
David C. Wyld et al. (Eds): ICDIPV, CBIoT, ICAIT, WIMO, NC, CRYPIS, ITCSE, NLCA, CAIML -2023

pp. 227-238, 2023. CS & IT - CSCP 2023 DOI: 10.5121/csit.2023.131317

A CONTENT-BASED INTELLIGENT CHROME

EXTENSION TO ASSIST READING TIME

MANAGEMENT USING ARTIFICIAL

INTELLIGENCE AND MACHINE LEARNING

Richard Zhang1, Ang Li2

1Oakton High School, 2900 Sutton Rd, Vienna, VA 22181

2Computer Science Department, California State Polytechnic University,

Pomona, CA 91768

ABSTRACT

Oftentimes we lose track of the time we take to skim over a website or article online or we are

simply curious about the time it might take for us to read over some text. We might also be

curious about our attention span based on the length or difficulty of an article. This paper

details the development process of an intelligent google chrome extension capable of gathering

data from specific articles and processing the data to estimate the amount of time needed to

read over an article based on the time it took to read similar or dissimilar articles [10]. This

application takes into account the length, readability, average word size, and comparisons to

other reading times in order to return the most accurate time predictions. The benefit of this

application is improved time management as an accurate prediction of time will be provided.

KEYWORDS

Chrome-extension, Time management, Machine learning, Web scraping

1. INTRODUCTION

Time management is a skill that is essential for success in both school and life [11]. It is a way of

organizing and planning one’s day so that tasks can be accomplished in a timely and effective

manner. By managing time wisely, an individual can achieve more in a shorter amount of time

and improve their overall productivity. Time management is important for a number of reasons.

First, it allows individuals to prioritize tasks, which can eliminate wasted time and energy [12].

This is especially important in school, where the learning process can be overwhelming. With

good time management, people can focus on their most important classes and assignments first,

without worrying about other tasks that can wait. Time management is also important for life

outside of school. It can help individuals to stay on top of important deadlines in their

professional and personal lives. Working adults can plan their days in a way that allows them to

finish their work on time and still have time for their family and other commitments. This type of

organization can also help to reduce stress, as there is less chance of missing something important

due to a lack of planning.

This web extension assists in time management in studies as well as in information browsing

boosting overall performance for reading tasks.

https://airccse.org/csit/V13N13.html
https://doi.org/10.5121/csit.2023.131317

228 Computer Science & Information Technology (CS & IT)

Some techniques and systems that have been implemented in existing websites to assist in time

management have been the addition of a word count/article length. However, a word count is

often an inaccurate measurement of the approximate time an article might take to read as there

are many more factors than just article length that need to be taken into consideration before

estimating reading time. For example, word difficulty, word length, level of reading, etc can all

greatly affect the amount of time it takes for someone to read a section of text. More advanced

sites provide an average reading time; however, the given prediction is often inaccurate for the

same reasons article length is inaccurate. Because people read at different speeds and levels, it is

inappropriate to generalize the time needed to read an article to all readers. No matter how

websites attempt to provide article information, they fail to tailor an accurate prediction based on

individuals and their individual abilities.

In this paper, we follow the same line of research by digging deeper into various factors that

affect reading time and how they are accounted for in this web extension [13]. The goal is to

provide the most accurate prediction of time required to read a specific web page given website

information and user’s performances on separate articles. The advantage of using a web

extension is that every user can have tailored predictions based on individual performance. The

second advantage of using a web extension is that it works across all websites for all users. The

method is inspired by the endless capabilities of different google chrome extensions and the

countless number of students who struggle with time management. Some features of this web

extension are length of the article, average size of words, readability score based on the Gunning

Fog Index formula (0.4 * ((average sentence length) + (percentage of Hard Words))), and an

accurate time prediction based on comparisons between the current article and times required to

read other articles using machine learning [1][2]. In addition, there is a timer feature that can save

reading times for more accurate time predictions in the future. Because of these features, users

will be much more informed on the approximate time it will take to read a specific article and

will therefore be able to manage their time better.

