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ABSTRACT 
 
Mass shootings have emerged as a significant threat to public safety, with devastating 

consequences for communities and individuals affected by such events [7]. However, a lack of 

widespread use of new technological infrastructure poses significant risk to victims [8]. This 

paper proposes a system to classify and localize gunshots in reverberant indoor urban 

conditions, using MFCC features and a Convolutional Neural Network binary classifier [9]. 

The location information is further relayed to users through a mobile client in real time. We 

installed a prototype of the system in a high school in Orange County, California and conducted 
a qualitative evaluation of the approach. Preliminary results show that such a mass shooting 

response system can effectively improve survivability. 
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1. INTRODUCTION 
 

Mass shootings, particularly those that occur in public spaces, are a serious and pervasive 

problem in many parts of the world [10]. In the United States alone, there have been over 300 

mass shootings since the start of 2021, resulting in hundreds of deaths and injuries (Gun Violence 
Archive, 2021). In response, researchers and developers have sought to utilize technological 

solutions to detect and mitigate mass shootings in real-time. One such solution is the use of mass 

shooting detection systems that employ audio classification and source localization. 
 

Audio classification involves the analysis of sounds to discern their type or content, while source 

localization involves the determination of the location of a sound source. By integrating these 

technologies, mass shooting detection systems can identify the presence of gunshots and their 

location, enabling first respondent to respond more promptly to mass shooting events. 
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The usage and popularity of mass shooting detection systems that incorporate audio classification 
and source localization vary [11]. While some schools and other public venues have implemented 

such systems, others have not. The potential benefits of these systems include enhanced speed 

and effectiveness in detecting and responding to mass shootings, which may ultimately lead to 

the saving of lives and the reduction of injuries. However, the implementation and maintenance 
of such systems also carries costs, as well as potential privacy concerns. 
 

Given the significant impact of mass shootings on public safety, the development and 

deployment of mass shooting detection systems that utilize audio classification and source 
localization is a topic of critical importance. These systems have the potential to prevent or 

mitigate the consequences of such events, thereby improving the safety of communities and 

individuals. As such, further research and development in this area is warranted to better 
understand the potential and limitations of these systems, as well as to address any remaining 

challenges. 
 

Many existing classification and localization techniques, as well as public safety systems have 
been proposed to assist in the event of a mass shooting. One approach that has gained significant 

attention in recent years is the use of machine learning algorithms for audio classification and 

source localization. These algorithms are designed to identify the sounds of gunfire and locate the 
source of the shooting, in order to alert first responders and assist with the response. One example 

of this type of technology is the Deep Learning Gunshot Detector (DLGD), which was developed 

by researchers at the University of Maryland [12]. The DLGD uses a convolutional neural 

network to classify audio recordings as either gunfire or non-gunfire, and has been shown to 
achieve high accuracy in detecting gunshots in relatively controlled, theoretical environments.  
 

Another example of an audio classification algorithm is the Gunshot Locator System (GLS), 

developed by ShotSpotter Inc. The GLS uses a combination of machine learning algorithms and 
cross-correlation techniques to identify the sounds of gunfire and locate the source. The system 

has been implemented in several cities across the United States, and has been credited with 

helping to reduce gun violence in those areas.  
 

Another technology that has been developed to improve mass shooting survivability is the 

Moonlight app, which allows individuals to quickly and easily call for help in the event of an 

emergency. The app allows users to input their location and the type of emergency they are 
facing, and will automatically alert first respondents if the user is unable to do so themselves. The 

app uses location tracking and machine learning algorithms to detect potentially dangerous 

situations, and can automatically send an alert to authorities if the user does not respond to a 

prompt within a certain time frame. This can be particularly useful in situations such as during a 
mass shooting, as it allows individuals to quickly and discreetly alert authorities to the location 

and nature of the threat. 
 

Another option for individuals in the event of a mass shooting is the manual calling of 911. While 
this method has been in use for decades, recent developments in 911 technology, such as 

Enhanced 911 (E911), have made it easier for individuals to quickly and accurately communicate 

their location and situation to authorities. E911 technology uses GPS and other location services 
to automatically identify the location of the caller, which can be particularly useful in situations 

where the caller may not be able to communicate their location accurately. 
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Despite the potential of these technologies and products to improve mass shooting survivability, 
there are several issues that need to be considered. One of the main challenges is the accuracy of 

the algorithms and the quality of the data used to train them. If the algorithms are not properly 

trained or the data is not accurate, these technologies may not be effective in identifying or 

locating shooters. And most importantly, some of these technologies require specialized 
equipment or infrastructure, which may not be feasible or cost-effective in all locations.  
 

