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ABSTRACT 
 

The field of astronomy has made tremendous progress in recent years thanks to advancements 

in technology and the development of sophisticated algorithms. One area of interest for 
astronomers is the classification of galaxy morphology, which involves categorizing galaxies 

based on their visual appearance. However, with the sheer number of galaxy images available, 

it would be a daunting task to manually classify them all. To address this challenge, a novel 

Residual Neural Network (ResNet) model, called ResNet_Var, that can classify galaxy images is 

proposed in this study. Subsets of the Galaxy Zoo 2 dataset are used in this research, one 

contains over 28,000 images for the five-class classification task, and the other contains over 

25,000 images for the seven-class classification task. The overall classification accuracy of the 

ResNet_Var model was 95.35% for the five-class classification task and 93.54% for the seven-

class classification task.  
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1. INTRODUCTION 
 

In recent years, astronomy has emerged within the field of natural science, dedicated to the 
comprehensive study of celestial objects and phenomena [1, 2, 3, 4, 5]. Using mathematics, 

physics, and chemistry, it seeks to understand the formation and evolution of these objects. Study 

of astronomy includes studying planets, moons, stars, nebulae, galaxies, comets, and other 

celestial bodies, as well as phenomena such as supernova explosions, gamma ray bursts, quasars, 
blazars, pulsars, and cosmic microwave background radiation [1]. Astronomy is the study of 

anything that originates outside the Earth’s atmosphere. With technological advancements over 

recent decades, astronomy has become a field that generates vast amounts of data [2, 3, 4, 5]. 
New observational tools such as satellites and telescopes provide large, complex datasets that 

include spatial and temporal components. One of the primary sources of data used in 

observational astronomy is photometry, where each image captures a specific field of view of the 

sky in a chosen frequency band, which can contain multiple objects and is subject to noise [2, 3, 
4, 5]. With the simultaneous development of machine learning technologies, it has become 

possible to handle and extract more value from these massive datasets in various research and 

industry contexts [4]. 
 

An unbiased sample containing reliable morphological types is crucial to any research on 

extragalactic objects. It allows for accurate classification of galaxies based on their morphologies 
[3, 4]. Classification of galaxies based on their morphology is vital because the shape and 

structure of a galaxy can provide insight into its formation and evolution, as well as its 

interactions with its environment. For example, galaxies in groups or clusters may have different 
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evolutionary paths than those alone, reflected in their morphologies. To study galaxy formation 
and evolution, it is essential to classify galaxies into a systematic morphology system. 

 

1.1. Galaxy Morphology 
 

Galaxy morphology refers to galaxies’ physical makeup and appearance, encompassing traits like 

size, shape, brightness, and the arrangement of components such as stars, gas, dust, etc. Studying 
galaxy morphology is crucial in astronomy since it offers a deep understanding of how they form, 

evolve, and interact with their surroundings. Different kinds of galaxies (spiral, elliptical, or 

irregular) exhibit unique characteristics that necessitate accurate categorization based on these 

features so we can understand their properties and behavior. In observational research involving 
celestial objects, classification into a morphological system is crucial; however, this process can 

be complex for researchers without a dependable methodology ensuring precise identification. 

This makes accuracy in classifying celestial objects vital, especially within disciplines where 
information discovered may reveal valuable insight regarding formation or evolution processes 

(astronomy).  

 

 
 

Figure 1. Tuning-fork style diagram of the Hubble sequence (Source: Wikipedia [30]). 

 

Figure 1 shows a classification scheme introduced by Hubble in 1926 [31], which provides a 

useful starting point for understanding the morphologies of galaxies. Hubble’s classification 

scheme divides galaxies into two main categories, Early Type Galaxies which are characterized 
by a bulge, giving them elliptical shape and Late Type Galaxies, which are further divided into 

two categories, spiral galaxies with a bar-shaped central structure and spiral galaxies without a 

bar-shaped structure at the centre. The classification of galaxy images is an essential task in 
astronomy, as it enables astronomers to gain insights into the properties and characteristics of 

galaxies [6]. However, due to the exponential growth of astronomical data, there has been a 

significant increase in the number of galaxy images requiring classification [7]. Therefore, 
manual classification is no longer practical, as it is time-consuming, labor-intensive, and prone to 

human error [8]. One approach to reliable classification is the use of machine learning 

algorithms. In recent years, there have been significant developments in machine learning, 

making it a powerful tool for classification tasks in astronomy and other fields. For example, 
Residual Neural Networks (ResNet) have been successfully used to classify galaxy images based 

on their morphologies [9]. Other machine learning techniques, such as convolutional neural 

networks (CNNs) and decision trees, have also been used in astronomical research for 
classification purposes [10, 11].  
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1.2. Galaxy Zoo 
 

Machine learning algorithms are becoming more common in scientific research, including 

classifying objects into a morphology system. While machine learning algorithms can 
significantly improve efficiency and accuracy, human supervision is still necessary to guide the 

machine and provide meaningful labels to the patterns it discovers. One project that successfully 

utilized human input is the Galaxy Zoo project [12]. Launched in 2007, this project engaged 
volunteers in classifying galaxy images into elliptical, spiral, and undefined categories. By 

combining the power of human intuition and the speed of automated processes, the Galaxy Zoo 

project could efficiently and accurately classify many galaxy images.  

