
David C. Wyld et al. (Eds): SOEN, SIPP, PDTCA, ITE, CCSIT, NLPCL, DaKM, BIGML, AISC -2023
pp. 21-32, 2023. CS & IT - CSCP 2023 DOI: 10.5121/csit.2023.131202

FROM RESEARCH TO PRACTICE: DOES AI

PROMOTE OR PREVENT THE USE OF AN
MBSE TOOL?

Asma Charfi, Takwa Kochbati and ChokriMraidha

Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

ABSTRACT

In this paper, we will investigate the role that can play the AI in adopting a Model Based

System-Engineering (MBSE) tool. The MBSE approach is widely adopted in the development of

complex systems (real time systems, cyber physical systems, system of systems, etc.) however, in

the practice, the tools implementing this approach are facing several problems and are far from

being adopted by system provider. We contend that the integration of AI into the appropriate

MBSE phase can yield advantageous outcomes. Furthermore, we propose that further
exploration into the implementation of AI techniques (such as Machine Learning and NLP) in

MBSE tools is necessary to align with the requirements of stakeholders.

KEYWORDS

MBSE, AI, ALM, NLP, MBSE Tool

1. INTRODUCTION

The INCOSE (International Council on Systems Engineering) defines Systems Engineering as

“an interdisciplinary approach and means to enable the realization of successful systems. It
focuses on defining customer needs and required functionality early in the development cycle,

documenting requirements, then proceeding with design synthesis and system validation while

considering the complete problem”[1].

Model Based System Engineering (MBSE) has been widely adopted in the development cycle of

complex systems. Indeed, MBSE allows managing the complexity of the system by developing

models for each stage in the development cycle (Requirement model, Function model, logical and
physical models...) as shown in Figure 1 from [2].

This cycle is evolving (from a classical V cycle) to fit the new functional (the capabilities, the
missions, the operations) and non-functional requirements (the quality attribute such as carbon

footprint, safety, security, performance…) of the complex system (system of systems (SoS),

Cyber Physical System (CPS)…). Some studies such as [3] and [4] show the advantage of
adopting Model Based System Engineering over Document Based System Engineering. This

study [4] over 700 projects in different countries around the world shows that schedule adherence

and average project duration are improved by using modelling tools. Only 19% of modelling tool

users reported projects being behind schedule, compared to 30% of non-users.

http://airccse.org/cscp.html
https://airccse.org/csit/V13N12.html
https://doi.org/10.5121/csit.2023.131202

22 Computer Science & Information Technology (CS & IT)

Figure 1. Extended V model for an MBSE approach of a Cyber Physical System

One of the MBSE pillars is to promote an automatic transition between the different stages of the
system development process, from requirements specification through design and implementation

to validation (Figure 1). Moreover, keeping a traceability link between the different models of the

system is one of the pillars of an MBSE approach [1]. This will ensure that the final system will
satisfy the functional and non-functional requirements identified at the highest level of the

development cycle.

We can easily conclude that providing an MBSE tool to allow companies to take advantages of
this promising approach is challenging (which modelling language is used to build the models?

how to ensure traceability between models? how to automate the implementation and the test?

what about validation and verification?). Some MBSE tools are already used in industries such as
[5], [6], [7], etc. However, (1) the lack of powerful automation MBSE tools implementing all the

modelling levels and ensuring traceability for all phases of the MBSE approach as well as (2) the

social barrier that consider the implementation phase in the development cycle as the centric and

more important phase, play a crucial role to hinder the adoption of the MBSE approach.

The discipline of AI can be described as the science of mimicking human mental faculties on a

computer [8]. AI systems include modules that enables the generation of types of learning. For
instance, Machine Learning (ML) is a type of artificial intelligence technique that makes

decisions or predictions based on data. Natural Language Processing (NLP) is the branch of AI,

which enables computers to understand, interpret, and manipulate human languages. In fact, AI
techniques together with suitable technology have enabled systems to perceive, predict, and act in

assisting humans in a wide range of applications.

With the emergence of the AI techniques, we can argue that integrating AI in an MBSE tool will
promote the adoption of this approach.

In the next section, we will present the related works on using AI techniques in a system
engineering process. The section 3 presents the result of adopting some AI techniques in an

MBSE tools as well as our implemented approach. Section 4 presents a use case and section 5 a

discussion followed by a conclusion.

