

David C. Wyld et al. (Eds): ICDIPV, CBIoT, ICAIT, WIMO, NC, CRYPIS, ITCSE, NLCA, CAIML -2023

pp. 159-169, 2023. CS & IT - CSCP 2023 DOI: 10.5121/csit.2023.131312

AN ENERGY-EFFICIENT TUNABLE-PRECISION

FLOATING-POINT FUSED MULTIPLY-ADD

UNIT BASED ON NEURAL NETWORKS

Xiyang Sun, Yue Zhao and Sheng Zhang

Key Laboratory of Advanced Sensor and Integrated System, Tsinghua

Shenzhen International Graduate School, Tsinghua University, Shenzhen,

518055, China

ABSTRACT

Convolutional neural networks have been continuously updated in the last decade, requiring

more diverse floating-point formats for the supported domain specific architectures. We have

presented VARFMA, a tunable-precision fused multiply-add architecture based on the Least Bit

Reuse structure. VARFMA optimizes the core operation of convolutional neural networks and
supports a range of precision that includes the common floating-point formats used widely in

enterprises and research communities today. Compared to the latest standard baseline fused

multiply-add unit, VARFMA is generally more energy-efficient in supporting multiple formats,

achieving up to 28.93% improvement for LeNet with only an 8.04% increase in area. Our

design meets the needs of the IoT for high energy efficiency, acceptable area, and data privacy

protection for distributed networks.

KEYWORDS

Fused Multiply-add, Tunable-precision, Distributed Network, Energy Efficiency, IoT

1. INTRODUCTION

In the last decade, deep learning (DL) has emerged as a popular field where the training and
inference of parameters is achieved through the construction of convolutional neural networks

(NN). DL achieved excellent results in domains such as image recognition [1], natural language

processing [2], video and audio processing [3]. The concept of deep neural network (DNN) was

already proposed by Rosenblat in 1962 [4] but became concrete and feasible when Rumelhart,
Hinton, and Williams implemented the backpropagation algorithm (BP) by designing gradient

descent in 1986 [5]. Moore's Law and Dennard's Law brought about a rapid development in

electronics, which greatly increased the computing power of computers. However, with Moore's
Law limiting the performance of general-purpose computers nowadays and Amdahl's Law

limiting the performance of computer clusters, general-purpose computers have been unable to

meet the growing demand for NN computing power. To solve this problem, many different types

of research have emerged. On the software side, many lightweight NNs with sparsity have been
proposed to reduce the demand for hardware resources [6]; on the hardware side, domain-specific

architectures (DSA) have been popular and hardware modules dedicated to NN acceleration have

become mainstream, such as Google’s Tensor Processing Unit (TPU) and Samsung’s Neural-
Network Processing Unit (NPU) [7].

https://airccse.org/csit/V13N13.html
https://doi.org/10.5121/csit.2023.131312

160 Computer Science & Information Technology (CS & IT)

Before 2019, NN training was mostly deployed on cloud servers. However, to meet the
requirement for data privacy in Internet of Things (IoT) domain, NN training is emerging at the

distributed edge. Federated Learning techniques are proposed to allow decentralized participants

to collaborate on model training for machine learning while satisfying the requirement of not

disclosing private data to other participants. This puts a higher demand on the power
consumption and area of the computation. Compared to fixed-point numbers, floating-point

numbers (FP) have higher precision and a larger representation range. While some strategies can

produce more reliable results for fixed-point numbers using deep analysis, these strategies also
introduce more code volume to normalize the data. Therefore, FP is needed to provide sufficient

precision and range. As shown in (1), FP fused multiply-add (FMA) is the core operation of the

local training of NN, denoted as O A B C . Since the IBM RISC System 6000 in 1990 [8],

FMA has been incorporated into IMB CELL, PowerPC, ARMv7-A, AMD’s Piledriver, Intel’s
Haswell, and other architectures [9-11].

1

n

i i

i

z X w b

 (1)

The standard FP format is no longer able to achieve the optimal requirements of NN, and more of

them are being proposed to support arbitrary formats. In this paper, we improve the existing LBR

and design the arbitrary tunable precision FP module VARFMA. The main contributions are:

(1) Expand the precision range supported by FMA, add data conversion design, and implement

the calculation unit that supports exponent width and mantissa width as variables. The

supported formats cover the mainstream FP32, TF32, FP16, BF16, PULP8 and 4M3E8.

