

Naming Convention. Tuncay, G. S., et al. [6] introduce an internal naming convention, which

enforces that all custom permission names are internally prefixed with the source id of the app

that declares it. To avoid the package name problem, they instead use the app’s signature as the
source id to prefix permission name. However, it only works for the apps with same signature,

but can’t deal with the scenario when permission source app, resource provider app, and resource

consumer app are signed by different private keys.

Disallow Custom Permission with The Same Name. Bagheri, H., et al. [8] suggests to disallow

multiple apps that define a custom permission with the same name from simultaneously existing

on the device. However, we can’t assume that the legitimate app can be always installed before
the evil app, and the attacker may uninstall legitimate app.

Revoke Permission. Li, R., et al. [9] suggests to revoke permission directly. When the system
removes a custom permission, its grants for apps should be revoked. When the system takes the

ownership of a custom permission, its grants for apps should be revoked. During the permission

update, its grants for apps should be revoked. However, attacker can attract users to grant the evil
app’s custom permission again, with the same permission name, and users hardly to distinguish

it.

Dynamic Enforcement. Hill, M., et al. [10] envisioned an approach in which both users and
Android enterprise administrators can actively restrict the functionality of potential permission

abusing apps by leveraging the dynamic permission updates provided by Android enterprise.

However, the management work is heavy, such as identify attack patterns and potential templates
for counter-policies.

4. PROVIDE PERMISSION SOURCE VALIDATION FOR THE RESOURCE

PROVIDER APPS

The root cause of permission squatting attack is the android custom permission trust scheme.
Android system fully trusts the app which first defined the custom permission, if the evil app can

make the permission definition squatting, the attack comes. However, there are few discussions

about how to enhance resource provider app’s self-protection on custom permission, which can
help resource provider app to provide its resource to the right consumer app with the right

permission defined by the right permission source app.

To address the permission squatting attack mentioned above, we describe a permission source
validation scheme for the resource provider app. We add three permission attributes for the

permission source validation:

 permission_srcSecondLevelDomainNames

 permission_srcProtectLevel

 permission_srcSignerCerts

4.1. permission_srcSecondLevelDomainNames

Computer Science & Information Technology (CS & IT) 95

permission_srcSecondLevelDomainNames means that, the resource provider app assumes that
the permission source application name must belong to some second level domain names.

For example, resource provider app R declares a provider, the permission source application

name should belong to "com.srv", or "com.service". Application name "com.srv.appP" matches
"com.srv".

<string-array name="srcSecondLevelDomainNamesForP">

<item>com.srv</item>

<item>com.service</item>

</string-array>

<provider

android:authorities="com.srv.sourceprovider"

android:name="com.srv.appR.sourceprovider"

android:permission="com.srv.appP.JUSTFORTEST"

android:permission_srcSecondLevelDomainNames="@array/srcSecondLevelDomainNamesForP"

android:exported="true"

/>

4.2. permission_srcProtectLevel

permission_srcProtectLevel means that, the resource provider app assumes that the permission
source app should belong to one of the protect levels below:

 permission_srcProtectLevel = signature: the permission source app should have the same

signer certificate with the resource provider app.

 permission_srcProtectLevel = privileged: the permission source app should be privileged
app [11].

 permission_srcProtectLevel = knownSigner: the permission source app’s signer certificate

digest should be listed in the permission_srcSignerCerts.

For example, resource provider app R declares a provider, the permission source app should have
the same signer certificate with the resource provider app.

<provider

android:authorities="com.srv.sourceprovider"

android:name="com.srv.appR.sourceprovider"

android:permission="com.srv.appP.JUSTFORTEST"

android:permission_srcProtectLevel="signature"

android:exported="true"
/>

For example, resource provider app R declares a provider, the permission source app should be

privileged app.

<provider

android:authorities="com.srv.sourceprovider"

android:name="com.srv.appR.sourceprovider"

android:permission="com.srv.appP.JUSTFORTEST"

android:permission_srcProtectLevel="privileged"

android:exported="true"

/>

96 Computer Science & Information Technology (CS & IT)

4.3. permission_srcSignerCerts

permission_srcSignerCerts contains some signer certificate digests, which are used for the

permission_srcProtectLevel = knownSigner scenario. The digest should be computed over the

DER encoding of the signer certificate using the SHA-256 digest algorithm.

For example, resource provider app R declares a provider, the permission source app’s signer

certificate digest should be listed in the permission_srcSignerCerts.

<string-array name="srcSignerCertsForP">
<item> 657d6f7c6295d453f027a8cc4ce528f411d95276cca140f540c53f396df1ceff </item>

</string-array>

<provider

android:authorities="com.srv.sourceprovider"

android:name="com.srv.appR.sourceprovider"

android:permission="com.srv.appP.JUSTFORTEST"

android:permission_srcProtectLevel="knownSigner"

android:permission_srcSingerCerts="@array/srcSignerCertsForP"

android:exported="true"

/>

4.4. Permission Source Validation

As Fig. 1 shows, system can make permission source validation for the resource provider apps

based on above permission attributes.