Two experiments were devised to evaluate the accuracy of this web extension for making

predictions on reading time. Firstly, multiple subjects trained the model by reading text off of ten

randomly selected articles. The data recorded was as follows: reading time, article word length,

article readability score, and average word length. Training the model usually requires hundreds

of sample data for each user; however, due to practical limitations, the models were trained with

fewer than twenty time entries per subject [1]. To easily compare the prediction results with the

actual read times, the data was split into two sets: a training and a test set. Secondly, multiple

subjects trained their models and read the same article to accurately test the accuracy for each

subject. The data and the samples recorded were the same as experiment one. It was found that

generally, the model does a better job at predicting times for users with more entries. In addition,

the model’s predictions are fairly accurate considering the limited entries.

The rest of this paper is structured as follows: Section 2 will detail the multiple challenges faced

in this study and how they were overcome; Section 3 will describe the methodology and solution

in greater detail; Section 4 details the experiments that were performed in this study, as well as a

thorough analysis of the results; Section 5 will list any related works that have also been done

regarding website reading time; and lastly, Section 6 will conclude the study and state any future

work that may be done.

Computer Science & Information Technology (CS & IT) 229

2. CHALLENGES

In order to build the project, a few challenges have been identified as follows.

2.1. Web Scraping and Machine Learning Aspect

The python portion, or the backend of the application, was responsible for “reading over” or

scraping the website the user was viewing to evaluate values such as article length, word size,

readability, etc. This used the public python library beautiful soup (bs4) and required analysis of

its documentation to accurately scrape each website for information. In addition, it required

multiple layers of preprocessing before it was able to be looked over by other programs and by

users. This preprocessing included grouping the data into a compact space or reformatting it so

that it could be sent over to the javascript portion, the frontend, of the application. The most

challenging portion, however, was the machine learning aspect which implemented sklearn, a

python library specializing in machine learning, to compile given datasets using classification to

provide an accurate prediction of the amount of time needed to read an article based on data on

other articles [3]. This portion required research on the method of machine learning best suited

towards time predictions. It also required research on the actual implementation of machine

learning in python.

2.2. Google Chrome Extension Development

Developing a Google chrome extension allows for developers to create web applications for all

users of Google chrome. This is extremely useful for connecting to all audiences and testing out

an application in the real world. Creating a chrome extension was challenging because it was

especially difficult to tailor my code to Google’s requirements. For example, there were many

aspects of my code that I had to revise or remove because of specific policies Google employs to

protect user privacy and prevent malware. In addition, to create a chrome extension you must be

familiar with their developer interface such as the new manifest v3 and the various functions it

offers. On top of that, you must be familiar with HTML and CSS as well as a deep understanding

of javascript to truly create an aesthetically pleasing and fully functional application. Lastly,

publishing the chrome extension requires developers to go through a process of justifying the

various permissions given to the web application in order to protect user privacy. For example,

the ActiveTab permission allows an extension to view the current tab a user is viewing. This may

lead to privacy concerns which are addressed in permission justifications.

2.3. Python Flask Server Connection With Chrome Extension

There were two components to this web application: the frontend, the Google chrome extension,

and the backend, the python flask server. Connecting the python flask server with the chrome

extension was particularly challenging because we had to familiarize ourselves with the various

functions of a flask server, avoid the CORS (Cross Origin Resource Sharing) policy violation,

and transfer data between the frontend and backend. Firstly, we walked through the python flask

server documentation and researched the various ways it was possible to transfer data between

javascript and python. Next, we implemented the most straightforward methods which led to the

CORS policy violation meaning we could not publish our application. This led to further research

on the methods to remove CORS from our program which limits some of its capabilities. Lastly,

we attempted to connect the python flask server with the javascript program by transferring data

in between the scripts. This step took trial and error but eventually we were able to successfully

store data such as time, article length, and readability score.

230 Computer Science & Information Technology (CS & IT)

3. SOLUTION

Figure 1. Overview of the solution

Above is a simple diagram to illustrate the connections between the various components of this

web application. The web browser, the frontend, displays the timer and a time prediction as well

as website information including average word size, number of worlds and readability score.