(2) The analysis of VARFMA based on different NNs shows an energy efficiency improvement

of up to 28.93% compared to the design of Muller et al. [20]. And the energy efficiency ratio
of the lower-precision FP to the highest precision FP supported reaches up to 1.81× with an

area increase of only 8.04%.

2. RELATED WORK

IEEE754-2008 specifies the format and hardware implementation of the basic functions of the

standard FP, which is now widely adopted. The standard FP includes 1-bit sign, E bits exponent

and M bits mantissa, as shown in Fig. 1. In the general case, it represents the number of
1(exp 2 1)(1) 2 1.

Esign onent mantissa
 . The expressed number of abnormal cases is explained in

detail in the following section.

Figure 1. IEEE754 floating point format

FP formats used a lot in the past are the standard single-precision (FP32), double-precision
(FP64) and half-precision (FP16). With the rise of DSA field, many unconventional FP formats

have been proposed to maximize the performance of the architecture and achieve higher energy

efficiency. Companies and research institutes have invented their FP formats, such as Intel’s
Nervana Flexpoint [5], Microsoft’s Brainwave 9-bit FP [12], Google’s TPU bfloat (BF16) [13] or

NVIDIA’s 19-bit Tensor Float (TF32) implementation in Tensor Cores [14]. 8-bit FP formats are

Computer Science & Information Technology (CS & IT) 161

more often found in the academic domain, with ETH Zurich proposing PULP binary8 (PULP8)
[15] and Schulte [16] supporting two kinds of 8-bit FPs. Their formats are shown in Fig. 2.

Figure 2. FP formats used in DSA

In order to support more FP formats, the main multi-precision FMAs can be divided into the

following three approaches: Spatial Reuse (SR), Spatial Separation (SS), and Least Bit Reuse
(LBR). SR combines multiple low-precision data in space by cutting the data path into segments

and combining them into high-precision data computations by shifting and control logic.

Himanshu Kaul et al. [4] designed a FMA unit that can compute one 24-bit, two 12-bit, or four 6-
bit significants. SS applies separate slides to each FP precision and does not use multiplexing

strategies in the time or space domain. Stefan Mach et al. [15] adopted a parallel slicing approach

for the supported FP formats and achieved an energy efficiency of 74-1245 GFLOPS/W; Ankur
Agrawal et al. [17] implemented FP16 and Half Floating Point 8 (HFP8) formats respectively,

which include the 4M3E8 format which has 3-bit exponent and 4-bit mantissa, achieving an

energy efficiency of 1.95-3.85 TFLOPS/W. LBR spatially multiplexes the lower bits portion of

the datapath. Unlike SR, LBR does not support multiple lower-precision formats simultaneously,
but treats the exponent and mantissa widths as control signals, and achieves arbitrary precision

support by setting the exponent and mantissa widths in real-time. Alberto Nannarelli et al. [18]

set the exponent and mantissa widths in the single-precision FP format based on multiplexing
multipliers and adders. By adding decoders and quad-multiplexers, it has a smaller area and

power consumption compared to separate multiplier and adder. In addition, there is also a time-

domain reuse method, which combines low-precision data generated in multiple cycles.

SR is the most commonly used method for fixed-point computation units, but this is not fully

applicable to the FP format. The fixed-point operation can be easily implemented by adding up

two identical low-precision fixed-point, but Fig. 2 shows that as the overall width of the FP
format decreases equally, the exponent part does not decrease in proportion to the mantissa part,

which results in a large redundancy in the exponent calculation and makes the control logic of

mantissa hard to design. Zhang H et al. [19] implemented the standard binary128 (QP), DP, SP,
and HP. In order to align the formats, the mantissa was grouped by 15 bits. The processing of the

mantissa required a total of 120 bits and the exponent part required a total of 40 bits. Himanshu

Kaul's design completely reused the datapath but did not effectively support the existing FP

formats. Moreover, SS cannot support arbitrary FP formats but only compute a few existing
formats. In contrast, LBR has moderate area and latency, supports more data formats with built-in

exponent width and mantissa width selectors, and is better able to support new DNN formats as

they emerge.

162 Computer Science & Information Technology (CS & IT)

3. ARCHITECTURE

This section shows details of VARFMA architecture. In the beginning, the format requirements

for the input data and the data conversion method are introduced. Then it shows the modules that

makeup VARFMA and the circuit designed to support tunable precision. Finally, the hardware

implementation scheme and test set are presented.

3.1. Tunable FP Format Requirement

To achieve arbitrary precision FP support, the design specifies a lower-precision exponent and

mantissa data layout when the required precision width is less than the maximum precision width.

