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ABSTRACT 
 

In this paper we explore the applicability of Invertible Neural Network architecture for anomaly 

detection techniques on time series data and hypothesize that a reversible network designed 

with embedded convolutional transformations is an excellent fit for that task.  We leverage 

previous findings on autoencoders as well as deep generative maximum-likelihood training 

focused primarily on processing images and apply them in the innovative way to the time series 

data exemplified by electrocardiograms or industrial sensor data.  We recognize a challenge of 

common denominator patterns that occur across the entire sample domain, which might 

dominate the likelihoods and introduce intrinsic bias.  We then mitigate it by applying wavelet 

transforms to decompose a time series into a set of subcomponents to eliminate low-level 

similarities between the healthy and abnormal samples. We conclude that the Invertible Neural 
Network designed to solve inverse problems learns data reconstructions extremely well, and 

thus provides a remarkable solution for anomaly detection that is applicable to medical 

diagnostics, as well as other use cases in the similar problem space, such as predictive 

maintenance or detecting out-of-distribution inputs to protect integrity of systems relying on 

machine learning components. 
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1. INTRODUCTION 
 

One of the keys ideas behind digital transformation is the use of technology to extract useful 

information from the overwhelming amount of omnipresent data and provide us with new 

optimized ways to get additional insight into complex phenomena, deepen our understanding of 
observed outcomes, and enhance educated decision making.  We constantly engage in broadly 

understood evaluations and diagnostics of systems and processes, machines and living creatures 

to determine what works well and what does not, what is “normal” and what is “abnormal” in 
each context.  Whereas desired behaviours can be profiled with standards or specifications, the 

undesirable ones have countless possibilities and thus are difficult to be systematically described, 

other than “not” the desirable ones. 
 

Anomaly detection is a process of identifying items that stand out, objects that do not belong, 

measurements that do not fit into a pattern observed by examining a collection of data samples 

considered as standard, normal, or typical.  The pattern learning mechanism in machine learning 
is scoped to what is considered a sample set rep-resenting normal behaviours, and everything that 

looks sufficiently different in that context is regarded to be an anomaly.   
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Outliers in the phenomena characterized by low dimensionality can be easily assessed visually, 
by an algorithmic approach based on acceptable value ranges, or simple clustering techniques.  

Conventional methods of anomaly detection can be sorted out in several categories, such as 

statistical-based methods, probability-based methods, similarity-based methods, and most recent 

prediction-based methods.  They have been well summarized in Giannoni [1] and subsequently 
by Yin [2].   

 

 
 

 
Figure 1. Anomaly detection techniques 

 

For high dimensional use cases, multivariate statistics based on probability distributions and its 

counterpart machine learning techniques, capable of extracting complex patterns, come to the 
rescue.   

 

In this work we leverage previous findings and principles regarding several types of autoencoders 
and reversible neural networks and propose an improved network architecture for better anomaly 

detection on time series data using an Invertible Neural Network (INN) [3].   We hypothesize that 

an INN trained as a convolutional autoencoder and used on 2D-transformed time series data is an 

effective alternative naturally suited to solve anomaly detection.  Our proposed technique is 
applicable to various domains in this problem space, such as medical diagnostics or the Internet 

of Things’ (IoT) discipline of predictive maintenance described in [4]. 

 
The remainder of this paper is organized as follows:  Section 2 reviews related work about 

anomaly detection of time series data using deep learning techniques, focusing on the 

autoencoder network architecture [1].  It then elaborates on normalizing flows [5][6] and 

Invertible Neural Network architecture together with the previously established Framework for 
Easily Invertible Architectures (FrEIA), by Ardizone [3].  In Section 3 we learn how an INN can 

be trained as a probabilistic autoencoder [7] and introduce our proposed methodology to apply 

this architecture to time series type of data.  Section 4 summaries our findings leading to a 
conclusion, which is offered in Section 5.   

 

2. DEPENDENCIES AND LIMITATION 
 

The anomaly detection solution presented in this work is based on the revolutionary Invertible 
Neural Network architecture, which was first introduced by Dinh [5] in 2016.   The experiments 

leverage a concrete INN implementation described in [3] wrapped by the Framework 

for Easily Invertible Architectures, which offers an API mechanism to stack, infused with 
bijective functions, invertible network nodes to achieve reversible deep learning capability.  
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3. RELATED WORKS 
 

3.1. Autoencoders 
 
Autoencoders (AE) belong to the family of unsupervised dimensionality reduction deep learning 

neural network (DNN) models and have been described extensively in numerous works, such as 

[1], [2] and [8].  The idea around this type of neural network is to extract relevant features from 

input data and then learn how to reconstruct original data with these features.   
 