Computer Science & Information Technology (CS & IT) 23

2. RELATED WORKS

In [9] the author present the AI augmented system-engineering approach where he tries to map

some system engineering activities to AI technologies. For example, machine-learning techniques
[10], [11], [12] as well as ontologies and Knowledge bases (Kbs) [13], [14] can be used in the

design phase.

In [15] the author propose a recommender system to assist design modelling with UML. The

system recommends class attributes when constructing UML class diagrams. Commonly used

recommendation techniques include collaborative filtering (CF) and knowledge-based (KB).
Although a recommender system can assist the designer and enhance the quality of the produced

UML class diagram, it can indeed clutter up the existing Modelling tool that already suffer from a

cumbersome multi views IHM (semantic view, graphical view, properties view…).

The work presented in this paper [16] aims at fostering model-driven engineering at enterprise

scale, by contributing to a next generation of cognitive model-based engineering tools and this by

proposing a generic LSTM neural network architecture to infer heterogeneous model
transformations, mainly the code generation from the design. However, despite the limitations

already mentioned in the same paper: (the lack of datasets to train the ANN, the ANNs are unable

to perform operations with values and evaluation of expressions), we argue that the automatic

generation of the code from the system design is not the main functionality that a stakeholder will
use when adopting an MBSE tool.

In fact, only structure part of the code is generated from structural models. Behaviours are best
coded directly in 3rd generation languages and are not generated from the design. It is easier for

the developer and even for designer to write directly the code than building an activity diagram or

a state machine diagram and then generate the same code from it. Authors in this paper [17]
propose to delete the code generation step in the MBSE approach and directly compile UML

models since the code generation prevents some footprint code optimizations that is relevant for

constrained-embedded systems.

In this paper [18] an evaluation of NLP techniques for requirements traceability is presented, the

authors conclude that NLP is likely not a practical approach to requirements traceability. In fact,

for this study, the amount of time needed to resolve the false positives may be greater than the
time spent conducting the process without automated tools in the first place. In the case of this

study, the number of false positives requiring human review rendered histogram distance

counterproductive, involving more work to manually resolve than to manually establish traces
without the use of automatic tools.

In the next section, we will present how the use of the NLP techniques to generate Design model

from the requirements (first and second step of the V cycle of an MBSE approach) can be
beneficial to the MBSE tool user.

3. AI TECHNIQUES TO MANAGE REQUIREMENTS AND DERIVE SYSTEM

DESIGN

In the previous section, we presented related works that rely on adding AI techniques in different

phases of the MBSE approach to enhance the adoption of this approach using more performant

MBSE tools to produce more performant and reliable systems.

24 Computer Science & Information Technology (CS & IT)

Figure 2. A possible view of an extended MBSE process with IA techniques

Figure 2 presents a classical V cycle of an MBSE approach extended with some AI techniques.

We believe according to our experience in using and developing MBSE tools, and taking into

account the feedback of the industrial stakeholders about the use of MBSE tools, that embedding
the AI techniques (NLP and ML) to manage the requirements and automatically generating the

first level design of the system is the most interesting way to enhance the adoption of the MBSE

tool.

This section is organized as follow: the first subsection (section 3.1) introduces the approach and

its advantages and drawbacks. The second subsection (section 3.2) presents the implementation

and some specific NLP and ML techniques.

3.1. Approach definition

The first step in the development cycle of a complex system is the specification of the

requirements (Figure 2). However, for complex systems, the number of requirements is
exponentially increasing due to the increasing number of stakeholders involved in the process

(mainly for CPS). This exponential growth in the number of requirements hinders the efficient

management and the understanding of the gathered requirements and consequently, it hinders the

construction of high quality systems. Requirements elicitation has a significant impact on
information systems quality and success, as the errors introduced at the beginning stages of

development are the hardest and most expensive to correct [19].