In conclusion, different techniques involving machine learning algorithms and related 

technologies have made great attempts to tackle the issue of mass shootings. However, it is 
important to carefully consider the limitations and potential issues of these technologies, and to 

ensure that they are implemented in a way that maximizes their effectiveness. For commercial 

mass shooting detection technology, one common limitation in the scale of implementation is 
their lack of flexibility. For example, ShotSpotter can only be deployed to cover exterior public 

areas, using microphones sensors mounted on street lights. This greatly limits its implementation 

it cannot provide any indoor coverage, which is especially important for high risk indoor facilities 
like schools and public transportation hubs. Another limitation in the scale of implementation is 

its high costs. Oftentimes, the commercially available solutions require specialized equipment, 

installation, and maintenance as well as costly infrastructure for American cities.  For instance, 

the well known Shot Spotter system costs “$65-90k per square mile per year, with a $10K per 
square mile one-time Service Initiation fee” (Citation). The lack of feasibility and financial 

resources to install those systems essentially renders any technological breakthroughs futile when 

they cannot be deployed on the frontline cities. Lastly, both commercial solutions and novel 
machine learning algorithms share a significant blindspot when it comes to involving end victims 

of the threat. These existing systems often lack a complete integrated pipeline that directly 

delivers updated information to victims, without handing the final control back to a traditional 

law enforcement situation. Most users would not be aware of a gunshot detection system installed 
to receive any psychological reassurance, and would significantly lack real-time information in 

the middle of a deadly attack. 
 

Our method for improving mass shooting survivability is a machine learning approach using 
audio classification and source localization, utilizing a series of Raspberry Pi microphone sensors 

deployed around a building. The raspberry pi devices are equipped with on-device classification 

using a Recurrent Neural Network (RNN) to identify the sounds of gunfire. The audio recordings 
and timestamps are then synchronized across all the Raspberry Pi devices, and cross correlation is 

applied to calculate the possible source of the gunshot through Time Difference of Arrival 

(TDOA) [13]. 
 

One key feature of our method is the use of transfer learning to train the machine learning 

algorithms used for audio classification. Transfer learning is a technique in which a model that 

has been trained on a large dataset is fine-tuned for a specific task, allowing for more efficient 
and effective training. In our case, we used transfer learning to combine multiple audio training 

datasets, including the Urban8K audio training set, in order to achieve a high level of accuracy in 

predicting gunshots. Our approach resulted in a test set accuracy of 97.5% and a training set 

accuracy of 99.3%. 
 

In addition to the use of transfer learning, we also developed an innovative time synchronization 

technique that syncs the time on each Raspberry Pi to within 0.001ms. This allows for accurate 

and precise calculation of the source of the gunshot using TDOA. 
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To complement our machine learning algorithms and sensor technology, we also developed an 
easy-to-use mobile app that allows individuals caught in a mass shooting situation to quickly and 

discreetly alert first responders to the location of the shooter. The app displays the threat on a 

map and enables live location sharing between nearby victims, as well as live audio and video 

feed with 911. The app is designed with a user-friendly interface and has been well received by 
testers. 
 

In comparison to existing methods such as the Deep Learning Gunshot Detector (DLGD) and the 

Gunshot Locator System (GLS), our method offers several advantages. One key strength is the 
use of Raspberry Pi devices, which allows for a scalable and cost-effective solution that can be 

easily deployed in a variety of locations. Additionally, the use of RNN for on-device 

classification and TDOA for source localization provides a more accurate and reliable approach, 
as it is not reliant on a centralized system or specialized infrastructure. 
 

Overall, our method for improving mass shooting survivability combines machine learning 

algorithms, sensor technology, and a user-friendly mobile app to provide a real-time, accurate, 
and reliable solution for identifying and locating shooters. The use of transfer learning, 

innovative time synchronization techniques, and a well-designed mobile app make our method a 

strong contender for improving mass shooting survivability.  
 

In order to prove the effectiveness of our method for improving mass shooting survivability, we 

used a combination of qualitative and quantitative analysis methods. For the qualitative analysis, 

we conducted a case study evaluating our entire system pipeline, including the machine learning 

algorithms, sensor technology, and mobile app. We performed a near 1:1 resemblance simulation 
of a real mass shooting scenario to demonstrate how our system improves mass shooting 

survivability. A power amplified speaker is used to replicate the loudness of a real gunshot in a 

building preinstalled with a Raspberry Pi sensor array that standbys 24/7. When the gunshot is 
played, the sensor array immediately registered the noise and successfully labeled the sound as 

gunshot through the deep learning classification model. The entire system was evaluated on 

different metrics, from time performance and accuracy performance to cost efficiency and ease of 
interaction. As part of the case study, we interviewed students and faculty about their experiences 

with the system and how they felt about its effectiveness. We asked questions such as whether 

they felt safer with the system in place, and whether they believed it would be useful in the event 

of a mass shooting. The responses show a significant increase in perception of safety among 
students and faculty. 
 

