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ABSTRACT 
 
Convolutional neural networks have been continuously updated in the last decade, requiring 

more diverse floating-point formats for the supported domain specific architectures. We have 

presented VARFMA, a tunable-precision fused multiply-add architecture based on the Least Bit 

Reuse structure. VARFMA optimizes the core operation of convolutional neural networks and 
supports a range of precision that includes the common floating-point formats used widely in 

enterprises and research communities today. Compared to the latest standard baseline fused 

multiply-add unit, VARFMA is generally more energy-efficient in supporting multiple formats, 

achieving up to 28.93% improvement for LeNet with only an 8.04% increase in area. Our 

design meets the needs of the IoT for high energy efficiency, acceptable area, and data privacy 

protection for distributed networks. 
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1. INTRODUCTION 
 

In the last decade, deep learning (DL) has emerged as a popular field where the training and 
inference of parameters is achieved through the construction of convolutional neural networks 

(NN). DL achieved excellent results in domains such as image recognition [1], natural language 

processing [2], video and audio processing [3]. The concept of deep neural network (DNN) was 

already proposed by Rosenblat in 1962 [4] but became concrete and feasible when Rumelhart, 
Hinton, and Williams implemented the backpropagation algorithm (BP) by designing gradient 

descent in 1986 [5]. Moore's Law and Dennard's Law brought about a rapid development in 

electronics, which greatly increased the computing power of computers. However, with Moore's 
Law limiting the performance of general-purpose computers nowadays and Amdahl's Law 

limiting the performance of computer clusters, general-purpose computers have been unable to 

meet the growing demand for NN computing power. To solve this problem, many different types 

of research have emerged. On the software side, many lightweight NNs with sparsity have been 
proposed to reduce the demand for hardware resources [6]; on the hardware side, domain-specific 

architectures (DSA) have been popular and hardware modules dedicated to NN acceleration have 

become mainstream, such as Google’s Tensor Processing Unit (TPU) and Samsung’s Neural-
Network Processing Unit (NPU) [7]. 
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Before 2019, NN training was mostly deployed on cloud servers. However, to meet the 
requirement for data privacy in Internet of Things (IoT) domain, NN training is emerging at the 

distributed edge. Federated Learning techniques are proposed to allow decentralized participants 

to collaborate on model training for machine learning while satisfying the requirement of not 

disclosing private data to other participants. This puts a higher demand on the power 
consumption and area of the computation. Compared to fixed-point numbers, floating-point 

numbers (FP) have higher precision and a larger representation range. While some strategies can 

produce more reliable results for fixed-point numbers using deep analysis, these strategies also 
introduce more code volume to normalize the data. Therefore, FP is needed to provide sufficient 

precision and range. As shown in (1), FP fused multiply-add (FMA) is the core operation of the 

local training of NN, denoted as O A B C   . Since the IBM RISC System 6000 in 1990 [8], 

FMA has been incorporated into IMB CELL, PowerPC, ARMv7-A, AMD’s Piledriver, Intel’s 
Haswell, and other architectures [9-11]. 

 


1

n

i i

i

z X w b


    (1)

 
The standard FP format is no longer able to achieve the optimal requirements of NN, and more of 

them are being proposed to support arbitrary formats. In this paper, we improve the existing LBR 

and design the arbitrary tunable precision FP module VARFMA. The main contributions are: 

 
(1) Expand the precision range supported by FMA, add data conversion design, and implement 

the calculation unit that supports exponent width and mantissa width as variables. The 

supported formats cover the mainstream FP32, TF32, FP16, BF16, PULP8 and 4M3E8. 
 

(2) The analysis of VARFMA based on different NNs shows an energy efficiency improvement 

of up to 28.93% compared to the design of Muller et al. [20]. And the energy efficiency ratio 
of the lower-precision FP to the highest precision FP supported reaches up to 1.81× with an 

area increase of only 8.04%. 

 

2. RELATED WORK 
 
IEEE754-2008 specifies the format and hardware implementation of the basic functions of the 

standard FP, which is now widely adopted. The standard FP includes 1-bit sign, E bits exponent 

and M bits mantissa, as shown in Fig. 1. In the general case, it represents the number of 
1(exp 2 1)( 1) 2 1.