Behind the display is the HTML, CSS, and javascript which make up the chrome extension. The

chrome extension is created with manifest v3 (the code for which is below) and is capable of

tracking the open active web tab. The chrome extension relays data to the web server, the python

flask server, which sends data from the website to the chrome extension and stores data into a

database. The database and web server are both hosted on AWS, Amazon web service, which is

capable of running 24-7 waiting to respond to requests. This application is currently available on

the google extension store for free download or use. The following text will describe each

component in greater detail.

Figure 2. Screenshot of code 1

Computer Science & Information Technology (CS & IT) 231

Figure 3. Reading bot

The frontend’s display is created with HTML and CSS on a chrome extension popup which can

be opened by clicking on the icon near the Google chrome extensions list on the top right of

Google chrome. As shown above, the top portion of the popup allows users to input any

username to save their specific data. The left side of the popup is a timer that tracks the time

taken to read an article that will run with the popup opened or closed. Once finished, the user

may click “Save to DB” which means save to database, saving their time and giving them a new

time prediction. The right side of the popup displays the time prediction for a specific article, the

average word size, the number of words, and its readability score based on the Gunning Fog

formula.

Behind the display is the javascript which runs the timer component of the application. The timer

feature displays a start/stop button, a reset button, and a save button. The reset button simply sets

the time back to 0. The start/stop button interchange after every press starting and stopping the

time. Because the initial start time is stored locally in chrome, the timer continues even after you

close the popup. The save button, the most important component, takes the current time and

sends it over to the python flask server component. This is done through flask’s get and fetch

methods which allows data to be sent over two devices. The javascript also updates the

information display on the right side of the UI by providing the python server with website URL

and receiving website information and a time prediction. In addition, the javascript will send a

username to the python server so that each user’s data can be unique and can be saved under one

name. This ensures that each user’s time prediction can be tailored to their reading speed and

level.

Next, the web server and database components of this application are hosted on AWS (Amazon

web service) [14]. The web server is written in python and consists of three main components:

data storage, web scraping, and artificial intelligence. When the save to database button is pressed,

the frontend sends data to the web server which will store values in two json files. The first json

file is used to store username, websites, and website information so that common websites do not

have to be web scraped twice, saving time. The second json file is used to store website difficulty

and time taken so that the machine learning portion of the web server can be done more easily.

When the popup for the chrome extension is opened, the frontend will send a request to the web

server for website information and time prediction from the next two components of the python

script. The website information is gathered by the web scraping script made with the python

library Beautiful Soup. It takes a website URL provided by the frontend and separates the

headings from the main text. It then counts the words, averages each word’s size, calculates

readability using the Gunning Fog formula, and packages it so that it can be sent back to the

frontend.

232 Computer Science & Information Technology (CS & IT)

Figure 4. Screenshot of code 2

Scikit-learn (also known as sklearn) is a Python library for machine learning that provides a

variety of tools for tasks such as classification, regression, clustering, and dimensionality

reduction [3]. It is built on top of NumPy and Pandas and is designed to be easy to use and

efficient for large datasets [4][5].

Some of the key features of scikit-learn include:

● A consistent interface for all models, making it easy to switch between different models

and compare their performance

● A wide range of algorithms for classification, regression, clustering, and other tasks

● Support for both supervised and unsupervised learning

● Tools for evaluating the performance of models and selecting the best one

● Functions for preprocessing and transforming data, such as scaling and normalization.

This web application uses classification; a type of supervised learning in which a model is trained

to predict a discrete label (e.g. "spam" or "not spam") for a given input. In scikit-learn,

classification is implemented using a number of different classifiers, each with its own set of

parameters and characteristics [15]. Some common classifiers in scikit-learn include logistic

regression, decision trees, K-nearest neighbors, and support vector machines. This web extension

adopted and implemented an SVM algorithm, which takes a set of labeled training data as input

and outputs a classifier that can be used to predict the label of new, unseen data.