To supplement the qualitative analysis, we also used quantitative methods to evaluate the 

precision of the classification model and the error margin of the localization system. For the 
classification model, we used a test set of audio recordings and compared the predictions of the 

model to the actual labels. This allowed us to calculate the accuracy of the model and determine 

whether it was effective in identifying gunshots. For the localization system, we used error 
margin analysis to assess the precision of the TDOA calculations and determine the potential 

error in the estimated location of the shooter. 
 

Overall, our results showed that our method for improving mass shooting survivability was 
effective in both identifying gunshots and locating the source of the shooting. The combination of 

qualitative and quantitative analysis methods allowed us to evaluate the effectiveness of the 

system from multiple angles and provided a comprehensive understanding of its performance. 
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In addition to the analysis methods described above, we also conducted several experiments to 
further test and refine the system. For example, we conducted experiments to assess the impact of 

different microphone configurations and to evaluate the performance of the machine learning 

algorithms under various conditions. These experiments allowed us to identify areas for 

improvement and to optimize the system for maximum accuracy and reliability. Finally, we 
conducted experiments to evaluate the accuracy of our CNN model by using ESC-50 dataset, 

UrbanSound8K dataset and YAMNet pre-trained model. 
 

In conclusion, our results demonstrate the effectiveness of our method for improving mass 
shooting survivability. The combination of machine learning algorithms, sensor technology, and 

a user-friendly mobile app allows for a real-time, accurate, and reliable solution for identifying 

and locating shooters. Further research and development is needed to continue to refine and 
improve the system, but the initial results are promising and suggest that our method has the 

potential to greatly improve public safety in the event of a mass shooting. 

The rest of the paper is organized as follows: Section 2 gives the details on the challenges that we 
met during the experiment and designing the comprehensive mass shooting response system; 

Section 3 focuses on the details of our solutions corresponding to the challenges that we 

mentioned in Section 2; Section 4 presents the relevant details about the experiment we did, 

following by presenting the related work in Section 5. Finally, Section 6 gives the conclusion 
remarks, as well as pointing out the future work of this project. 

 

2. CHALLENGES 
 

In order to build the project, a few challenges have been identified as follows. 
 

2.1. Obtaining dataset 
 

The unique acoustic environment of our system’s designed use case poses some unique 

challenges for audio classification. While many prior works explore into developing a good 
gunshot classification algorithm that maximizes true positives while reducing false positives, 

many of the traditional techniques and acoustic assumptions are not applicable here. It is well 

established that the spectral domain of a typical impulsive signal, like a gunshot, reflects more of 
its acoustic surroundings than of the signal itself. In other words, an impulsive signal that is 

easily absorbed, scattered, and reflected by objects and surfaces in its environment essentially 

acts somewhat as a mirror, reflecting the shape of its surroundings. For spectral domain based 

feature extraction methods like MFCC (Mel-frequency cepstral coefficient) or Mel Spectrogram, 
this can lead to reduced accuracy and differentiation of different impulsive signals. Many prior 

work’s scope of research excludes the surrounding limitation of impulsive signals by exclusively 

addressing open field applications of gunshot detection, where there exists little to no 
reverberation. Other works acknowledge the spectral limitation and rather turn to the temporal 

domain of a gunshot sound by using template correlation, RMS threshold, or other similar, less 

sophisticated classification algorithms. However, prior success achieved with these methods are 
limited to extremely noiseless outdoor environments like forests and fields, where it can be 

assumed that no other high energy impulsive signals exist. Therefore, solely temporal domain 

based feature extraction is likely not applicable for our use case, where the system is intended to 

be deployed in schools, malls, and other urban locations. Numerous urban noises from 
jackhammers to car exhausts can easily resemble the high energy temporal characteristic of a 

gunshot. The complex and reverberant indoor environment can significantly distort audio signals, 

preventing algorithms from differentiating the spectral characteristic of a gunshot. In addition, the 
expected gunshot sound in our case has no predefined distance, weapon caliper, or direction. In 

other words, our algorithm must be able to account for the attenuation of audio signals in 
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accordance with the inverse square law and be agnostic to the weapon type as well as firing 
location. To address the various classification challenges, a sophisticated deep learning solution 

trained on a large and diverse dataset of gunshot sounds is likely required. However, obtaining 

such a dataset can also be difficult, as it may require access to a wide range of firearms and the 

ability to safely and legally fire them in controlled conditions. In addition, the dataset may need 
to include a variety of different background noise and environmental conditions in order to 

adequately prepare the model for real-world situations. 
 