Esign onent mantissa
    . The expressed number of abnormal cases is explained in 

detail in the following section. 
 

 
 

Figure 1.  IEEE754 floating point format 

 

FP formats used a lot in the past are the standard single-precision (FP32), double-precision 
(FP64) and half-precision (FP16). With the rise of DSA field, many unconventional FP formats 

have been proposed to maximize the performance of the architecture and achieve higher energy 

efficiency. Companies and research institutes have invented their FP formats, such as Intel’s 
Nervana Flexpoint [5], Microsoft’s Brainwave 9-bit FP [12], Google’s TPU bfloat (BF16) [13] or 

NVIDIA’s 19-bit Tensor Float (TF32) implementation in Tensor Cores [14]. 8-bit FP formats are 
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more often found in the academic domain, with ETH Zurich proposing PULP binary8 (PULP8) 
[15] and Schulte [16] supporting two kinds of 8-bit FPs. Their formats are shown in Fig. 2. 

 

 
 

Figure 2.  FP formats used in DSA 

 

In order to support more FP formats, the main multi-precision FMAs can be divided into the 

following three approaches: Spatial Reuse (SR), Spatial Separation (SS), and Least Bit Reuse 
(LBR). SR combines multiple low-precision data in space by cutting the data path into segments 

and combining them into high-precision data computations by shifting and control logic. 

Himanshu Kaul et al. [4] designed a FMA unit that can compute one 24-bit, two 12-bit, or four 6-
bit significants. SS applies separate slides to each FP precision and does not use multiplexing 

strategies in the time or space domain. Stefan Mach et al. [15] adopted a parallel slicing approach 

for the supported FP formats and achieved an energy efficiency of 74-1245 GFLOPS/W; Ankur 
Agrawal et al. [17] implemented FP16 and Half Floating Point 8 (HFP8) formats respectively, 

which include the 4M3E8 format which has 3-bit exponent and 4-bit mantissa, achieving an 

energy efficiency of 1.95-3.85 TFLOPS/W. LBR spatially multiplexes the lower bits portion of 

the datapath. Unlike SR, LBR does not support multiple lower-precision formats simultaneously, 
but treats the exponent and mantissa widths as control signals, and achieves arbitrary precision 

support by setting the exponent and mantissa widths in real-time. Alberto Nannarelli et al. [18] 

set the exponent and mantissa widths in the single-precision FP format based on multiplexing 
multipliers and adders. By adding decoders and quad-multiplexers, it has a smaller area and 

power consumption compared to separate multiplier and adder. In addition, there is also a time-

domain reuse method, which combines low-precision data generated in multiple cycles. 

 
SR is the most commonly used method for fixed-point computation units, but this is not fully 

applicable to the FP format. The fixed-point operation can be easily implemented by adding up 

two identical low-precision fixed-point, but Fig. 2 shows that as the overall width of the FP 
format decreases equally, the exponent part does not decrease in proportion to the mantissa part, 

which results in a large redundancy in the exponent calculation and makes the control logic of 

mantissa hard to design. Zhang H et al. [19] implemented the standard binary128 (QP), DP, SP, 
and HP. In order to align the formats, the mantissa was grouped by 15 bits. The processing of the 

mantissa required a total of 120 bits and the exponent part required a total of 40 bits. Himanshu 

Kaul's design completely reused the datapath but did not effectively support the existing FP 

formats. Moreover, SS cannot support arbitrary FP formats but only compute a few existing 
formats. In contrast, LBR has moderate area and latency, supports more data formats with built-in 

exponent width and mantissa width selectors, and is better able to support new DNN formats as 

they emerge. 
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3. ARCHITECTURE 
 
This section shows details of VARFMA architecture. In the beginning, the format requirements 

for the input data and the data conversion method are introduced. Then it shows the modules that 

makeup VARFMA and the circuit designed to support tunable precision. Finally, the hardware 

implementation scheme and test set are presented. 
 

3.1. Tunable FP Format Requirement 
 

To achieve arbitrary precision FP support, the design specifies a lower-precision exponent and 

mantissa data layout when the required precision width is less than the maximum precision width. 