 

 
 

Figure 2. Galaxy Zoo 1 user interface showing a galaxy image on the left and buttons on the right for users 

to select. By clicking on the buttons, users can choose one of the options from clockwise, anticlockwise, 

and edge-on, which are under the category of the spiral galaxy, or the elliptical galaxy,  

or one of the options from star and merger, which are under undefined/ 

other galaxy category (Source: Lintott et al. (2008) [12]). 

 

Galaxy Zoo is a citizen science project that harnesses the collective intelligence of volunteers to 

classify galaxies based on their morphologies. The primary objective of GZ1 (Galaxy Zoo 1, 
2007) was to categorize galaxies based on their visual appearance, particularly their shapes and 

structures [12]. The user interface of GZ1 was designed so that users could classify galaxies 

straightforwardly and intuitively. Figure 2 shows the user interface of Galaxy Zoo 1 [12]. On the 

left side of the interface, users were shown an image of a galaxy. They were given the option to 
select the galaxy type from predefined categories such as elliptical, spiral, or other. These three 

categories are further divided into six options: the elliptical has one option, the spiral has three 

options listed as clock, anti, and edge-on, and the other is divided into two options for users to 
select from star and merger. On the right side of the interface, the users were presented with 

options and examples to help them identify and classify the galaxy type they saw on the left. 

Users could classify as many galaxies as they wanted and were encouraged to return to the site 
for more images. The classifications submitted by users were combined and analyzed to create a 

catalog of galaxy classifications that researchers could use for further analysis [12].  

 

The initial project’s success led to the launch of a follow-up project, Galaxy Zoo 2 (GZ2), in 
2009. Galaxy Zoo 2 aimed to build on the success of its predecessor by introducing a more 

complex classification system consisting of a decision tree and several classification stages (Fig. 

3). This new system enabled volunteers to provide labeled data for galaxy morphology with 
unprecedented detail, thus significantly improving our understanding of the universe. The project 

known as Galaxy Zoo was a significant step towards democratizing scientific research, allowing 

the public to participate and contribute to discoveries actively. This approach relied on the 
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collective intelligence of a diverse group of volunteers who could classify and analyze large 
amounts of astronomical data that would have been unmanageable by a single research team. 

 

 
 

Figure 3. Decision tree used in Galaxy Zoo 2 project (Source: Willett et al. (2013) [29]). 

 

2. LITERATURE REVIEW 
 

In recent years, machine learning and deep learning methods have gained popularity in 

astronomy due to their ability to process large datasets with high accuracy and efficiency. 
Machine learning and deep learning techniques have been used to classify galaxies based on their 

shape, size, and color. Using these techniques in astronomy has opened up new avenues for 

research, allowing scientists to make more accurate predictions and identify previously unknown 

phenomena. Therefore, it is essential to review the current state of the art in applying machine 
learning and deep learning techniques to galaxy image classification to understand their potential 

for advancing the field of astronomy. 

 
The classification of galaxy morphologies has been a challenging task in astronomy, and several 

approaches utilizing machine learning techniques have been proposed to address this problem. In 

the paper by Gupta et al. (2022) [13], they present a novel approach for galaxy morphology 

classification using neural ordinary differential equations. They employ a dataset of galaxy 
images and train a neural network model based on ordinary differential equations. The results 

demonstrate the effectiveness of their method in accurately classifying galaxy morphologies. 

Another paper by Kalvankar et al. (2020) [14] focuses on galaxy morphology classification using 
efficientnet architectures. They utilize the arXiv dataset and propose a deep learning model based 

on efficientnet architectures. The experimental results showcase the superior performance of their 

model compared to existing methods in accurately categorizing galaxy morphologies. Barchi et 
al. (2020) [15] conducted a comparative study on machine learning and deep learning techniques 

applied to galaxy morphology classification. They [15] employ various datasets and evaluate 

multiple models. Their study provides insights into the performance of different approaches, 

highlighting the strengths and weaknesses of each method. Zhanget al. (2022) [16] explore using 
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few-shot learning for classifying galaxy morphologies. Their research addresses the challenge of 
limited labeled data by proposing a few-shot learning framework. By leveraging transfer learning 

and meta-learning techniques, their approach demonstrates promising results in classifying 

galaxy morphologies accurately. In the paper by Alawi et al. (2021) [17], the authors propose a 

deep residual network model for star-galaxy classification. Their model is developed for a 
specific task within the broader context of galaxy morphology classification. Although the details 

of the dataset used are not explicitly mentioned in the paper, their model shows promising 

performance in distinguishing between stars and galaxies. Shetty et al. (2022) [18] tackle the 
classification of satellite galaxies using convolutional neural networks (CNNs) and machine 

learning algorithms. Their [18] study focuses on a specific type of galaxy and proposes a CNN-

based classification approach. The authors utilize the dataset specific to satellite galaxies and 
demonstrate the effectiveness of their method in accurately classifying this particular class of 

galaxies. Zhu et al. (2019) [19] present a study on galaxy morphology classification using deep 

convolutional neural networks (CNNs). They utilize a dataset of galaxy images and propose a 