As shown in Fig. 3, the capital E and M represent the maximum precision supported respectively,
which are fixed values; ew and mw represent the actual exponent width and mantissa width of the

input, which are variable values. The input data needs to be formatted and brought into the FMA

calculation.

Figure 3. Format conversion of tunable precision FP

From Fig. 2, it can be seen that all of the innovative FP formats are shorter than FP32 in length,

so the input FP formats need to be processed. The processing includes: shift the sign bit originally

ranked in mw+ew position to M+E bit; shift the exponent in [mw+ew-1,mw] position to [M+E-

1,M] and supplement zeros the most bits; shift the mantissa in [mw-1,0] position to [M-1, M-mw]
and supplement zeros the least bits.

3.2. Architecture Design

This section describes the design architecture of this paper in detail, focusing on the variable

parameter (var_parameter) module and the variable rounding (var_prerounding) module added to
support arbitrary precision FP.

Starting from the overall architecture, as shown in Fig. 4, VARFMA receives the system signals,
operands a, b, c, and control signals. The datapath mainly consists of the following logic

modules: var_parameter module (module 1), preprocessing module (module 2), pre-alignment

module (module 3), multiplier (module 4), adder (module 5), normalization module (module 6),
Leading Zero Count (LZC) (module 7), var_prerounding module (module 8), rounding and

exception check module (module 9) and pipeline logic. The dark modules are added or modified

compared to the standard FMA architecture to implement variable precision.

Computer Science & Information Technology (CS & IT) 163

Figure 4. The overall architecture of VARFMA

Since VARFMA supports floating-point formats of arbitrary precision, this means that the top-
level input control signal needs to contain two additional input variables: ew and mw. The

var_parameter module needs to determine the ew to get the exponent bias (bias_var) and max

biased exponent for the FMA operation (max_exponent). As shown in Fig. 5, bias_var can be

achieved with parallel comparators and selectors as the maximum bias width (BW). Ew is issued
into the module, compared with the index in each BW comparator, and then the result is

connected to the corresponding selection side of the selector. The output of a selector is 1 if

successfully selected, otherwise is 0. Max_exponent can be compared and selected in a similar
way, where the number of selectors and comparators is the maximum exponent width that the

FMA module can support.

164 Computer Science & Information Technology (CS & IT)

Figure 5. Design of var_parameter module

The preprocessing module predetermines the input operands a, b and c in FP format. It also

determines whether the data is in a special case according to IEEE-754 rules, including Infinity,

Not a Number (NAN), Zero and Subnormal. The module also turns the mantissa into the
significant by attaching a hidden number to the most bit of mantissa. The hidden number is 0

when the exponent is 0, or it will be 1 otherwise. It is important to note that in VARFMA, the

comparison object is max_exponent when judging Infinity and NAN.

The pre-alignment module handles the significants of the operands, and the actual length of the

significants of operators is p-width, which is obtained from the input mw of the top-level module:

. To support FP with arbitrary precision, the input data width of the multiplier and adder is the
maximum significant width supported, denoted as P. To reuse the multiplier and adder, it is

necessary to make up the full operator’s significant into P bits. When shifting the significand, the

exponent difference of product and addend is used using bias_var.

The multiplier, adder, normalization module and LZC are consistent with the standard FMA, the

multiplier needs to multiply the two P-bit significants to get the 2P-bit product. The adder

calculates the sum of pre-aligned product and addend to get the temporary sum and sign bit
sign_r. LZC, as the name suggests, it is responsible for counting and getting the number of

leading zeros, denoted as λ. The normalization module includes the shift of sum according to λ,

the new sticky bit calculation, and the exponent update. It can be seen from (2) that the
significant to be processed by the multiplier has a lower data toggle rate when supporting lower

precision, thus reducing the computational power consumption.

0 0

2() 0 0

{ , } { , }product A B a b

a b M mw a M mw b M mw

MM MM MM MM MM MM MM

MM MM shift MM MM shift MM MM shift

 (2)

Computer Science & Information Technology (CS & IT) 165

The P-bit significant s_norm from the normalization module is not fully needed. Instead, the
needed p-bit significant can be obtained according to mw. In the var_prerounding module, as

shown in Fig. 6, the s_norm within the p bits is reserved to produce m_rd, the data used later to

get an accurate result. The round bit (RB) is selected as the bit after the p-th bit of s_norm by a

selector; the odd bit (OB) is selected as the p-th bit of s_norm. The remaining bits are orthogonal
to each other to obtain the new sticky bit S_rd. The final sticky bit used in the rounding module is

obtained by putting S_rd and the sticky bit S obtained in the pre-alignment module in the OR

gate.