 Compared to reverse domain style permission name described in [5],
permission_srcSecondLevelDomainName is more flexible for application name changing.

 Compared to naming convention described in [6], permission_srcProtectLevel =

knownSigner could support the scenario when permission source app, resource provider app,

and resource consumer app are signed by different private keys.

 Compared to disallow custom permission with the same name described in [8],
permission_srcProtectLevel=signature/knownSigner could prevent the evil app from getting

resource provider’s data even when the evil app has successful declared the same permission

name on Android system.

 Compared to revoke permission described in [9],

permission_srcProtectLevel=signature/privileged/knownSigner could support more loose
access control policy with less permission revoked work, because the system can confirm

that the permission is updated by some legitimate permission source app through

permission_srcProtectLevel check.

Computer Science & Information Technology (CS & IT) 97

Start Permission Source Validation

Yes

No

Reject

No

Yes

Approve

No

Permission Source Application Name

matches

permission_srcSecondLevelDomainNames

?

Yes
Check

Permission Source App

with

permission_srcProtectLevel

knownSinger

privileged

Permission Source App

is Privileged App ?

signature

Permission Source App

has Same Signer Certificate

with

Resource Provider App?

No No No

Yes

YesYes

Defined

permission_srcSecondLevelDomainNames

?

Defined

permission_srcProtectLevel ?

Permission Source App's

Signer Certificate Digest

is listed in

permission_srcSignerCerts

?

Figure 1. Permission Source Validation

5. CONCLUSION

This paper describes a scheme to provide permission source validation for the resource provider

apps, which can be resistant to permission squatting attack. We define three permission attributes

to enhance the calling context security for android custom permission, which are suitable for
app’s self-protection.

In this paper, we don’t discuss about the system how to identify evil app on app store, or the

system how to make malware detection when installing app. We don’t mention about the attacker
how to attract user to install evil app before legitimate permission source app. We focus on the

permission source configuration improvement at resource provider app.

We believe that enhance calling definition security can mitigate the evil app’s attack on android

custom permission. Our future work is to do more experiments on android system, and suggest

Google to implement our scheme in the future android version.

REFERENCES

[1] Define a custom app permission, https://developer.android.com/guide/topics/permissions/defining

[2] Zhou, H., Luo, X., Wang, H., & Cai, H. (2022, November). Uncovering Intent based Leak of
Sensitive Data in Android Framework. In Proceedings of the 2022 ACM SIGSAC Conference on

Computer and Communications Security (pp. 3239-3252).

[3] Yang, Y., Elsabagh, M., Zuo, C., Johnson, R., Stavrou, A., & Lin, Z. (2022, November). Detecting

and Measuring Misconfigured Manifests in Android Apps. In Proceedings of the 2022 ACM

SIGSAC Conference on Computer and Communications Security (pp. 3063-3077).

[4] The Custom Permission Problem, https://github.com/commonsguy/cwac-

security/blob/master/PERMS.md

[5] Talegaon, S., & Krishnan, R. (2020). A formal specification of access control in android. In Secure

Knowledge Management In Artificial Intelligence Era: 8th International Confer-ence, SKM 2019,

Goa, India, December 21–22, 2019, Proceedings 8 (pp. 101-125). Springer Singapore.

[6] Tuncay, G. S., Demetriou, S., Ganju, K., & Gunter, C. (2018). Resolving the predicament of android
custom permissions.

[7] Squatting Attack，https://github.com/JimmyChenX/SquattingAttackInAndroidCustomPermissions

[8] Bagheri, H., Kang, E., Malek, S., & Jackson, D. (2018). A formal approach for detection of security

flaws in the android permission system. Formal Aspects of Computing, 30, 525-544.

[9] Li, R., Diao, W., Li, Z., Du, J., & Guo, S. (2021, May). Android custom permissions de-mystified:

From privilege escalation to design shortcomings. In 2021 IEEE Symposium on Security and

Privacy (SP) (pp. 70-86). IEEE.

98 Computer Science & Information Technology (CS & IT)

[10] Hill, M., Rubio-Medrano, C. E., Claramunt, L. M., Baek, J., & Ahn, G. J. (2021, September).

Poster: DyPolDroid: User-Centered Counter-Policies Against Android Permission-Abuse Attacks.

In 2021 IEEE European Symposium on Security and Privacy (EuroS&P) (pp. 704-706). IEEE.

[11] Privileged App, https://source.android.com/docs/core/permissions/perms-allowlist

AUTHOR

Lanlan Pan, my current research interests in cryptographic protocols, mobile security,

automotive security, and cybersecurity.

© 2023 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://airccse.org/

	Abstract
	Keywords
	Android, App, Custom, Permission, Squatting, Security