 
 

 
Figure 2. Classic Autoencoder 

 
As shown in Fig. 2, an autoencoder consists of an encoder and a decoder, implemented as fully 

connected neural networks.  It first encodes the network input x into a lower dimensional latent 

representation z, then decodes the latent representation back to the original input x̂. The 

information preserved in hidden neurons is considered as the encoded features. The learning 
process is based on minimizing the reconstruction error, which is assessed by comparing a 

reconstruction result to the original input.  Thus, an autoencoder learns to compress the data into 

a bottleneck to a point of minimal reconstruction error.  The learned representation corresponds 
to the final hidden state of the encoder network and acts like a summary of the input sequence. 

Autoencoders can be applied for dimension reduction, as well as for further classification leading 

to prediction.  
 

Convolutional autoencoders (CAEs), depicted in Fig. 3, use convolutional layers to fulfil the 

general autoencoder purpose of creating compressed representations [9][10].   

 

 
 
 

Figure 3. Convolutional Autoencoder 

 

CAEs are particularly suited to learn internal representations of image data and are mainly 
utilized in image compression and noise reduction. 

 

An important step in the autoencoder evolution was a model based on a Recurrent Neural 

Network (RNN) architecture proficient in encoding/decoding sequential data, proposed by 
Sutskever [11].   
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Figure 4. LSTM Autoencoder 

 

An RNN-based encoder, which has been proven useful for time series reconstruction, receives the 
input sequence in subsequent time steps, extracts and memorizes the temporal features of the 

input data, which is preserved in hidden units as encoded information or embedding.  The RNN-

based autoencoder architecture has been improved with Long Short-Term Memory (LSTM), 
depicted in Fig. 4, which introduced memory cells to help remember sequences across intervals 

of time, capturing temporal dependencies within the data, together with gates to control the 

information flow across the network. 

  
Variational Autoencoders are probabilistic generative models that learn a mapping from some 

latent random variable z to the probability density function on input x, so the regenerated input 

data can follow the exact same distribution while the reconstruction error is minimized.   
 

 
 
 

Figure 5. Variational Autoencoder 

 
The decoding phase is augmented with random samples drawn from the variational distribution in 

the latent space so it can also learn effective decoding for the values it has not seen, and thus 

variational autoencoders are capable of generating new content matching the probability density 
of x. Both networks are trained together with the usage of a reparameterization trick to mitigate 

the necessity of derivatives on random variable z. 

 

4. INVERTIBLE NEURAL NETWORKS 
 
An Invertible Neural Network, described by Ardizone [3], is a class of networks suited to solve 

ambiguity that characterizes inverse problems, where multiple parameter sets can produce the 

same observed outcome.  To express this ambiguity, the posterior probability of those 
parameters’ distribution, given that outcome, must be learned so the most appropriate set can be 
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selected.  Such a model can perform log-density estimation of data points, leading to efficient 
inference and precise reconstruction of the inputs from the hierarchical features extracted by the 

model.  This extraordinary capability to reconstruct the inputs corresponding to the encoder-

decoder functionality makes INN a natural candidate to help solve the problem of anomaly 

detection.  
 

An Invertible Neural Network guarantees reversibility by its construction and solves the 

ambiguous inverse relationships directly.  INN is trained simultaneously in the forward and 
reverse directions.   The forward learning process uses additional latent output variables to 

capture information otherwise lost, making the learning of the inverse process explicit.    

 

 
 

Figure 6. Invertible Neural Network Conceptual Diagram 

 

To solve the general inverse problem, we augment the observation space Y with a latent variable 

Z which follows a normal distribution and look for a bijective function F that can map Z back to 
X̂.  Being Bayesian, INN learns the invertible mapping between the data distribution PX and the 

latent distribution PZ, typically Gaussian.   

 

 

 
Figure 7. Reconstructing phenomenon X from observation Y 

 

Invertibility of neural networks was first spearheaded by Dinh [5] as “real-valued non volume 
preserving transformations” (Real NVP) architecture, who introduced a stack of invertible affine 

coupling blocks (Fig 8.), arranged in hidden layers.  
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Figure 8.  Real NVP Affine Coupling Block [5] 

 

As described in [5], given a D-dimensional input x and d < D, the output y of an affine coupling 

layer follows the following equations: 

                                                             y1:d = x1:d                                                                     (1) 

                                         yd+1:D = xd+1:D   ⊙ exp (s(x1:d) + t(x1:d))                                            (2) 

 

where s and t are functions from Rd → RD-d, and ⊙ is the Hadamard product or element-wise 

product. 

 

Each block splits its input and output into two parts and applies transformations s (scale) and t 
(translation), which themselves do not have to be invertible – they can be quite complex and are 

often implemented as artificial neural networks, such as a CNNs.  It has been proven [3] that a 

stack of such invertible blocks makes the end-to-end layout also invertible.   
 