Hence, the exponential growth of the number of requirements raises difficulties in managing

manually the requirements and having a clear view of the expectation and scope of the system to

be designed. Here, lies the importance of adopting graphical models as they ensure having a clear

view of the expectation and scope of the system to be designed [20]. In fact, adopting models

helps to represent and communicate what is important among stakeholders, keep track of the

gathered requirement throughout the project, and helps developers deal with the complexity of

the solution being developed. Additionally, with the shift to Agile development, requirements are

continuously changing, which makes it difficult to capture all requirements for a non-trivial

system before development [21]. It is therefore critical to keep track of the requirements

throughout the project. Agile software development methods such as Scrum have become

Computer Science & Information Technology (CS & IT) 25

widespread in the industry. Several industrial and open source tools has emerged to manage not

only the system development but also all the product lifecycle Management (PLM).

Comparing to MBSE tool, PLM tools have been more successful, because of their user friendly

web interface (even if some MBSE tools migrating to a new web interface like [5]) and there

capabilities to manage the entire lifecycle of an application (ALM) or a product (PLM).

An important factor that help user adopting an ALM tool is the ability to interact with the system

without learning a new language. For MBSE, the user has to be familiar at least with the

standards modelling languages like UML [22], SysML [23], etc. For example, for ALM tool that

implements the well-known and heavy used Scrum Agile approach, the system requirements are

edited in the tool as user stories.

We identified three challenges to be considered in adopting an MBSE approach to develop

complex system:

1) How to help system developer manipulating all the complex system requirements usually

defined in natural languages?

2) How to help system developer to keep traceability between the requirements and the

design of the system?

3) How to help system developer to follow both Agile and MBSE approaches?

Our approach proposes a solution for each identified problem. (1) Rely on the AI techniques

(NLP and ML) to manage the complexity and the growing number of requirements. (2)

Automatically generate the system design from the classified requirements. (3) Integrate both

services in an ALM tool to follow an agile approach and hide the complexity of modelling

language for the end user (3). Figure 3 shows the proposed approach.

Figure 3. The Proposed Approach

26 Computer Science & Information Technology (CS & IT)

It is worth to say here that the two first solutions proposed by our approach have been already
presented in more details in [24]. In this paper, we enhance the approach technically by (1)

relying on LIMA NLP tooling [25] instead of the NLTK and SpaCy libraries and (2) integrating

the solution in the Papyrus MBSE tool that imports the requirements from the Tuleap ALM tool

[26].

3.2. Technical Implementation

Among Agile engineering practices, user stories are widely adopted [27], involving potential

stakeholders in the requirement elicitation process by writing their needs in natural language.

A user story is a requirement expressed from the perspective of an end-user. It is a semi-

structured natural language description of requirements. The structure of user stories follows a

compact template that describes the type of user, what they want and (optionally) why [28]. The
most used template is as follow:

As a « type of user », I want « goal », [so that « some reason »]

Several NLP techniques can be applied to tune the user stories. In this paper [29], authors gave a
systematic review of NLP techniques used in the processing, similarity computation and

clustering of user stories as shown in Table 1.

Table 1. NLP tooling for the treatment of user stories

In our approach, we have used LIMA to pre-process the user stories and extract the main model

elements in a UML use case diagram: the Actor, the Use case and the Association between Actor
and Use case [22]. In general, LIMA is a fast and efficient NLP tool, especially for languages

other than English (LIMA supports more than 60 languages). NLTK is a user-friendly NLP

library with a wide range of tools and educational resources. CoreNLP is a scalable NLP library
with a server-based architecture. In our previous work, we used NLTK library for the

preprocessing step and Spacy for defining the rules to extract UML elements from already

clustered requirements.

Computer Science & Information Technology (CS & IT) 27

Preprocessing is the first step of the approach in which, the input functional requirements
expressed in natural language are normalized through several steps like tokenization (the

decomposition of a sentence into a set of individual words), stop-words removal (the elimination

of common words), punctuation removal… Figure 4 shows the result of the preprocessing step

using LIMA.

Figure 4. LIMA Preprocessing

In fact LIMA allowed us to enhance easily with a simplified syntax the extraction of an Actor and
the Use Case as shown in the Figure 5: (Actor is referred here as REQ_ANNOUNCER and the

use case as REQ_GOAL).

With DeepLima [25] the version of LIMA with deep learning techniques, we aim to enhance the
result of the preprocessing as well as UML element extraction.

Figure 5. Example of LIMA Rule for extracting Actors and Use Cases

For more details about the Similarity Computation and the Clustering steps, please refer to our

previous works [24] and [30].