2.2. The accuracy and reliability of the method  
 

Source localization, or the determination of the location of a sound source, is another important 
aspect of improving mass shooting survivability. One common method for source localization is 

multilateration based on time difference of arrival (TDOA), which involves the use of multiple 

microphones to determine the location of a sound source based on the difference in arrival time 

of the sound at each microphone. While TDOA can be an effective method for source 
localization, it is not without its challenges. 
 

One major difficulty of using TDOA is the accuracy and reliability of the method. The accuracy 

of TDOA can be affected by factors such as the distance between the microphones, the 
orientation of the microphones, and the presence of obstacles or reflections in the environment. If 

the microphones are not properly spaced or oriented, the TDOA method may produce inaccurate 

results. Additionally, TDOA localization can be sensitive to noise and other distortions in the 
audio signal, which can reduce its accuracy and reliability.   
 

Another challenge of using TDOA is the computational complexity of the method. The TDOA 

method requires the use of complex algorithms to calculate the difference in arrival time of the 
sound at each microphone, which can be computationally intensive. A typical cross correlation 

algorithm like the GCC-PHAT (Generalized Cross Correlation with Phase Transform) performs a 

full fourier transform on both signals. The computational intensity further increases as the audio 

sample rate from the microphones is increased or when more microphone sensors are used to 
compute the localization. Lowering the sample rate risks lowering the Nyquist Frequency and 

losing valuable high frequency information, while decreasing the number of microphones 

inherently decreases the accuracy of multilateration. This poses additional challenges for 
implementing TDOA in real-time systems or in resource-constrained environments, including the 

Raspberry Pi single board computer we used for prototyping. 
 

2.3. Developing a system for improving mass shooting survivability in real-world 

environments 
 
Developing a system for improving mass shooting survivability in real-world environments is a 

challenging task, due to the unpredictable nature of real-world environments. Sound can be 

attenuated or reflected by walls, objects, and other environmental factors, which can make it 
difficult to accurately classify and locate sounds. Additionally, other sounds in the environment, 

such as screaming, bag popping, and other noises, can resemble gunshots and create false 

positives for the system. 

The frequency characteristics of gunshots can also be affected by the environment, such as by the 
presence of reverberation or other acoustic effects. These factors can make it difficult to develop 

a reliable and accurate system for improving mass shooting survivability in real-world 

environments. It is therefore important to carefully consider the potential impact of these factors 
when designing and testing the system, and to use appropriate techniques to mitigate their effects. 
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3. SOLUTION 
 

Our proposed system for improving mass shooting survivability consists of three main 
components: a microphone array, a real-time gunshot classification module, and a source 

localization module. These components work together to provide real-time, accurate information 

about the location of a shooter in a mass shooting situation, enabling individuals to take 

appropriate action to protect themselves and others. 
 

The microphone array is composed of multiple Raspberry Pi devices, each equipped with an 

omnidirectional microphone sensor with a wide frequency response and high sensitivity. These 

Raspberry Pis are mounted in different locations in different rooms to form the microphone array, 
allowing for wide coverage and the ability to localize sounds from multiple directions. The 

Raspberry Pis in the microphone array are connected to a central server through a secured tunnel, 

enabling the transfer of audio data and localization information in real-time. 
The real-time gunshot classification module is implemented using a recurrent neural network 

(RNN) trained on a large dataset of gunshot sounds. The RNN is designed to recognize the 

unique characteristics of gunshots and distinguish them from other types of sounds. Each 
Raspberry Pi in the microphone array is capable of running this RNN in real-time to classify 

incoming audio as either a gunshot or some other type of sound. When combined, the Raspberry 

Pis in the microphone array can use time difference of arrival (TDOA) to localize the source of 

the gunshot. 
 

The source localization module is implemented using a cross-correlation technique and a distance 

equation that accounts for the speed of sound. The cross-correlation technique is used to 

determine the time difference of arrival (TDOA) of the gunshot at each microphone in the array, 
while the distance equation is used to estimate the location of the gunshot source based on the 

TDOA values. By minimizing the distance equation between each microphone in the array and 

the sound source, the system is able to accurately estimate the location of the gunshot source. 
 

The information from the microphone array and the source localization module is relayed to a 

backend server, which then pushes the information onto mobile devices through a secured tunnel. 

On these mobile devices, the user can see the best estimated location of the shooter in real-time, 
allowing them to formulate a better escape plan in the event of a mass shooting. 

 

 
 

Figure 1. Overview of the solution 
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3.1. Hardware 
 

The prototype system hardware architecture consists of a Raspberry Pi 4 SBC (Single Board 

Computer), a Behringer Audio Interface, and 3 Audio Technica AT803 Omnidirectional 

Condenser Lavalier microphones. The Raspberry Pi 4 configured with 8GB of memory is chosen 
as the main processing unit for this paper due to its practical, small size for deploying in real 

world scenarios, relatively low power consumption, and powerful CPU processing power 

necessary to run deep learning models. An XLR audio interface is a type of digital interface that 
is used to connect professional audio equipment, such as microphones and mixing consoles, to a 

computer. XLR connections are balanced, which means that they are less prone to noise and 

interference than unbalanced connections. This industry standard hardware is often used for 
recording and producing audio in professional settings, also making it an ideal candidate for our 

TDOA use case. The Behringer Audio Interface supports 4 XLR input channels, aggregating the 

analog signals from each microphone and converting them to digital signal for further processing. 