5. PROPOSED ANOMALY DETECTION SCHEME 
 

5.1. Solution Architecture 
 

Our proposed anomaly detection scheme builds on Autoencoders and Invertible Neural Networks 

and introduces a competitively performant INN Time Series Variational Autoencoder 

architecture with convolutional feature extraction and wavelet transformations for time series 
data.   The concepts and models described in the previous section provide a foundational canvas 

for what is being architected and experimented in this work. 

 
The concept of an INN entails bijective input-output mapping, so the dimensions of input x and 

output y augmented with z must be equal.  We then construct an artificial bottleneck to achieve 

autoencoder-like behaviour [5], which is accomplished by zeroing the latent z to make sure that 
no extra information is retained by the network in the inverse process of representation learning.  

This is depicted in Fig. 9 below. 

 

 
 

Figure 9. Invertible Neural Network as Autoencoder 
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To create a fully invertible neural network, the solution follows the architecture proposed by 
Dinh [4] and wrapped by the Framework for Easily Invertible Architecture [3] which 

encapsulates known patterns for constructing invertible affine coupling blocks and exposes an 

interface to apply custom configurations to the stackable network nodes.   

 

 

 
 
 

Figure 10.  INN Autoencoder Network Layout 

 

As depicted in Fig. 10, our INN Time Series Autoencoder configuration consists of three affine 

coupling layers leveraging convolutional coupling functions s and t with the size of the hidden 
channel equal to 100, a kernel size of 3 and leaky ReLU, followed by a coupling block with fully 

connected coupling function.  A multiplexing Haar wavelets transformation layer was applied to 

split each channel into 4 channels, with half the width and height. 

 
We acknowledge traditional constraints regarding an autoencoder bottleneck necessity but 

confirm the validity of a non-bottleneck approach [12], which naturally fits the INN autoencoder 

architecture. Indeed, an INN based autoencoder with large bottleneck sizes performs increasingly 
better, and as also hypothesized in [5], display no intrinsic information loss.  

 

5.2. Experimental Setup 
 

The goal of the experiments is to construct and assess an INN Time Series Autoencoder, as 

compared to the classical LSTM time series autoencoder.  To understand the rationale of the 
necessity of a bottleneck [12] and the consequences of its size, we train the network with various 

bottleneck sizes.  

 
The experiments were conducted on two different time series datasets: a 140-dimensional ECG 

heart diagnostics dataset with 5,000 electrocardiogram [13] and the 61,440-dimensional Airbus 

helicopter accelerometer dataset [14] from the IoT predictive maintenance domain (PdM), whose 
dimensionality was reduced to 240, where each of which corresponds to the means of 256 

consecutive values.   This allowed to apply the same depth and bottleneck sizes of an INN 

configuration in both cases.  The ECG dataset was simplified from its 5-class classification 

format, where each example has been labeled “0” for an abnormal rhythm, or “1” for a normal 
rhythm, and only normal samples were utilized in the unsupervised fashion. We are interested in 

identifying the abnormal rhythms as not recognizable by the model. 

 
The visualization of healthy and abnormal data samples is depicted in Fig. 11 below.  

 



234         Computer Science & Information Technology (CS & IT) 

  

 
 

 

Figure 11.  Healthy and Abnormal Samples – ECG (left) and PdM Vibration (right) 
 

5.3. Methodology 
 
The INN Time Series Autoencoder scheme unfolds as follows:  

1) An INN is constructed with several nodes, described in Table 1, representing a wavelet 

transformation layer, CNN feature extraction layers, and one fully connected layer.  

2) For high dimensional time series input, data is transformed to reduce the number of 
dimensions.   This is described in section 3.2. 

3) Time series samples X = (x1, x2, …, xT) are then transformed into a 2-d format, where N 

x M = T 
4) The INN is trained as an autoencoder on the healthy dataset only, while creating a benign 

artificial bottleneck by zero-padding the latent variable space [5]. The training was 

performed with a batch size of 64 and in 10 epochs. 
5) The reconstruction error threshold TH for healthy samples is captured. 

6) The model is applied to the validation set using a percent of the threshold to detect 

anomalies (example: 95%) 

7) A truth table is drawn out to calculate the Recall number, since misdiagnosed abnormal 
measures (False Negative) are a concern. 

8) The process may be repeated for various bottleneck sizes, to find the best solution.  

 

5.4. Results 
 

Both datasets were treated in a comparable manner, with the INN configuration described in the 
tables below, for the ECG and PdM datasets respectively. Tables 1 and 4 show the network 

structure, with wavelet transformation and three convolutions, followed by a fully connected 

layer; tables 2 and 5 visualise how well the network has learned to reconstruct the input data; 
tables 3 and 6 report on the inference reconstruction loss, much larger for anomalies as compared 

to the healthy training samples.  The results are further reiterated in Figures 12 and 13, where the 
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anomaly curves stand far apart from what the network was trained on, which is exactly what we 
were hoping to see.    