In the next section, we will presents a case study of the approach using the ALM tool Tuleap and
the MBSE tool Papyrus.

4. CASE STUDY: TULEAP AND PAPYRUS

Tuleap is an ALM tool that provides a platform for managing software development projects.

ALM tools facilitate the entire software development process, from project planning and

requirements gathering to coding, testing, and deployment.

Papyrus is an open source MBSE tool to develop complex system; it offers several views to

design models according to OMG modelling languages like UML and SysML.

28 Computer Science & Information Technology (CS & IT)

As shown in Figure 3, the idea is to:

- Import or edit the system requirements defined as user stories in a ALM tool (here

Tuleap will be used as example)

- Execute several AI techniques to parse and classify the requirements
- Use Papyrus (in a hidden way from the end user) to generate for free a visual graphical

representation of the requirements

4.1. Description of the Case Study

We evaluated our approach on the CMS Company case study [24]. This case study involves a

company developing complex Content Management System (CMS) products for large

enterprises. 34 user stories are supplied. Figure 6 shows a snippet of the user stories of the CMS
case study and the UML use case diagram that is automatically generated from this snippet

thanks to the AI NLP algorithms.

Figure 6. Snippet of CMS company user stories and the UML Use Case diagram generated from it

Each user story is tracked in the Tuleap tool as a new Artifact (the user story text is copied in the

Task Title field of each Artifact as shown in the Figure bellow.

Figure 7. Tuleap IHM to store the user stories

Computer Science & Information Technology (CS & IT) 29

All user stories are imported in Papyrus thanks to the available REST API of Tuleap, and then all
the embedded AI algorithms are executed (LIMA preprocessing, similarity computation,

clustering and UML elements extraction). After that, Papyrus automatically generate the UML

use case diagrams from the UML semantic file. The tooling architecture is presented in the

Figure 8. The Rust programming language is used to launch all NLP algorithms and generate the
UML use case diagram according to each Cluster.

Figure 8. The web interface between Papyrus (back end) and Tuleap (front end)

4.2. Evaluation of the approach

In order to evaluate the accuracy of the generated use case model, we specified True Positive

(TP), False Negative (FN) and False Positive (FP) elements applied to actors, use cases and their

relationships.

Table 2 summarizes the evaluation of the generated UML use case model in terms of Precision,

Recall and F-measure (well-known measures in the Information Retrieval (IR) field) [31].

Table 2. Evaluation of the used IA techniques using Precision, Recall and F-mesure for the UML element

extraction as well as execution time of all AI algorithms

30 Computer Science & Information Technology (CS & IT)

For actors, F-measure value is equal to 100% as we succeeded to extract all the actors. For use
cases and relationships, F-measure values take high-range (94%) and (88%) respectively. In

relationships detection, these values are due in particular to inclusion or extension relationships

between use-cases that are not supported by our approach. The execution time of all IA

algorithms in this platform is acceptable (35 s for this case study as shown in Table 2). However,
it increases with the increase of the number of the user stories.

5. DISCUSSION

We are convinced that AI algorithms are of great help for the MBSE approach if they are
used to verify, validate, analyse, and compare models but not to cognify the MBSE tools that
already suffer from adoption problems due to the complexity of the modelling language itself and

the lack of fluidity of the user interface. Thus, integrating AI in the design phase and the code

generation phase (Figure 2) is not the priority to enhance MBSE tool adoption: an automatic code

generation is not heavily used by stakeholders since it is usually a partial step (only the structure
part of the code is automatically generated).

The presence of AI in some systems can play the opposite role and, contrary to what one might
think, AI can create a certain reticence for the designer manipulating a cognified tool (with

embedded chatbot or a recommender system).

We have also noticed that ChatGPT (an example of a now day excessively used AI) [32] reveals

in some cases a reluctance towards the not always convincing answers of this AI. For example,

by asking chatGPT to generate a UML use case diagram from a user story, the AI generate a

diagram that does not respect the semantics of the UML language. We much prefer that the AI
explain that it has not be trained to answer this kind of question or that it only knows how to

answer in text mode. This example shows that we cannot always trust what AI produces. Many

works are investigating the ethics and trust in the AI such as [33].