USB microphones are prone to severe clock drifts, as each microphone has its own ADC 
(Analog-to-digital converter) that is not synchronized with other microphones. When performing 

TDOA multilateration, this can lead to severe complications when sound travels at roughly 343 

meters per second at 20 Celsius, and even milliseconds of time drift from USB microphones will 
lead to huge inaccuracies. The AT 803 lavalier microphone is chosen for its flat frequency 

response across spectrum, wide 30-20,000 Hz frequency response, high maximum sound pressure 

level at 135 dB and low sensitivity. An ideal acoustic sensor for gunshot classification and 
localization should have a flat frequency response to accurately reflect the sound wave, wide 

frequency response to capture all the spectral characteristics, high maximum sound pressure level 

to fully capture high energy impulsive signals, and low sensitivity to avoid clipping when 

recording loud gunshots in a highly reverberant indoor environment. 
AI Algorithm 

 

3.1.1. Gunshot detection 
 

After assessing well established binary classifier techniques for gunshot detection, we chose to 

implement a MFCC audio feature extraction and feed the coefficients into a CNN (Convolutional 

Neural Network). When the microphone records a sound, the raw acoustic information is stored 
as a time series in an array with each sample representing signal strength at the instant. To get an 

acceptably accurate classifier, we must employ feature extraction for dimensionality reduction 

rather than feeding in the entire raw time series. MFCC (Mel-Frequency Cepstral Coefficients) is 

a widely used feature extraction technique in the field of speech and audio signal processing. It is 
based on the idea of representing the spectral characteristics of a signal in the frequency domain 

using a set of coefficients that capture the shape of the spectrum in a compact form. MFCC has 

several advantages for gunshot detection applications. First, it is robust to noise and can 
effectively filter out background noise, making it well-suited for use in noisy environments. 

Second, it is highly discriminative and can accurately differentiate between different types of 

gunshots, even when they are recorded under different conditions. Finally, MFCC is 
computationally efficient, which makes it well-suited for use in real-time gunshot detection 

systems and competitive against other extraction algorithms like LPC and impulsivity parameter 

of stable distribution. Compared to LPC, MFCC is more robust to noise. LPC relies on the 

assumption that the signal can be modeled as an all-pole filter, which is not always the case in 
real-world signals. In contrast, MFCC is based on a more general model of the spectrum that is 

less sensitive to modeling errors. The impulsivity parameter of a stable distribution is a measure 

of how "peaky" or "impulsive" the distribution is, but it does not provide any information about 
the valuable spectral characteristics of a signal, like MFCC does. We used the Slaney warping 

formula, a popular implementation for MFCC. The warping formula is used to warp the 

frequency scale of the power spectrum so that the distance between frequency bins is 
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proportional to the perceived change in frequency by the human ear. We chose a coefficient size 
of 40, essentially condensing the dimensionality of a 3 second audio clip recorded at a sample 

rate of 44.1 kHz into 40 float numbers before feeding it into the CNN.  
 

Our gunshot classifier architecture is a convolutional neural network (CNN). The CNN consists 
of four convolutional layers followed by a global average pooling layer and a fully-connected 

sigmoid output layer. 

 

The convolutional layers apply a set of filters to the input audio data and extract features from the 
data using a sliding window approach. The kernel size of the filters is 2, which means that each 

filter looks at a small window of 2 samples at a time. The padding parameter is set to "same," 

which means that the spatial dimensions of the output of the convolutional layers will be the 
same as the input, allowing the CNN to preserve spatial information in the data. The activation 

function used in the convolutional layers is the rectified linear unit (ReLU) function, which helps 

to introduce nonlinearity into the model. 
 

After each convolutional layer, there is a max pooling layer that downsamples the output of the 

convolutional layer by taking the maximum value within a small window of samples. This helps 

to reduce the spatial dimensions of the data and reduce the computational complexity of the 
model. The dropout layers after each pooling layer help to prevent overfitting by randomly 

setting a fraction of the input units to zero during training. 
 

The global average pooling layer aggregates the output of the convolutional layers across the 

spatial dimensions, resulting in a single vector per channel. This reduces the number of 
parameters in the model and helps to prevent overfitting. The sigmoid output layer produces a 

probability score for each class (in this case, two classes representing gunshot and non-gunshot 

sounds) using the sigmoid activation function.  
 