 

5.4.1. ECG Dataset 
Table 1.   INN Nodes Input Dimensions 

 

Node Input Dimensions 

Wavelet (1, 10, 14) 

Conv1, Conv2, Conv3 (4, 5, 7) 

Fully Connected (140) 

Output (1, 10, 14) 

 
Table 2.  Difference between original and reconstructed data 

 

Original Data Reconstructed Data Difference 

   

 
Table 3.   Reconstruction loss for various bottleneck sizes 

 

Latent Dimension Healthy Reconstruction Loss Abnormal Reconstruction Loss 

8 0.019 0.110 

16 0.017 0.096 

32 0.013 0.094 

 

 
 

 
Figure 12.   Reconstruction loss on the ECG dataset 
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5.4.2. Helicopter Accelerometer Vibration Dataset 
 

Table 4.   INN Nodes Input Dimensions 

 
Node Input Dimensions 

Wavelet (1, 12, 20) 

Conv1, Conv2, Conv3 (4, 6, 10) 

Fully Connected (240) 

Output (1, 12, 20) 

 

Table 5.  Difference between original and reconstructed data (batches) 

 

Original Data Reconstructed Data Difference 

   
 

Table 6.   Reconstruction loss for various bottleneck sizes 

 

Latent Dimension Healthy Reconstruction Loss Abnormal Reconstruction Loss 

8 0.027, 0.028 0.122 

16 0.023, 0.027 0.120 

32 0.021, 0.022 0.118 

 

 
 

 
Figure 13.   Reconstruction loss on the helicopter accelerometer PdM dataset 
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6. RESULTS DISCUSSION 
 
We depicted the results in a plot gauging the ability of the network to reconstruct the inputs it 

was trained on against not seen data considered “out-of-distribution”, or an anomaly. The 

reconstruction loss on the anomalous samples is significantly greater (an order of magnitude) as 

compared to the reconstruction error on the healthy validation data.   There seems to be an 
improvement in reconstruction error in the network configuration with increasingly larger 

artificial bottlenecks, where zero-padding ensures that additional dimensions in the latent space 

are not used in representation learning. 
 

Tables 8 and 9 below depict the results in terms of model evaluation metrics, defined in Table 7, 

where False Negative are underdiagnosed, abnormal samples presenting a risk of undetected 

anomaly.  That risk in the performed experiments is lower with the Invertible Neural Network 
used as an autoencoder for time series, as compared to its classical or LSTM counterparts.  

Recall, which measures the proportion of actual positives that was identified correctly appears 

more than 10% better for the vibration dataset, and 2% better on the ECG dataset for the INN 
based solution. 

Table 7.   Truth Table Legend  

 

True Positive (TP) Anomaly predicted as Anomaly 

False Negative (FN) Anomaly predicted as Healthy (red flag) 

False Positive (FP) Healthy predicted as Anomaly 

True Negative (TN) Healthy predicted as Healthy 

 
Table 8.   PdM Truth Table 

 
 LSTM EA INN EA 

 

 
 
Precision: TP/(TP+FP) = 209/(209) = 100%  

Recall: TP/(TP+FN) = 209/(209+88) = 70% 
 

 
Precision: TP/(TP+FP) = 235/(235) = 100%  

Recall: TP/(TP+FN) = 235/(235+62) = 79% 

 
 

 

 

 

 

 
 

 

 

 

 



238         Computer Science & Information Technology (CS & IT) 

Table 9.   ECG Truth Table  

 

EA INN AE 

 
 
Precision: TP/(TP+FP) = 503/(503+3) = 99%  

Recall: TP/(TP+FN) = 503/(503+57) = 89% 

 

 
Precision: TP/(TP+FP) = 513/(513+2) = 99%  
Recall: TP/(TP+FN) = 513/(513+47) = 91% 

 

 

7. CONCLUSION 
 

In conclusion, the experiments indicate that the proposed model for time-series anomaly 

detection, which leverages an Invertible Neural Network as a convolutional autoencoder, proves 

effective and has better recall outcome from the classic stat-of-the-art autoencoder-based 
approaches.  The proposed solution appears to be generalizable, as it was applied with similar 

success rate to the datasets from various domains and much different time-series characteristics.  

Effectiveness of the solution results from the natural ability of Invertible Neural Networks to 
perfectly reconstruct inputs from the learned latent space, and even though the model may seem 

conceptually complex, frameworks exist to abstract such intricacy away and easily configure 

invertible network architectures.   
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