CNN-based model for classification. Their experimental results show the capability of CNNs in 
accurately categorizing galaxy morphologies. 

 

In summary, the papers discussed in this literature review encompass various approaches for 
galaxy morphology classification. These approaches include utilizing neural ordinary differential 

equations, efficientnet architectures, machine and deep learning techniques, few-shot learning, 

deep residual networks, and CNNs. The experimental results presented in these papers 
demonstrate the effectiveness of the proposed models in accurately classifying galaxy 

morphologies, showcasing the advancements in the field and providing valuable insights for 

future research in this area. 

 

While some studies in this field have reported good results, many suffer from limitations, 
such as using a single dataset to show their results or relying on existing models for comparative 
analysis. Additionally, certain models proposed in the literature require a large number of training 

parameters which can lead to overfitting. To address these limitations, this study proposes a 

model based on the Residual Neural Network (ResNet) architecture. ResNet can achieve high 

accuracy while reducing computational costs, thanks to the use of skip connections. Moreover, it 
can generalize well to new, unseen galaxies by learning more complex features. The relatively 

small number of parameters in ResNet can also help to prevent overfitting, and it can be trained 

on various datasets, making it more representative of all types of galaxies. 
 

3. METHODOLOGY 
 

This section provides information about the model proposed in this study, called ResNet_Var, 

which uses ResNet architecture. So, before we move to ResNet_Var, let us learn more about 
ResNet. 

 

3.1. Residual Neural Networks 
 

Residual Network (ResNet) is a Convolutional Neural Network (CNN) architecture that has 

revolutionized the field of computer vision by addressing the problem of vanishing gradients, 
which arise when a neural network becomes too deep. The backpropagation process relies on 

gradient descent to optimize the weights of the network. However, when there are too many 

layers, the repeated multiplications cause the gradient to vanish, leading to performance 
saturation or degradation. ResNet tackles this problem by introducing “skip connections” 

between layers [20]. Skip connections, also known as shortcut connections, allow information to 

bypass one or more layers of a neural network and be passed directly to a later layer. In ResNet, 
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skip connections are implemented by adding identity mappings (i.e., a simple linear function) to 
the output of one or more convolutional layers. In ResNet, identity mapping refers to the addition 

of the input of a residual block to its output. A residual block is a building block used in residual 

neural networks (ResNets). In a residual block, the skip connection is typically implemented as a 

simple identity mapping that bypasses one or more convolutional layers in the block. This means 
that the input to the block is added directly to the output of the block, which helps to prevent the 

vanishing gradient problem that can occur in very deep neural networks. 

 
By using skip connections, residual blocks enable the network to learn features that are more 

abstract and complex than what could be learned without them. ResNet stacks multiple identity 

mappings and skips some layers by reusing the activations of the previous layer. This method 
speeds up the initial training phase by compressing the network into fewer layers and then 

expanding all layers during retraining. The term “retraining” refers to the process of fine-tuning 

the weights of the ResNet architecture after the initial training phase. During the initial training 

phase, the ResNet architecture is compressed into fewer layers by skipping some layers using 
skip connections. After this phase, the skipped layers are added back in, and the remaining layers 

are trained again on the data to improve the performance of the network. In most ResNet models, 

two or three layers are skipped at a time with nonlinearity and batch normalization in between 
[20]. 

 

 
 

Figure 4. A residual network model architecture (Source: Fang et al. (2018) [21]). 

 

Figure 4 illustrates the model architecture of a simple Residual Network (ResNet) and the 

structure of the residual block used in the ResNet model. As seen in the left part of figure 4, the 
image is given as input to the model, and it is passed to a convolution layer (“Conv” in the figure 

4) of 1 × 1 kernel with a filter size of 20. Then the image is passed through building block 1 

followed by building block 2. The building block referred to in the figure 4 is also known as 
residual blocks. The term “bottleneck” building block in figure 4 refers to a specific type of 

building block that is designed to reduce the number of parameters and computations required to 

train a very deep neural network. Output from the building block 2 is given as an input to an 

average pooling layer (“Avg pool” in the figure 4), and then the output from the average pooling 
layer is provided as an input to the fully connected layer (“Fc” in the figure 4). Now, the right 

part of figure 4 shows the structure of the building block. It shows the series of convolutional 

layers are present inside the building block with varying kernel sizes of 1 × 1 and 3 × 3 as well as 
filter sizes of 20 and 80. As seen in the right part of figure 4, x is the input to the building block, 

which is the output from the previous layers in the neural network. The output from the 

convolutional layer, first orange rectangle with “1 × 1 Conv, 20” written inside in the left part of 
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figure 4, is the input for building block 1, the first blue block with “Building block 1” written 
inside. The value of the input to the building block, x, is kept aside to use it as identity mapping. 