Figure 6. Design of var_prerounding module

Rounding and exception checking use m_rd, e_norm (obtained by the normalization module),

final sticky bit, RB, OB and the max_exponent (obtained by the var_paremeter module).

Depending on the final sticky bit, RB, OB and round mode, it can be determined whether the
result should be rounded or not. The exception checking module checks for overflow and

underflow. An overflow exception is generated when the calculated exponent is greater than or

equal to max_exponent. Underflow means the calculated exponent is less than or equal to the
actual minimum exponent value, which corresponds to Zero and Subnormal.

Because of the complexity of the FP operation datapath, three pipeline logic stages are inserted
into the process to shorten the critical path delay.

3.3. Implementation

The VARFMA has been implemented in TSMC 28nm technology of standard cells, using

Synopsys tools and targeting 1.3 GHz. To compare the test results, the standard FP32 [20] has
been fully implemented under the same conditions.

166 Computer Science & Information Technology (CS & IT)

To evaluate the performance of VARFMA on NNs, two CNNs are chosen for the experimental
test set: the middle layer of ResNet50 and LeNet, which typically represent the heavyweight and

lightweight CNNs respectively. LeNet is one of the earliest CNN and the starting point of a

number of recent NN architectures. The weight-sharing feature of the convolutional layer makes

it save considerable computation and memory space compared to the fully connected layer.
ResNet50 is one of the most widely used CNN for image classification, and its smaller

convolutional kernel and deeper channels are important representatives of DL networks.

Convolution calculation is shown in (3), where the activation A and the weight W are
summarized in three dimensions: convolution kernel size (ksize), number of input channels (ch),

and number of convolution kernels (knum).

 , , , ,

1 1 1

ksize ch knum

k c i k c i

k c i

A W

 (3)

We have chosen six FP formats: FP32, TF32, FP16, BF16, PULP8, and 4M3E8, as shown in Fig.

2. These are the data formats that have been widely integrated into DSA or evaluated in papers in
recent years.

4. IMPLEMENTATION RESULTS

This section explores the area and energy efficiency of VARFMA in different formats,
performance improvement for ResNet and LeNet datasets and performance analysis against the

standard FP32 FMA described in [20] as a baseline.

Tab. 1 shows the energy efficiency and area of VARFMA compared with FP32 FMA when

running a layer of ResNet and LeNet. The energy efficiency ratio of different FP formats to FP32

is shown in the last column of table using the same FMA in the same network. The data were

measured at 1.3 GHz.

Table 1. Comparison of this work with the baseline architecture

Design
Area

(cells)
Precision

Energy Efficiency (GFLOPS/W) Ratio

LeNet ResNet LeNet ResNet

This

work
5859

FP32 1770.635 1826.356 1.00 1.00

TF32 2349.115 2362.777 1.33 1.29

FP16 2354.646 2384.009 1.33 1.31

TF16 2617.274 2614.642 1.48 1.43

PULP8 3201.182 3143.894 1.81 1.72

4M3E8 2880.567 2996.773 1.63 1.64

Muller

et al.

[20]

5423

FP32 1814.882 2009.895 1.00 1.00

TF32 2131.497 2264.020 1.17 1.13

FP16 2131.497 2264.020 1.17 1.13

TF16 2261.263 2358.063 1.25 1.17

PULP8 2482.811 2523.782 1.37 1.26

4M3E8 2381.389 2445.908 1.31 1.22

As shown in tab. 1, the addition of var_parameter mode and var_prerounding mode results in a

larger total design area, with an 8.04% increase in area compared to the baseline.

Computer Science & Information Technology (CS & IT) 167

Next, we analyze the energy efficiency improvement in VARFMA in different formats. As the
width of the supported precision decreases, the overall energy efficiency of VARFMA shows a

linear increase, reaching the maximum improvement in the PULP8 format, 80.8% for LeNet and

72.1% for ResNet respectively. Since the FP FMA exponent and mantissa computations are

mostly separated, the mantissa is in a longer and more complex datapath than the exponent,
which is on the critical path of the computation. And since the FMA calculation involves the

difference of exponent of operands, the mantissa is needed to be shifted, resulting in the width of

this datapath being three times wider than the original mantissa width. For these reasons, the
calculation of mantissa causes major power consumption. From the above analysis, it can be

understood that the energy efficiency of formance than 4M3E8.