This architecture learns the hierarchical representations of the audio data, capturing the complex 

spectral patterns characteristic of gunshots. The use of max pooling and dropout layers helps to 

regularize the model and reduce the risk of overfitting. The final sigmoid output layer allows the 
model to produce probabilistic predictions, which can be useful for tasks such as anomaly 

detection. 

 

3.1.2. Positioning 
 

To localize the acoustic source, we chose to work with the well established multilateration 

technique based on TDOA (Time Difference of Arrival). Multilateration is a technique that is 
used to determine the position of a source of a signal in space based on the time-of-arrival (TOA) 

of the sound at different locations. The TOA of a signal can be measured using various 

techniques, such as cross-correlation which compares the waveform of the signal at two different 

locations and computes a measure of the similarity between them. Cross-correlation is a 
statistical measure of the similarity between two signals as a function of the time lag between 

them. It is often used to estimate the time delay or time-of-arrival (TOA) of a signal by 

determining the time lag that maximizes the similarity between the two signals. Cross-correlation 
is widely used in a variety of applications, including audio and speech processing, image 

processing, and radar signal processing. To compute the cross-correlation between two signals, 

x(t) and y(t), the signals are first aligned in time by shifting one of the signals by a certain time 

lag. The cross-correlation function, rxy(tau), is then defined as the integral of the product of the 
aligned signals over all time: 
 

rxy(tau) = integral from -infinity to infinity of x(t)*y(t-tau) dt 
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The cross-correlation function is a measure of the similarity between the signals as a function of 
the time lag tau. The time lag that maximizes the cross-correlation function is taken to be the time 

delay or TOA of the signal y(t).This measure can be used to estimate the TDOA of the signal by 

taking the argmax of the cross correlation function. We chose the GCC-PHAT cross correlation 

implementation because it is robust to noise and can accurately estimate the TOA of a signal even 
in the presence of other signals or interference.. GCC-PHAT (Generalized Cross-Correlation with 

Phase Transform) is a method for estimating the time delay or time-of-arrival (TOA) of a signal 

using cross-correlation. It is a variant of the cross-correlation method that is specifically designed 
for use with microphone arrays, where the signals from the microphones are highly correlated 

due to the close proximity of the microphones. Taking the time difference measurements and the 

known positions of the measurement locations, we obtain a system of hyperbolic equations. The 
equations are fed into a scalar function optimizer to solve for the location of gunfire. 

 
 

Figure 2. Overview of the RPI System 

 

3.2. Mobile APP 
 
To demonstrate the potential of our mass shooting alert and response system for users, we 

developed a native iOS mobile app client to receive the classifier and localizer’s output 

information in real time [14]. We installed a prototype gunshot classification and localization 
system in Santa Margarita High School located in California. Any faculty or student of a school 

where the system is in place, employees of a company, or general public traveling through an 

airport will all have access to real time information in case of an incident. When an acoustic 
sensor detects an impulsive signal and classifies it as a gunshot, the localization module instantly 

computes the location of the gunfire before instantly sending it to a backend server. We chose 

Firebase Realtime Database as the cloud infrastructure due to its ease of development for 

prototyping and realtime callback implementation, allowing the client app to constantly listen for 
new database changes. This architecture allows our system to be installed with extreme ease and 

low cost, fully utilizing existing AC (alternating current) power and internet infrastructures. The 

acoustic sensor’s Raspberry Pi single board computer can be powered by an AC plug or a battery 
pack, while all the data pipeline travels through the HTTPS network infrastructure. All the sensor 

information is analyzed and processed almost instantly and directly related to victims of a mass 

shooting through a mobile client, without requiring any human monitoring or intervention.  

 
 

 

 
 

 

 



Computer Science & Information Technology (CS & IT)                                        137 

4. EXPERIMENT 
 

4.1. Experiment 1 
 

In this experiment, a comparison between our CNN model and YAMNet pre-trained model was 
performed to evaluate the accuracy of our CNN model. YAMNet is a pre-trained neural network 

that employs the MobileNetV1 depth wise-separable convolution architecture. It can use an audio 

waveform as input and make independent predictions for each of the 521 audio events from the 
Audio Set corpus.Internally, the model extracts "frames" from the audio signal and processes 

batches of these frames [2]. 
 

To evaluate the accuracy of the CNN approach, 200 audio recorders were randomly picked from 
UrbanSound8K dataset in which 96 audio recorders were from diverse sound categories 

(air_conditioner, car_horn, children_playing, dog_bark, drilling, engine_idling, jackhammer, 

siren and street_music) and 104 audio recorders were from gunshot sounds [1]. Next, the audio 

features were extracted from each audio file and performed the prediction of the audio data with 
both models. Finally, confusion matrices were used to visualize the result. For the YAMNet 

prediction, before visualizing the confusion matrices, an extra step was performed to match the 

YAMNet classes with our model classes (no gunshot and gunshot). If the sound prediction 
matches any firearms sounds, which are Explosion, Gunshot, gunfire, Machine gun, Fusillade, 

Artillery fire, or Cap gun, then the prediction is classified to “ gunshot” otherwise it is classified 

to “no gun shot”. 
 