The right part of figure 4 shows an equal input x which is not identity mapping is passed through 

a series of convolution layers, “1 × 1 Conv, 20”, “3 × 3 Conv, 20”, and “1 × 1 Conv, 80”. The 

output from the series of convolutional layers, F(x) is the residual mapping. The final output from 
a building block, the original mapping, is represented as F(x) + x. There are a few variants of 

ResNet, such as ResNet18, ResNet34, ResNet50, ResNet101, and ResNet150. The name of the 

variant depends on the number of convolution and pooling layers in the model. The next 
subsection will provide information on the model proposed in this study, called ResNet_Var. 

 

3.2. ResNet_Var Architecture 
 

The model architecture, ResNet_Var, for this research is a variant of Residual Neural Network 

(ResNet) as shown in the Figure 5 that utilizes several techniques to improve performance and 
reduce overfitting. The model takes an input shape and number of classes as parameters and uses 

the Keras functional API to build the architecture. The shape of an image is given as height × 

width × colorchannels, and the number of classes is the number of classifications of the training 
dataset. To train the model for image classification, the image is passed as an input to the model, 

and that image passes through various layers before the image can be categorized into a class. 
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Figure 1. Architecture of the ResNet_Var proposed in this research. 

 
At the begging of the training process, the input image is passed to a rescaling layer, shown in 

figure 5, which scales the input data by dividing it by 255. This is a common preprocessing step 

in image classification tasks and helps ensure that the input data is in a consistent range. Then, as 
illustrated in figure 5, the image passes through a data augmentation layer, which applies a set of 

random transformations to the input data to increase the size of the training dataset. This is 

important for deep ResNets, as they are particularly susceptible to overfitting when trained on 
small datasets. The pipeline defined in this architecture includes three different types of data 

augmentation: random flipping, random rotation, and random zoom. The RandomFlip layer 

randomly flips the input images horizontally or vertically. The RandomRotation layer randomly 

rotates the images by a specified angle range, in this case between 0 and 1 radians. The Random-
Zoom layer randomly zooms into the images by a specified range, in this case between -0.1 and -

0.4. By applying these types of data augmentation, the model is trained on a wider range of data, 

making it more robust to different variations and improving its ability to generalize to new 
examples. This can lead to better performance on the test set and in real-world applications.  
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In figure 5, we can see that the model then uses a convolutional layer (“conv” in figure 5) which 
is shown as “3 × 3 conv, 32” where “3 × 3” is the kernel size and “32” is the filter size for the 

convolutional layer, which means 32 filters of size 3 × 3 are used in this layer. This layer uses the 

ReLU activation function, which is a common choice for Neural Networks because it helps 

improve performance and reduce the risk of overfitting. The activation function is applied every 
time the image is passed through a convolutional layer. As such, it is not shown separately in 

figure 5. The image is passed through the residual block three times, with a different filter size in 

each iteration. Inside the residual block, illustrated in figure 5 (b), the model uses two Separable 
Convolution Layers (“sepconv” in figure 5) of kernel size k=3, with ReLU activation function 

and a filter size of 64, 128, and 256 in each respective iteration. In figure 5, the first separable 

convolutional layer is shown as “3 × 3 sepconv, 64” where “3 × 3” is the kernel size and “64” is 
the filter size for the separable convolutional layer, this structure is followed throughout the 

model architecture. Separable Convolution Layers are a more efficient variant of traditional 

convolutional layers, which is useful when working with large datasets or running the model on 

resource-constrained devices. The model also uses batch normalization layers to normalize the 
activations of the previous layer, which helps to reduce the internal covariate shift, improving 

performance and reducing overfitting. After the Separable Convolution layers, the model applies 

a max pooling layer to reduce the spatial dimensions of the input data, which reduces the number 
of parameters in the model and helps control overfitting. In addition to the Separable Convolution 

layers, the model also uses a convolution layer of kernel size k=1 in the residual connection with 

ReLU activation. The model uses residual connections, as shown in figure 5, to add the output of 
the previous block to the output of the current block, preserving information from previous layers 

and improving performance. The filter size for both the separable convolution layers and the 

convolution layer remains the same during each iteration of the residual block, which is iterated 

three times with filter sizes of 64, 128, and 256.  
 