Comparing running LeNet with ResNet, it is obvious that the ResNet energy efficiency is

generally higher than LeNet. Except when running TF16 and PULP8 on VARFMA where

ResNet energy efficiency is up to 1.79% lower, the performance is generally 4.03%-10.75%

higher for ResNet in the remaining cases. This is since the middle layer of ResNet is a one-side
sparse network, so the computation reduces the toggle rate of data due to partial operands being

set to zero, which brings less internal dynamic power consumption. On the other hand, the

improvement ratio of ResNet is generally lower than that of LeNet for the same reason: the
energy improvement of lower precision is obtained by setting part of mantissa to zeros, so the

reduced data toggle rate at the input side already eliminates this part of the data reversal and the

improvement is not as obvious as that of LeNet.

Finally, the performance of VARFMA is compared with the baseline. As mentioned above,

VARFMA trades an 8.04% area increase for an energy efficiency improvement. Fig. 7 compares

the energy efficiency ratio of VARFMA to the baseline running LeNet and ResNet at different
formats. It can be seen that VARFMA outperforms the baseline in terms of energy efficiency on

both NNs as a whole. The energy efficiency improvement ranges from 5.3% to 10.47% in TF32,

FP16 and BF16 formats, and exceeds 20% in both PULP8 and 4M3E8 formats, reaching a
maximum of 28.93% running LeNet. VARFMA shows higher energy efficiency when running

NN with the same unilateral bit-sparsity weight data. Due to the additional multi-precision

design, it fails to show the designed advantage at the maximum format FP32, and the energy

efficiency is 2.44% lower for LeNet and 9.13% lower for ResNet.

Figure. 7 Tendency of the energy efficiency ratio of VARFMA to the baseline

168 Computer Science & Information Technology (CS & IT)

In addition, VARFMA generally has a higher improvement ratio on both NNs compared to the
baseline. It reaches a maximum ratio of 1.81×, while the baseline only has a maximum of 1.37×,

which is even less than the average of the VARFMA improvement. This is due to that NN is a

method with dense data reuse and the internal data transfer rate is much higher than SAXPY and

MATRIX MULTIPLICATION, so the processing of mantissa makes VARFMA has greater
energy efficiency improvement.

5. CONCLUSIONS AND FUTURE WORK

We present VARFMA, an FMA design capable of inputting exponent width and mantissa width

by variables, which can support FP in any format within maximum precision. It shows a

generally higher energy efficiency compared to the baseline for both LeNet and ResNet, reaching

up to 28.93% improvement at PULP8. In addition, VARFMA shows an up to 1.81× energy
efficiency improvement ratio of lower-precision FP to FP32 than baseline, with only an 8.04%

increase in area, which makes it more advantageous for edge-end distributed NNs. The design

can be used in distributed machine learning frameworks such as Federated Learning to train NN
models locally, ensuring data security and privacy.

The LBR design makes FMA more flexible but is not conducive to handling data in single
instruction multiple data (SIMD) format. We would like to experiment more with how to use

VARFMA to support SIMD formats in the future. We are working on a configurable FP format

architecture design based on FP data rearrangement with SIMD support.

ACKNOWLEDGEMENT

This work was supported by Shenzhen Science and Technology Program (JCYJ20180508152046

428) in China.

REFERENCES

[1] Shih, J. L., Lee, C. H., & Yang, C. S. (2007). "An adult image identification system employing image

retrieval technique." Pattern recognition letters, vol. 28, no. 16, pp. 2367-2374.

[2] E. Cambria and B. White, "Jumping NLP Curves: A Review of Natural Language Processing

Research [Review Article]," in IEEE Computational Intelligence Magazine, vol. 9, no. 2, pp. 48-57.
[3] Grulich, P. M., & Nawab, F. (2018). "Collaborative edge and cloud neural networks for real-time

video processing." Proceedings of the VLDB Endowment, vol. 11, no. 12, pp. 2046-2049.

[4] H. Kaul et al., "A 1.45GHz 52-to-162GFLOPS/W variable-precision floating-point fused multiply-

add unit with certainty tracking in 32nm CMOS," 2012 IEEE International Solid-State Circuits

Conference, San Francisco, CA, USA, 2012, pp. 182-184.

[5] Köster, U., Webb, T., Wang, X., Nassar, M., Bansal, A. K., Constable, W., ... & Rao, N. (2017).