The experiment result shows that the Our CNN model achieves better results than the YAMNet 

model. In Figure 3, we can observe that confusion matrices show that 96 gunshot sounds were 

predicted as a “gunshot” and 8 gunshot audio were predicted “no gunshot”. On the other hands, 

for the other urban sounds (air_conditioner, car_horn, children_playing, dog_bark, drilling, 
engine_idling, jackhammer, siren and street_music), the result shows that 95 urban sounds were 

predicted to be “no gunshot” while one urban sound was predicted to be “gunshot”. Thus, the 

accuracy of the CNN model was 95 %. 
In Figure 4, we can observe that confusion matrices show that 56 gunshot sounds were predicted 

as a “gunshot” and 48 gunshot audio were predicted “no gunshot”. While the other urban sounds 

prediction shows that   96 urban sounds were predicted to be “no gunshot”. 
 

 
 

Figure 3. Sound Classification - CNN Model 
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Figure  4. Sound Classification - YAMNet model 

 

4.2. Experiment 2 
 
To evaluate the accuracy of the CNN model, 120 similar sounds, which are 40 fireworks, 40 

clapping and 40 thunderstorms, were used to observe if the sounds are predicted to be “gunshot” 

or “no gunshot”. For the dataset we used the ESC-50 dataset. The ESC-50 dataset is a labeled 

collection of 2000 environmental audio recordings suitable for benchmarking methods of 
environmental sound classification [3]. The dataset consists of 5-second-long recordings 

organized into 50 semantic classes (with 40 examples per class) loosely arranged into 5 major 

categories: Animals, Natural soundscapes and water sounds, Human, non-speech sounds, 
domestic sounds, urban noises. Similarly, to experiment 1, the sound features were extracted 

from each sound file and the CNN model was utilized to predict and classify the sound. 

The result shows that the accuracy of thunderstorm sounds is higher in comparison to the 
firework and clapping sound. (see Figure 5) For the thunderstorm sound, the study shows that  33 

sounds were predicted to be “no gun shot” while 7 sounds were predicted to be “gun_shot”. The 

clapping sound result shows that   30 sounds were predicted to be “no gun shot” while  10 sounds 

were predicted to be “gun_shot”. Finally, the firework sound outcome shows that 17 sounds were 
predicted to be “no gun shot” while 23 sounds were predicted to be “gun_shot”. Thus, the 

accuracy of our CNN model using similar sounds is 67%. We believe that the accuracy of our 

model is a little bit low since when we trained the model, these sound categories were not 
included in our dataset, so the model does not have enough data to differentiate between the 

“gunshot” and “no gunshot” sound. Even Though, the accuracy was 67%, we concluded that the 

model performs well since it did utilize similar sounds in its training. 

 

 
 

Figure 5. Sound Gunshot Classification using fireworks, clapping and thunderstorm sounds 
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5. RELATED WORK 
 
In “Evaluation of Gunshot Detection Algorithms”, the paper compares and evaluates many 

popular gunshot detection preprocessing algorithms with an emphasize on feasibility of the 

algorithm running on a low powered VLSI (Very Large Scale Integration) circuit [4]. While the 

paper concludes that correlation against a gunshot template as a highly accurate gunshot 
classification method when compared against other preprocessors, it is important to note the 

experiment setting and the acoustic environment. The research was conducted in an outdoor 

setting with the system intended to prevent illegal hunting, and thus a very low noise floor and 
absence of other impulsive signals can be assumed. In their classification system, the 

preprocessed signal is directly fed into a simple RMS threshold classifier, using the loudness 

level of the audio after preprocessing as a discriminator for gunfire. However, this is largely 

inapplicable to a much more sophisticated urban setting when many noises share similar temporal 
power characteristics as gunshot. Our MFCC combined with deep learning network classifier 

takes into account the spectral characteristics of sound and appears to be better suited for gunshot 

detection in urban settings.  
 