 
 

Figure 6. Structure of residual block used in ResNet_Var. 

 

Figure 6 shows the residual blocks used in ResNet_Var. The residual block in ResNet_Var uses 

separable convolutional layers instead of normal convolutional layers, and we can also see that 
the residual block of ResNet_Var uses a max pooling layer, which can not be seen in the residual 

block of simple ResNet architecture shown in the right part of figure 4. The skip connection in 

ResNet (right part of figure 4) simply skips a series of convolutional layers, whereas the skip 
connection in ResNet_Var uses a convolutional of 1×1 kernel. The convolutional layer is added 

in the skip connection so that no information is ignored during the training process. 
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After iterating through the residual block three times with filter sizes 64, 128, and 256 in each 
iteration, we can see, in figure 5, that the model uses a separable convolutional layer of filter size 

of 512 and kernel, k=3 with ReLU activation function. The model also uses global average 

pooling layers, which reduce the spatial dimensions of the input data to a single value. This is 

useful for image classification tasks, as it allows the model to focus on the global features of the 
input data. Finally, the model uses a dropout layer, which randomly sets some of the weights to 

zero during training. This helps to reduce overfitting by preventing the model from relying too 

heavily on any one neuron. The final output layer is a dense layer with a number of units equal to 
the number of classes and uses the sigmoid activation function. 

 

The model proposed in this study, ResNet_Var, uses separable convolution layers instead of 
regular convolution layers. Separable convolution layers [23] consist of a depthwise convolution 

layer followed by a pointwise convolution layer. This reduces the number of parameters in the 

model, which can make it easier and faster to train. Additionally, separable convolution layers 

can learn more diverse feature representations and can improve the generalization of the model. 
ResNet_Var has a more diverse block structure than ResNet34 [20], a variant of the ResNet. 

ResNet34 uses identical blocks throughout the network, while ResNet_Var uses blocks of 

varying filter sizes (64, 128, 256). This allows ResNet_Var to capture features at multiple scales, 
which can improve the accuracy of the model. ResNet_Var has a smaller number of layers than 

ResNet34. ResNet34 has 34 layers, while ResNet_Var has fewer layers. This can make 

ResNet_Var faster to train and can reduce the risk of overfitting. 
 

The ResNet_Var model proposed in this study has several advantages over the models discussed 

in the papers mentioned in the literature review section. First, it uses a ResNet architecture that 

has been shown to perform well in various computer vision tasks. Second, it uses separable 
convolutions to reduce the number of parameters, which helps to prevent overfitting and reduce 

computational costs. Third, it uses global average pooling, which reduces the number of 

parameters and helps to prevent overfitting. Finally, the ResNet_Var model is relatively simple 
and easy to implement, making it suitable for a wide range of galaxy morphology classification 

tasks.  

 

3.2.1. Separable Convolution Layer 
 

Separable convolution was introduced by Google researchers [22] to reduce the computational 

cost of performing convolutions in deep neural networks. A separable convolution layer in a 
neural network model is a type of convolution layer that performs convolution operations in a 

more efficient manner [23]. A regular convolution layer performs the convolution operation by 

applying a filter to each region of the input image, resulting in a large number of parameters that 
need to be learned. Separable convolutions, on the other hand, perform convolution operations in 

two separate stages. The first stage involves applying a depthwise convolution, which applies a 

separate filter to each channel of the input image. The second stage involves applying a pointwise 

convolution, which combines the outputs of the depthwise convolution into a single feature map 
(figure 7). 
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Figure 7. Depthwise convolution, uses 3 kernels to transform a 12 × 12 × 3 image to an 8 × 8 × 3 image 

(top), Pointwise convolution, transforms an image of 3 channels to an image of 1 channel (bottom) 

(Source: Wang et al. (2018) [23]). 

 

This separation of the convolution operation into two stages results in a significant reduction in 

the number of parameters that need to be learned, making separable convolutions more 

computationally efficient than regular convolutions. Additionally, separable convolutions have 
been shown to produce good results in a variety of image classification tasks, making them a 

popular choice for many neural network models. In summary, a separable convolution layer in a 

neural network model performs the convolution operation in a more efficient manner by 
separating the operation into two stages: a depthwise convolution and a pointwise convolution. 

This separation results in a reduction in the number of parameters that need to be learned, making 

separable convolutions more computationally efficient and a popular choice for many neural 
network models [23]. 

 

4. EXPERIMENTS AND RESULTS 
 

This research evaluated ResNet_Var in addition to four popular Convolutional Neural Network 
(CNN) models - VGG16, VGG19, ResNet50, and Inception - on Dataset D1 and Dataset D2 

(additional details on the datasets will be covered in section 4.1), which consist of five and seven 

distinct classes, respectively. The proposed model, ResNet_Var, was trained and compared with 
the popular CNN models mentioned above using commonly used metrics in computer vision and 

machine learning, including Precision, Recall, F1-score, and Accuracy. Additionally, this study 

compared ResNet_Var’s performance on Dataset D1 with the models proposed by Gupta et al. 