"Flexpoint: An adaptive numerical format for efficient training of deep neural networks." Advances

in neural information processing systems, pp. 30.

[6] Kim, K. H., Hong, S., Roh, B., Cheon, Y., & Park, M. (2016). Pvanet: Deep but lightweight neural

networks for real-time object detection. arXiv preprint arXiv:1608.08021.

[7] T. Tan and G. Cao, "FastVA: Deep Learning Video Analytics Through Edge Processing and NPU in
Mobile," IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, Toronto, ON,

Canada, 2020, pp. 1947-1956.

[8] J. Reinders. (Jun. 2017). Intel AVX-512 Instructions, Intel Software Developer Zone. [Online].

Available: https://software.intel.com/en-us/blogs/2013/avx-512-instructions.

[9] N. Kurd et al., "Haswell: A Family of IA 22 nm Processors," in IEEE Journal of Solid-State Circuits,

vol. 50, no. 1, pp. 49-58.

Computer Science & Information Technology (CS & IT) 169

[10] N. Brunie, F. de Dinechin and B. de Dinechin, "A mixed-precision fused multiply and add," 2011

Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers

(ASILOMAR), Pacific Grove, CA, USA, 2011, pp. 165-169.

[11] K. Ueyoshi et al., "QUEST: A 7.49TOPS multi-purpose log-quantized DNN inference engine stacked

on 96MB 3D SRAM using inductive-coupling technology in 40nm CMOS," 2018 IEEE International
Solid - State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2018, pp. 216-218.

[12] E. Chung et al., "Serving DNNs in Real Time at Datacenter Scale with Project Brainwave," in IEEE

Micro, vol. 38, no. 2, pp. 8-20.

[13] Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., ... & Yoon, D. H. (2017)

"In-datacenter performance analysis of a tensor processing unit." In Proceedings of the 44th annual

international symposium on computer architecture, pp. 1-12.

[14] Xie, S., Davidson, S., Magaki, I., Khazraee, M., Vega, L., Zhang, L., & Taylor, M. B. (2018).

"Extreme datacenter specialization for planet-scale computing: Asic clouds." ACM SIGOPS

Operating Systems Review, vol. 52, no.1, pp. 96-108.

[15] S. Mach, F. Schuiki, F. Zaruba and L. Benini, "FPnew: An Open-Source Multiformat Floating-Point

Unit Architecture for Energy-Proportional Transprecision Computing," in IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 29, no. 4, pp. 774-787.
[16] M. J. Schulte and E. E. Swartzlander, "A family of variable-precision interval arithmetic processors,"

in IEEE Transactions on Computers, vol. 49, no. 5, pp. 387-397.

[17] A. Agrawal et al., "9.1 A 7nm 4-Core AI Chip with 25.6TFLOPS Hybrid FP8 Training, 102.4TOPS

INT4 Inference and Workload-Aware Throttling," 2021 IEEE International Solid- State Circuits

Conference (ISSCC), San Francisco, CA, USA, 2021, pp. 144-146.

[18] A. Nannarelli, "Fused Multiply-Add for Variable Precision Floating-Point," 2019 32nd IEEE

International System-on-Chip Conference (SOCC), Singapore, 2019, pp. 342-347.

[19] H. Zhang, D. Chen and S. -B. Ko, "Efficient Multiple-Precision Floating-Point Fused Multiply-Add

with Mixed-Precision Support," in IEEE Transactions on Computers, vol. 68, no. 7, pp. 1035-1048.

[20] Muller, J. M., Brisebarre, N., De Dinechin, F., Jeannerod, C. P., Lefevre, V., Melquiond, G., ... &

Torres, S. (2018). Handbook of floating-point arithmetic.

AUTHORS

Xiyang Sun received the B.E. degree in Integrated Circuit Design and Integrated System

from Tianjin University in 2020. She is currently pursuing the M.E. degree with the

Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.

Yue Zhao received the B.E. degree in Telecommunications Engineering from Tianjin

University, Tianjin, China, in 2020. He is currently pursuing the M.E. degree with the

Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.

His research interests include High Performance Computer Architecture and Integrated

Circuit Systems Design.

Sheng Zhang is with the Tsinghua Shenzhen International Graduate School at Shenzhen, Tsinghua

University, Key Laboratory of Advanced Sensor and Integrated System, Shenzhen

© 2023 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

	Abstract
	Keywords
	Fused Multiply-add, Tunable-precision, Distributed Network, Energy Efficiency, IoT