As shown in Fig. 3, the capital E and M represent the maximum precision supported respectively, 
which are fixed values; ew and mw represent the actual exponent width and mantissa width of the 

input, which are variable values. The input data needs to be formatted and brought into the FMA 

calculation. 
 

 
 

Figure 3.  Format conversion of tunable precision FP 

 
From Fig. 2, it can be seen that all of the innovative FP formats are shorter than FP32 in length, 

so the input FP formats need to be processed. The processing includes: shift the sign bit originally 

ranked in mw+ew position to M+E bit; shift the exponent in [mw+ew-1,mw] position to [M+E-

1,M] and supplement zeros the most bits; shift the mantissa in [mw-1,0] position to [M-1, M-mw] 
and supplement zeros the least bits. 

 

3.2. Architecture Design 
 

This section describes the design architecture of this paper in detail, focusing on the variable 

parameter (var_parameter) module and the variable rounding (var_prerounding) module added to 
support arbitrary precision FP. 

 

Starting from the overall architecture, as shown in Fig. 4, VARFMA receives the system signals, 
operands a, b, c, and control signals. The datapath mainly consists of the following logic 

modules: var_parameter module (module 1), preprocessing module (module 2), pre-alignment 

module (module 3), multiplier (module 4), adder (module 5), normalization module (module 6), 
Leading Zero Count (LZC) (module 7), var_prerounding module (module 8), rounding and 

exception check module (module 9) and pipeline logic. The dark modules are added or modified 

compared to the standard FMA architecture to implement variable precision. 
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Figure 4. The overall architecture of VARFMA 

 

Since VARFMA supports floating-point formats of arbitrary precision, this means that the top-
level input control signal needs to contain two additional input variables: ew and mw. The 

var_parameter module needs to determine the ew to get the exponent bias (bias_var) and max 

biased exponent for the FMA operation (max_exponent). As shown in Fig. 5, bias_var can be 

achieved with parallel comparators and selectors as the maximum bias width (BW). Ew is issued 
into the module, compared with the index in each BW comparator, and then the result is 

connected to the corresponding selection side of the selector. The output of a selector is 1 if 

successfully selected, otherwise is 0. Max_exponent can be compared and selected in a similar 
way, where the number of selectors and comparators is the maximum exponent width that the 

FMA module can support. 



164         Computer Science & Information Technology (CS & IT) 

 

 
 

Figure 5.  Design of var_parameter module 

 
The preprocessing module predetermines the input operands a, b and c in FP format. It also 

determines whether the data is in a special case according to IEEE-754 rules, including Infinity, 

Not a Number (NAN), Zero and Subnormal. The module also turns the mantissa into the 
significant by attaching a hidden number to the most bit of mantissa. The hidden number is 0 

when the exponent is 0, or it will be 1 otherwise. It is important to note that in VARFMA, the 

comparison object is max_exponent when judging Infinity and NAN. 

 
The pre-alignment module handles the significants of the operands, and the actual length of the 

significants of operators is p-width, which is obtained from the input mw of the top-level module: 

. To support FP with arbitrary precision, the input data width of the multiplier and adder is the 
maximum significant width supported, denoted as P. To reuse the multiplier and adder, it is 

necessary to make up the full operator’s significant into P bits. When shifting the significand, the 

exponent difference of product and addend is used using bias_var. 
 

The multiplier, adder, normalization module and LZC are consistent with the standard FMA, the 

multiplier needs to multiply the two P-bit significants to get the 2P-bit product. The adder 

calculates the sum of pre-aligned product and addend to get the temporary sum and sign bit 
sign_r. LZC, as the name suggests, it is responsible for counting and getting the number of 

leading zeros, denoted as λ. The normalization module includes the shift of sum according to λ, 

the new sticky bit calculation, and the exponent update. It can be seen from (2) that the 
significant to be processed by the multiplier has a lower data toggle rate when supporting lower 

precision, thus reducing the computational power consumption. 