(2022) [13] and Zhang et al. (2022) [16], as they also used Dataset D1. Similarly, the 
performance of ResNet_Var on Dataset D2 was compared with the model proposed by Kalvankar 

et al. (2020) [14], as they used Dataset D2. 

 

4.1. Datasets 
 

Gathering and organizing the data is an essential part of training a neural network model. The raw 
data is collected from a competition launched on Kaggle in December 2013 [24]. It is a dataset, 

called Galaxy Zoo dataset, on Kaggle that provides information on various galaxies in the 

universe. The dataset contains information on the morphological properties of over 79,000 
galaxies from the Sloan Digital Sky Survey (SDSS) and is sourced from the Galaxy Zoo project. 

The Galaxy Zoo project is a citizen science project that involves the public in classifying the 

shapes of galaxies from digital images. 
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Two subsets of the Galaxy Zoo dataset are generated after clean galaxy images are selected from 
the Galaxy Zoo dataset, called dataset D1 and dataset D2. The selection criteria for dataset D1 is 

the same as the dataset used by Gupta et al. (2022) [13] in their study, and the selection of images 

for dataset D2 is the same as the dataset used by Kalvankar et al. (2020) [14] in their research. 

Dataset D1 consists of images that have been categorized into five distinct classes based on their 
visual features. The categories are as follows: completely round, in-between, cigar-shaped, edge-

on, and spiral, with the distribution of the images in each class as 8434, 8069, 578, 3903, and 

7806 images, respectively, for each category. This dataset D2 is composed of galaxy images that 
have been categorized into seven distinct groups, namely completely round, in-between, cigar-

shaped, lenticular, barred spiral, unbarred spiral, and irregular, with 8107, 7782, 578, 3780, 872, 

3307, and 1560 images, respectively, for each category.  
 

 
Figure 8. Galaxy image from each class in dataset D1, (from left to right) Cigar shaped, Completely round, 

Edge-on, In-between, Spiral. 

 

 
 

Figure 9. Galaxy image from each class in dataset D2, (from left to right) Completely round, In-between, 
Cigar shaped, Lenticular, Barred spiral, Unbarred spiral, Irregular. 

 

Figure 8 shows five sample images from dataset D1 belonging to five distinct classes in dataset 

D1. Figure 9 shows seven sample images from dataset D2 belonging to seven distinct classes in 
dataset D2.  

 
Table 1. Image distribution of Dataset D1 for training and testing. 

 

Class No. Galaxy Class Training Pool Testing Pool 

0 Completely round 7,025 781 

1 In-between 7,262 807 

2 Cigar shaped 520 58 

3 Edge-on 3,513 390 

4 Spiral 7,591 843 

 
Total 25,911 2,879 
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After generating datasets from the GZ dataset, we need to split the data into a 9:1 ratio for 
training and testing the model proposed in this study, with 90% of the dataset being used for 

training and 10% of the dataset being used for testing. This distribution applies to both datasets, 

Dataset D1 and Dataset D2. Tables 1 and 2 show the distribution of images for training and 

testing for both datasets, D1 and D2. 
 

Table 2. Images distribution of Dataset D2 for training and testing. 

 

Class No. Galaxy Class Training Pool Testing Pool 

0 Completely round 7,297 810 

1 In-between 7,004 778 

2 Cigar shaped 521 57 

3 Lenticular 3,402 378 

4 Barred spiral 745 82 

5 Unbarred Spiral 2,979 328 

6 Irregular 1,404 156 

 
Total 23,352 2,589 

 

After splitting datasets D1 and D2 for training and testing, the next step was training ResNet_Var 

model and other well-known CNN models like VGG16, VGG19, ResNet50, and Inception on 
both datasets. The evaluation of each model’s performance was done by generating a confusion 

matrix after testing. From the confusion matrix, we can calculate accuracy, precision, recall, and 

f1-score, which helps us in evaluating the performance of the model. Along with the results of 
popular CNN models on both the datasets, dataset D1 and dataset D2, we compared the results of 

ResNet_Var, when trained on dataset D1, with the results obtained from some of the previous 

works such as Gupta et al. (2022) [13], Zhang et al. (2022) [16], and Zhu et al. (2019) [19] 

(summarized in the Literature Review section), as they all use dataset D1. And we have 
compared the finding of Kalvankar et al. (2020) [14] with the results of ResNet_Var when the 

model is trained using Dataset D2, as they [14] used dataset D2 in their study. 

 

4.2. Less Number of Trainable Parameters 
 

Before moving to the training and testing part, let us have a brief discussion on how the number 
of trainable parameters play a role in the performance of a CNN model. 