Moreover, if integrating AI solutions in an MBSE process of a complex system is beneficial, this

does not mean that running AI software in the tools implementing this process will be also
beneficial. In fact, there is usually a huge gap between the theoretical and practical aspect. For

example, for real time and embedded systems, the constraints on response times and data

confidentiality lead to a preference for local data processing, as close as possible to equipment

and sensors, rather than through the Internet. The challenge is not just to embed an AI but also
rather to embed an AI that consumes computing power, memory space and energy in a device

that is usually constrained in all these aspects and this without degrading performance.

6. CONCLUSION

In this paper, we presented several works for integrating AI techniques to enhance the adoption

of the MBSE approach. We argue that integrating AI techniques in the first and second phase of
the MBSE lifecycle (requirement specification and design generation) can promote the use of an

MBSE approach to develop complex system. Otherwise, relying on a standalone MBSE tool and

trying to integrate AI technique in the design phase or the code generation phase can prevent and
slow down the adoption of such tool. We believe that integrating an MBSE tooling into an ALM

or PLM tool is beneficial for both MBSE and Application Agile approaches.

Computer Science & Information Technology (CS & IT) 31

ACKNOWLEDGEMENT

The authors would like to thank all Papyrus development Team and mainly Sébastien Gérard as

well as Eliot Barbot for the work on the internship to develop the REST web service. We thank
also the LIMA development Team and mainly Gael De Chalendar for his help.

REFERENCES

[1] J. W. a. Sons, Incose Systems Engineering Handbook V4., INCOSE, 2015.

[2] J. H. a. T. B. I. Graessler, «V-MODELS FOR INTERDISCIPLINARY SYSTEMS

ENGINEERING,» INTERNATIONAL DESIGN CONFERENCE - DESIGN, n°
%1https://doi.org/10.21278/idc.2018.0333, 2018.

[3] T. T. C. M. S. G. G. Z. Morayo Adedjouma, «From Document-Based to Model-Based System and

Software Engineering: Experience Report of a Selective Catalytic Reduction System Development.,»

EduSymp/OSS4MDE@MoDELS, pp. 27-36, 2016.

[4] C. Rommel, «MBSE Solutions & Software/System Modeling Tools.,»

https://www.vdcresearch.com/vdcc/wp-content/uploads/2020/12/2020-Software-System-Modeling-

Tools-EB-VDC.pdf, 2020.

[5] Papyrus. Available: https://www.eclipse.org/papyrus/

[6] Capella. Available: hthttps://www.eclipse.org/capella/

[7] Cameo. Available: https://www.3ds.com/products-services/catia/products/no-magic/cameo-systems-

modeler/
[8] A. Hopgood, The state of artificial intelligence., Adv. Comput., 65:3–77, 2005., 005.

[9] A. M. Madni, Exploiting augmented intelligence in systems engineering and engineered systems.

Insight, pp 31–36, INSIGHT, 2020.

[10] Z. B. Y. Y. Y. e. a. Yang, Exploiting augmented intelligence in the modeling of safety-critical

autonomous systems., Form Asp Comp 33, 343–384. https://doi.org/10.1007/s00165-021-00543-6,

2021.

[11] P. T. E. H. D. A. &. M. Rajendran, Human-in-the-loop Learning for Safe Exploration through

Anomaly Prediction and Intervention., SafeAI@AAAI, volume 3087, of CEUR Workshop

Proceedings, 2022.

[12] F. E. H. R. A. e. a. ARNEZ, Towards Dependable Autonomous Systems Based on Bayesian Deep

Learning Components, 18th European Dependable Computing Conference (EDCC). IEEE, 2022. p.

65-72., 2022.
[13] F. N. a. C. M. Luis Palacios Medinacelli, Augmenting model-based systems engineering with

knowledge., In Proceedings of the 25th International Conference on Model Driven Engineering

Languages and Systems: Companion Proceedings, 2022.

[14] M. B. B. K. I. G. M. B. Thomas Hagedorn, Knowledge Representation with Ontologies and Semantic

Web Technologies to Promote Augmented and Artificial Intelligence in Systems Engineering,

Volume23, Issue1 March 2020.

[15] M. Savary-Leblanc, Augmenting software engineers withmodeling assistants, Phd Thesis , 2021.