 

0 0

2( ) 0 0
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a b M mw a M mw b M mw

MM MM MM MM MM MM MM

MM MM shift MM MM shift MM MM shift  
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The P-bit significant s_norm from the normalization module is not fully needed. Instead, the 
needed p-bit significant can be obtained according to mw. In the var_prerounding module, as 

shown in Fig. 6, the s_norm within the p bits is reserved to produce m_rd, the data used later to 

get an accurate result. The round bit (RB) is selected as the bit after the p-th bit of s_norm by a 

selector; the odd bit (OB) is selected as the p-th bit of s_norm. The remaining bits are orthogonal 
to each other to obtain the new sticky bit S_rd. The final sticky bit used in the rounding module is 

obtained by putting S_rd and the sticky bit S obtained in the pre-alignment module in the OR 

gate. 
 

 
 

Figure 6.  Design of var_prerounding module 

 

Rounding and exception checking use m_rd, e_norm (obtained by the normalization module), 

final sticky bit, RB, OB and the max_exponent (obtained by the var_paremeter module). 

Depending on the final sticky bit, RB, OB and round mode, it can be determined whether the 
result should be rounded or not. The exception checking module checks for overflow and 

underflow. An overflow exception is generated when the calculated exponent is greater than or 

equal to max_exponent. Underflow means the calculated exponent is less than or equal to the 
actual minimum exponent value, which corresponds to Zero and Subnormal. 

 

Because of the complexity of the FP operation datapath, three pipeline logic stages are inserted 
into the process to shorten the critical path delay. 

 

3.3. Implementation 
 

The VARFMA has been implemented in TSMC 28nm technology of standard cells, using 

Synopsys tools and targeting 1.3 GHz. To compare the test results, the standard FP32 [20] has 
been fully implemented under the same conditions.  
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To evaluate the performance of VARFMA on NNs, two CNNs are chosen for the experimental 
test set: the middle layer of ResNet50 and LeNet, which typically represent the heavyweight and 

lightweight CNNs respectively. LeNet is one of the earliest CNN and the starting point of a 

number of recent NN architectures. The weight-sharing feature of the convolutional layer makes 

it save considerable computation and memory space compared to the fully connected layer. 
ResNet50 is one of the most widely used CNN for image classification, and its smaller 

convolutional kernel and deeper channels are important representatives of DL networks. 

Convolution calculation is shown in (3), where the activation A and the weight W are 
summarized in three dimensions: convolution kernel size (ksize), number of input channels (ch), 

and number of convolution kernels (knum). 

 

 , , , ,
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k c i

A W
  

  (3)

 

We have chosen six FP formats: FP32, TF32, FP16, BF16, PULP8, and 4M3E8, as shown in Fig. 

2. These are the data formats that have been widely integrated into DSA or evaluated in papers in 
recent years. 

 

4. IMPLEMENTATION RESULTS 
 

This section explores the area and energy efficiency of VARFMA in different formats, 
performance improvement for ResNet and LeNet datasets and performance analysis against the 

standard FP32 FMA described in [20] as a baseline. 

 
Tab. 1 shows the energy efficiency and area of VARFMA compared with FP32 FMA when 

running a layer of ResNet and LeNet. The energy efficiency ratio of different FP formats to FP32 

is shown in the last column of table using the same FMA in the same network. The data were 

measured at 1.3 GHz. 
 

Table 1.  Comparison of this work with the baseline architecture 

 

Design 
Area 

(cells) 
Precision 

Energy Efficiency (GFLOPS/W) Ratio 

LeNet ResNet LeNet ResNet 

This 

work 
5859 

FP32 1770.635  1826.356  1.00  1.00  

TF32 2349.115  2362.777  1.33  1.29  

FP16 2354.646  2384.009  1.33  1.31  

TF16 2617.274  2614.642  1.48  1.43  

PULP8 3201.182  3143.894  1.81  1.72  

4M3E8 2880.567  2996.773  1.63  1.64  

Muller 

et al. 