 
Table 3. Trainable parameter of various CNN models as well as ResNet_Var. 

 

Models Trainable Parameters 

VGG16 14,717,253 

VGG19 20,026,949 

ResNet50 23,529,605 

Inception 21,778,597 

EfficientNetB5 [14] 28,351,029 

ResNet_Var 320,679 
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Table 3 shows the number of trainable parameters for various popular models used for image 
classification in general. When the CNN models mentioned in Table 3 are imported from Keras 

library [26], the number of trainable parameters remains the same. It can be observed that 

ResNet_Var, the model proposed in this study, has significantly fewer trainable parameters than 

the other models. Having fewer parameters is generally better to avoid overfitting, as the model 
becomes less complex and less prone to memorizing the training data. Please note that 

EfficientNetB5 is the model used by Kalvankar et al. (2020) [14], with over 28 million trainable 

parameters, which is computationally expensive, and it may lead to overfitting. The 
computational power required to train and run a CNN model is directly related to the number of 

trainable parameters in the model [25]. The more parameters a model has, the more computations 

it needs to perform during training and inference. So, in comparison to other CNN models, 
ResNet_Var requires much less computational power, and it has less chance of overfitting. 

 

4.3. Results of ResNet_Var Compared to Popular CNN Models using Dataset D1 
 

To begin with, we imported several well-known Neural Network models, including VGG16, 

VGG19, ResNet50, and Inception, from the Keras library [26]. The Keras library is a popular 
open-source deep learning framework that provides access to pre-trained models and other tools 

for training neural networks. These models have been shown to achieve state-of-the-art 

performance on various computer vision tasks, such as image classification and object detection 

(Chollet, 2018) [27]. These models, as well as ResNet_Var, were trained on Dataset D1, and 
subsequently, graphs were plotted to display the training accuracy and loss of each model. 

Additionally, confusion matrices were generated to evaluate the performance of the models on 

Dataset D1. The model proposed in this study, called ResNet_Var, is trained on a specific dataset 
called D1. First, the training accuracy and loss of the model were plotted to obtain insights into 

the model’s learning process, as shown in Figure 10.  

 

 
 

Figure 10. Training accuracy and loss, when using Dataset D1 and ResNet_Var. 

 

Additionally, confusion matrices were generated to further evaluate the performance of the model 

on D1, as depicted in Figure 11. These confusion matrices enabled the computation of key 
metrics such as accuracy, precision, recall, and F1 score, which are fundamental in assessing the 

model’s performance. 

 

The figure 12 summarizes the performance of popular CNN models on Dataset D1. The models 
compared include VGG16, VGG19, ResNet50, Inception, and ResNet_Var. The evaluation 

metrics used are accuracy, precision, recall, and F1 score. ResNet_Var is a proposed model that 
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outperforms all the other models, achieving an accuracy, precision, recall, and F1 score of 0.95 
each. 

 

 
 

Figure 11. Confusion matrix obtained using ResNet_Var as a result of testing data from dataset D1. 
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Figure 12. Performance of CNN models on Dataset D1 for each class. VGG16 (top left), VGG19 (top 

right), ResNet50 (middle left), Inception (middle right), ResNet_Var (bottom). 

 
Figure 12 shows the breakdown of precision, recall, and f1-score for each galaxy class of dataset 

D1 for VGG16, VGG19, ResNet50, Inception, and ResNet_Var. These are the results generated 

after training and testing these models on dataset D1. The table seen in each sub-figure of figure 

12 is known as a classification report, which is generated with the help of the Scikit-learn library 
[28]. In the Scikit-learn library, the weighted average is a way to compute the average of a metric 

across different classes in a classification task, considering the relative proportion of each class in 

the dataset. For example, when computing the accuracy of a model on a multi-class classification 
problem, we might have imbalanced classes where some classes have more samples than others. 

In this case, a simple average of the accuracy across all classes would not be appropriate, as it 

would give equal importance to each class regardless of its size. The weighted average takes into 

account the number of samples in each class and computes a weighted average of the metric, 
where the weight of each class is proportional to the number of samples in that class. 

Specifically, the weighted average of a metric is calculated as weighted_average = sum(weight_i 

∗ metric_i)/sum(weight_i) where metric i is the value of the metric for the i-th class, and weight_i 
is the weight assigned to the i-th class, which is equal to the number of samples in that class 

divided by the total number of samples. 
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4.4. Results of ResNet_Var Compared to Popular CNN Models Using Dataset D2 
 

Once we completed training and testing several Neural Network models on Dataset D1, we 

proceeded to import Convolutional Neural Network (CNN) models, namely VGG16, VGG19, 
ResNet50, and Inception, from the Keras library [26]. We then trained each of these models as 

well as ResNet_Var using Dataset D2, another dataset we wished to evaluate the performance of 

the models on. Figure 13 shows plots of training accuracy and training loss for the model 
ResNet_Var. Moreover, confusion matrices were generated to evaluate the performance of the 

models on Dataset D2, as shown in Figure 14. 