[16] L. B. •. J. C. •. S. L. •. S. Gérard, «A generic LSTM neural network architecture to infer

heterogeneous model transformations,» Software and Systems Modeling (2022) 21:139–156.

[17] C. M. P. B. Asma Charfi, «An Optimized Compilation of UML State Machines,» 2012 15th IEEE

International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing.
[18] R. E. G. a. M. K. C. D. Laliberte, «Evaluation of Natural Language Processing for Requirements

Traceability,» 2022 17th Annual System of Systems Engineering Conference (SOSE), , Vols. %1 sur

%2Rochester, NY, USA, 2022, pp. 21-26, doi: 10.1109/SOSE55472.2022.9.

[19] B. Brügge and A. Dutoit, «Object-Oriented Software Engineering Using UML, Patterns, and Java,»

2009.

[20] e. a. Rodi Jolak • Maxime Savary-Leblanc • Manuela Dalibor, «Software engineering whispers: The

effect of textual,» Empirical Software Engineering (2020) 25:4427–4471.

[21] P. Krutchen., « The rational unified process: An introduction. 2000.».

[22] O. U. M. L. (. U. OMG, «https://www.omg.org/spec/UML/,» V 2.5.1, 2017.

[23] OMG, «https://www.omgsysml.org/SysML-2.htm».

32 Computer Science & Information Technology (CS & IT)

[24] T. K. p. Thesis, Bridging the gap between natural language system requirements and architecture

design models. Software Engineering, niversité Paris-Saclay, 2021. English. NNT: 2021UP

ASG076ff. tel-03411393,, 2 November 2021.

[25] O. S. N. &. B. L. ZENNAKI, «A neural approach for inducing multilingual resources and natural

language processing tools for low-resource languages.,» vol. Natural Language Engineering, n° %1,
25(1), 43-67. doi:10.1017/S1351324918000293.

[26] Tuleap. [En ligne]. Available: https://www.tuleap.org/.

[27] J. T. a. M. J. E. C. E.-M. Schön, Agile requirements engineering: A systematic literature review.,

Comput. Stand. Interfaces, 49:79–91, 2017.

[28] S. H. M. K. a. I. M. Y. Wautelet, «Unifying and extending user story models,» EMNLP, 2014.

[29] I. K. a. S. D. a. F. C. Raharjana, «User Stories and Natural Language Processing: A Systematic

Literature Review,» IEEE ACCESS, 2021.

[30] S. G. S. L. C. M. Takwa Kochbati, «From word embeddings to text similarities for improved

semantic clustering of functional requirements,» SEKE, 2021.

[31] P. R. a. H. S. C. D. Manning, «Introduction to information retrieval,» 2005.

[32] ChatGPT. [En ligne]. Available: https://openai.com/blog/chatgpt.

[33] M. Ryan, «In AI We Trust: Ethics, Artificial Intelligence, and Reliability,» Sci Eng Ethics 26, 2749–
2767 (2020). https://doi.org/10.1007/s11948-020-00228-y.

AUTHORS

Asma Charfi is a project manager and researcher at the Embedded and Autonomous

Systems Design Laboratory of the CEA LIST in France. She obtained a PhD in
computer science, on the topic of UML model compilation and execution. Her current

research is related to model-based software engineering for cyber physical systems she

is involved in several industrial and European collaborative R&D projects. She is a

committer of the open-source Eclipse Papyrus project.

Takwa Kochbati is a PhD student at CEA LIST and SOM Research Lab. Her PhD

research focuses on the cognification of model-driven engineering. By using AI

techniques. She graduated in computer science engineering from the National School of

Computer Science (ENSI, Tunisia) in 2017

Chokri Mraidha is leading the Embedded and Autonomous Systems Design

Laboratory of the CEA LIST institute in France. He got a master degree in distributed
computing in 2001 and a PhD in Computer Science in 2005. He is involved in UML-

based OMG standards for design of real systems like SysML and MARTE and the

AUTOSAR standard for automotive. He is working in European and French research

projectsdeveloping model-based approaches for design and verification of architectures

for critical real-time systems for automotive, railway, aerospace, and robotics. His

research and development interests include methods, design principles and smart tools for the engineering

of efficient and trustworthy software for autonomous systems.

	Abstract
	Keywords
	MBSE, AI, ALM, NLP, MBSE Tool