In “Gunshot Detection in Noisy Environments”, the paper concludes that the correlation against a 

template technique is superior in performance while being much cheaper in computational cost 
when compared against advanced algorithms like MFCC fed into a HMM (Hidden Markov 

Model) [5]. It is surprising that the paper concludes that the correlation method is robust, even 

when faced with similar impulsive sounds like balloon pops and claps and even with extreme 

levels of background noise added. While template correlation initially appears to be an appealing 
algorithm for our use case, simple testing on a large gunshot dataset quickly revealed its 

deficiencies. The caliper of the weapon, the weapon type, the use of accessories like a muzzle 

suppressor, and the firing mode can all significantly affect the temporal domain of the signal. 
When faced with a large dataset assorted with different weapons fired in different characteristics, 

the template correlation technique’s ability to discriminate significantly decreases. When applied 

on gunshot audio recordings in 2048 sample windows with 256 sample overlap and computing 
correlation using Pearson’s Correlation Coefficient, the template correlation method frequently 

fails to discriminate between the gunshot and other impulsively characterized urban noises. In our 

system, we deemed a properly optimized MFCC algorithm sufficiently efficient and used a CNN 

(Convolutional Neural Network) rather than HMM. The CNN as a deep learning model far 
exceeds the learning capabilities of HMM, a traditional statistical model based on states.  

 

In An empirical evaluation: gunshot detection system and its effectiveness on police practices,  
this study analyzed the effectiveness of a gunshot detection system in a southeastern 

Massachusetts city with a high incidence of violent crime [6]. Data was collected from the police 

dispatch log and analyzed using a quasi-experimental design to determine the impact of the 

system on police ability to identify, investigate, and prosecute gun-related crimes.  
 

The paper concludes that gunshot detection systems like ShotSpotter, are indeed effective in 

reducing crime rate by improving response times, decreasing dispatch time, and improving case 
action outcome. When compared against the commercial ShotSpotter system, our mass shooting 

classification and localization system provides numerous improvements. Our mass distributed 

system can be deployed at a much larger scale than ShotSpotter while remaining economically 
feasible to governments and businesses. Our system also does not require constant 24/7 human 

monitoring to confirm the classification like ShotSpotter does. By using state-of-the-art audio 

feature extraction techniques and classification models like MFCC and a trained CNN model, we 

are able to achieve extremely high sensitivity while keeping a low specificity. We also achieved 
better localization accuracy than ShotSpotter’s advertised 20-30 meter radius, even in highly 

reverberant indoor environments. 
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6. CONCLUSIONS 
 
One approach for improving mass shooting survivability is through the use of machine learning 

and audio analysis [15]. By analyzing audio recordings of mass shooting events in real-time, it is 

possible to identify and classify different sounds, such as gunshots and screams, and use this 

information to alert individuals to the presence of a shooter and take appropriate action. 
Additionally, by using source localization techniques, it is possible to identify the location of the 

shooter within the event space, enabling individuals to take cover or evacuate the area. 
 

In this paper, we present a real-world deployable system that not only incorporates acoustic 
classification and localization, but also data aggregation to broadcast the threat to end users 

through a mobile application in real time. Our approach involves the use of Raspberry Pi-based 

microphone sensors mounted throughout a public space, which are capable of live processing of 
audio and sending notification alerts to a mobile application in real-time when a gunshot is 

detected.  
 

Overall, our work represents a significant step forward in the development of systems for 
improving mass shooting survivability, and has the potential to save many lives in the future. The 

use of Raspberry Pi-based microphone sensors allows for the deployment of our system at a low 

cost, making it accessible to a wide range of organizations and individuals. Additionally, the real-

time notification alerts provided by our system allow individuals to take immediate action in the 
event of a mass shooting, increasing their chances of survival. The effectiveness of our approach 

through a series of qualitative analysis on real-world mass shooting scenarios show that our 

system is able to accurately classify different sounds and locate the shooter with high precision, 
leading to improved survivability for individuals caught in mass shooting situations. 
 

One of the main limitations in our current classification system is the tendency to predict false 

positives, especially when the microphone is overloaded beyond the maximum sound pressure 
level. Even non-impulsive signals like conversational voice that barely resembles the temporal 

and spectral characteristics of a gunshot can be distorted to a near impulsive signal form in such 

cases. This can likely be mitigated using both hardware and software approaches, either by using 

a pair of low and high sensitivity microphones, or using a multi-layered classifier using ensemble 
learning to reduce false positives. Another limitation exists in our sound localization system that 

still lacks enough resistance to specific extremely reverberant indoor situations. The cross 

correlation algorithm performance will be significantly reduced in cases where multi path sound 
reverberation is present. This limitation will likely be amplified in narrow hallways constructed 

with reverberant materials like concrete. 
 

A mass shooting response system that effectively classifies and localizes audio can bring 
tremendous value for saving many innocent lives and reducing economic damage. Numerous 

unique challenges remain for gunshot classification and localization, from the ambiguity of 

differentiating between impulsive signals to difficulties of finding TDOA when multipath 
reverberation is present. These limitations likely will require further research and 

experimentation with the software algorithm combined with optimizing microphone sensor 

engineering to better capture the audio information. Further investigation into the practicality and 

real-world effectiveness of such systems. 
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