 

 
 

Figure 13. Training accuracy and loss obtained by ResNet_Var, when using Dataset D2. 

 

Figure 15 presents the performance of popular Convolutional Neural Network (CNN) models on 
Dataset D2 in terms of accuracy, precision, recall, and F1 score. The models included in the table 

are VGG16, VGG19, ResNet50, Inception, and ResNet_Var. Figure 15 shows the breakdown of 

precision, recall, and f1-score for each galaxy class of dataset D2 for VGG16, VGG19, 
ResNet50, Inception, and ResNet_Var. These results were generated after training and testing 

these models on dataset D2. The results shown in Figure 12, in section 4.3, and the results shown 

in Figure 15 indicate that the model proposed in this study, ResNet_Var, outperforms popular 

CNN models for both datasets D1 and D2 in terms of accuracy, precision, recall, and f1-score. 
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Figure 14. Confusion matrix obtained using ResNet_Var as a result of testing  

data from dataset D2. 

 

 
 

Figure 15. Performance of CNN models on Dataset D2 for each class. VGG16 (top left), VGG19 (top 

right), ResNet50 (middle left), Inception (middle right), ResNet_Var (bottom). 
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4.5. Results of ResNet_Var Compared to Previous Works 
 

ResNet_Var shows promising results when the model is compared against popular CNN models, 

such as VGG16, VGG19, ResNet50, and Inception. After reviewing the results of popular CNN 
models in the previous subsection, we will obtain the results provided by a few publications 

which use either dataset D1 or dataset D2. Table 4 shows the results achieved by a few prior 

studies which focused on galaxy classification on dataset D1. Some of the publications did not 
mention the results in all the matrices, such as precision, recall, and f1-score. Since all the 

publications did include the accuracy they obtained during the classification task, we are using 

accuracy as a metric of comparison.  

 
Table 4. Results obtained by prior studies which employed dataset D1 as well as results achieved by 

ResNet_Var on dataset D1. 

 

Studies Model Dataset Results 

Gupta et al. (2022) [13] NODE Dataset D1 91.62% accuracy 

Zhang et al. (2022) [16] Few-shot Learning Dataset D1 90.90% accuracy 

Zhu et al. (2019) [19] ResNet Dataset D1 93.12% accuracy 

This Study ResNet_Var Dataset D1 95.35% accuracy 

 

Table 4 shows that the model proposed in this study, ResNet_Var, outperforms the models 
proposed in prior studies on dataset D1. Now, table 5 shows that ResNet_Var produced 

comparable results to the model proposed in a study by Kalvankar et al. (2020) [14] on dataset 

D2. We need to keep in mind that the results in the last row of both Tables 4 and 5 are obtained 

by ResNet_Var, which has a significantly lower number of trainable parameters when compared 
to other models (mentioned earlier in section 4.2). 

 
Table 5. Results obtained by prior studies which employed dataset D2 as well as results achieved by 

ResNet_Var on dataset D2. 

 

Studies Model Dataset Results 

Kalvankar et al. (2020) [14] EfficientNetB5 Dataset D2 93.70% accuracy 

This Study ResNet_Var Dataset D2 93.54% accuracy 

 

In conclusion, ResNet_Var produced better results when compared against some popular CNN 
models as well as a few prior studies which aimed for the task of galaxy classification. It can be 

seen, in Table 3 (in section 4.2), that even though ResNet_Var has significantly fewer parameters 

than the other models, its performance is better than all other popular CNN models. This 
indicates that the ResNet_Var model has learned to represent the data efficiently despite having 

fewer parameters, making it a more efficient and effective model for this task. Therefore, it can 

be concluded that having fewer parameters is better to avoid overfitting, and the ResNet_Var 

model is an effective model that has learned to represent the data efficiently despite having 
significantly fewer parameters than the other models. 

 

5. CONCLUSIONS 
 
The proposed model in this study outperformed existing models, including VGG16, VGG19, 

ResNet, Inception, and EfficientNet, in classifying galaxies from datasets D1 and D2. The model 

achieved a test accuracy of 95.35% for five different classes of galaxy images in dataset D1 and 

93.54% for seven different classes of galaxy images in dataset D2. This study solves the problem 
of manually classifying galaxy images under the explosive growth of astronomical data. The 
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proposed model can accurately classify galaxies into different classes and significantly reduce the 
time and effort required for manual classification.  

 

In future work, the proposed model can be extended to classify a larger number of galaxies from 

different datasets. It can also be used to classify galaxies based on other parameters such as mass, 
size, and color. The model can also be improved by incorporating other machine learning 

techniques, such as transfer learning or ensemble learning. Further research can also focus on 

improving the interpretability of the model to gain insights into the classification process. 
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