[20] 

5423 

FP32 1814.882  2009.895  1.00  1.00  

TF32 2131.497  2264.020  1.17  1.13  

FP16 2131.497  2264.020  1.17  1.13  

TF16 2261.263  2358.063  1.25  1.17  

PULP8 2482.811  2523.782  1.37  1.26  

4M3E8 2381.389  2445.908  1.31  1.22  

 

As shown in tab. 1, the addition of var_parameter mode and var_prerounding mode results in a 

larger total design area, with an 8.04% increase in area compared to the baseline. 
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Next, we analyze the energy efficiency improvement in VARFMA in different formats. As the 
width of the supported precision decreases, the overall energy efficiency of VARFMA shows a 

linear increase, reaching the maximum improvement in the PULP8 format, 80.8% for LeNet and 

72.1% for ResNet respectively. Since the FP FMA exponent and mantissa computations are 

mostly separated, the mantissa is in a longer and more complex datapath than the exponent, 
which is on the critical path of the computation. And since the FMA calculation involves the 

difference of exponent of operands, the mantissa is needed to be shifted, resulting in the width of 

this datapath being three times wider than the original mantissa width. For these reasons, the 
calculation of mantissa causes major power consumption. From the above analysis, it can be 

understood that the energy efficiency of formance than 4M3E8. 

 
Comparing running LeNet with ResNet, it is obvious that the ResNet energy efficiency is 

generally higher than LeNet. Except when running TF16 and PULP8 on VARFMA where 

ResNet energy efficiency is up to 1.79% lower, the performance is generally 4.03%-10.75% 

higher for ResNet in the remaining cases. This is since the middle layer of ResNet is a one-side 
sparse network, so the computation reduces the toggle rate of data due to partial operands being 

set to zero, which brings less internal dynamic power consumption. On the other hand, the 

improvement ratio of ResNet is generally lower than that of LeNet for the same reason: the 
energy improvement of lower precision is obtained by setting part of mantissa to zeros, so the 

reduced data toggle rate at the input side already eliminates this part of the data reversal and the 

improvement is not as obvious as that of LeNet. 
 

Finally, the performance of VARFMA is compared with the baseline. As mentioned above, 

VARFMA trades an 8.04% area increase for an energy efficiency improvement. Fig. 7 compares 

the energy efficiency ratio of VARFMA to the baseline running LeNet and ResNet at different 
formats. It can be seen that VARFMA outperforms the baseline in terms of energy efficiency on 

both NNs as a whole. The energy efficiency improvement ranges from 5.3% to 10.47% in TF32, 

FP16 and BF16 formats, and exceeds 20% in both PULP8 and 4M3E8 formats, reaching a 
maximum of 28.93% running LeNet. VARFMA shows higher energy efficiency when running 

NN with the same unilateral bit-sparsity weight data. Due to the additional multi-precision 

design, it fails to show the designed advantage at the maximum format FP32, and the energy 

efficiency is 2.44% lower for LeNet and 9.13% lower for ResNet. 

 
 

Figure. 7 Tendency of the energy efficiency ratio of VARFMA to the baseline 
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In addition, VARFMA generally has a higher improvement ratio on both NNs compared to the 
baseline. It reaches a maximum ratio of 1.81×, while the baseline only has a maximum of 1.37×, 

which is even less than the average of the VARFMA improvement. This is due to that NN is a 

method with dense data reuse and the internal data transfer rate is much higher than SAXPY and 

MATRIX MULTIPLICATION, so the processing of mantissa makes VARFMA has greater 
energy efficiency improvement. 

 

5. CONCLUSIONS AND FUTURE WORK 
 
We present VARFMA, an FMA design capable of inputting exponent width and mantissa width 

by variables, which can support FP in any format within maximum precision. It shows a 

generally higher energy efficiency compared to the baseline for both LeNet and ResNet, reaching 

up to 28.93% improvement at PULP8. In addition, VARFMA shows an up to 1.81× energy 
efficiency improvement ratio of lower-precision FP to FP32 than baseline, with only an 8.04% 

increase in area, which makes it more advantageous for edge-end distributed NNs. The design 

can be used in distributed machine learning frameworks such as Federated Learning to train NN 
models locally, ensuring data security and privacy. 

 

The LBR design makes FMA more flexible but is not conducive to handling data in single 
instruction multiple data (SIMD) format. We would like to experiment more with how to use 

VARFMA to support SIMD formats in the future. We are working on a configurable FP format 

architecture design based on FP data rearrangement with SIMD support. 
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