The key idea behind SVMs is to find the hyperplane in a high-dimensional feature space that

maximally separates the different classes. This hyperplane is known as the maximum margin

hyperplane, and the goal is to find the hyperplane that has the maximum distance from the nearest

training data points of any class (these points are known as the support vectors).

To classify a new data point, the SVM simply assigns it to the class based on which side of the

hyperplane the point falls on. If the point falls on one side of the hyperplane, it is assigned to one

class, and if it falls on the other side, it is assigned to the other class.

SVMs have a number of advantages, including the ability to handle high-dimensional data and

the ability to handle data that is not linearly separable by using the kernel trick. They are also

relatively memory efficient, as they only require storing the support vectors, rather than the entire

training set.

However, SVMs can be sensitive to the choice of hyperparameters and can be computationally

intensive to train, especially for large datasets. They may also perform poorly on highly

imbalanced datasets, where one class is much more prevalent than the other. The implementation

can be seen below.

Computer Science & Information Technology (CS & IT) 233

Figure 5. Screenshot of code 3

4. EXPERIMENT

4.1. Experiment 1

In order to effectively achieve the goal of improved time management, an accurate prediction

must be generated by this model. In this experiment, the primary objective is to evaluate the

effectiveness of this model. If the model can reasonably estimate read time given a limited

number of entries, then this model is effective at helping with time management.

This experiment involved four subjects. These subjects were asked to train their personal models

using the web extension and record its effectiveness on five different test articles of their

preference. The model was trained with ten to twenty of their personal entries on articles of their

choice with the only requirement being that they varied in length.

Figure 6. Prediction and actual of subject 1

Figure 7. Prediction and actual of subject 2

234 Computer Science & Information Technology (CS & IT)

Figure 8. Prediction and actual of subject 3

Figure 9. Prediction and actual of subject 4

Figure 10. Result of experiment 1

As shown above, the model performed well considering the number of entries each subject

inputted. The accuracy percentage for each subject was 92%, 82%, 91%, and 91% respectively

resulting in an 89% percent accuracy in general. Subjects 1, 3, and 4 had predictions matching

closely with actual time whereas there is a slight variance in subject 2’s predictions. The

variance observed in subject 2 was likely due to the subject choosing to train the model with

articles of small differences in length resulting in slightly skewed results when testing the model

with large differences in lengths. Subjects 1, 3, and 4 had trained their models with entries

ranging from one minute to six minutes, which means their models were better trained to adapt to

large changes in length of articles giving them a more accurate prediction. It can be concluded

that the model is effective for predicting read time given a limited number of entries and can be

beneficial to time management.

Computer Science & Information Technology (CS & IT) 235

4.2. Experiment 2

The next experiment was conducted to evaluate the model’s effectiveness on a specific article

dissimilar to the articles subjects used to train their personal models. The purpose of this

experiment is to expose the model to different kinds of articles and evaluate the model’s

performance on a specific article across different individual users.

The article chosen had the following statistics that were taken into consideration when training

the model: 5.21 average word size, 805 words, 8.02 readability score. Each subject had their

models trained with personal data ranging from ten to twenty entries per subject

Figure 11. Prediction and actual of subjects in experiment 1

Figure 12. Result of experiment 2

As shown in the chart, the model was able to very accurately predict read time for a specific

article given training data from different kinds of articles proving that the model is effective

across every article. The accuracy percent was 91%, 94%, and 88% respectively resulting in a

total of 91% accuracy in general.. All predictions, despite a small training set, resulted in

differences between prediction and actual read times of no more than thirty seconds across all

subjects. The reason for the larger than usual difference is likely due to the large difference in the

type of article the subjects read. As shown in experiment one, variation was limited which was

likely due to the fact that the subjects chose articles that were more similar to the articles they

chose to train the model with. Overall, this experiment has proven that this model is effective

across all types of articles and is capable of making accurate predictions despite change in article

type.

236 Computer Science & Information Technology (CS & IT)

These experiment results prove that this model is capable of both providing an accurate

prediction for each user’s articles as well as providing an accurate prediction for all kinds of

articles. This addresses the challenge of time management by mitigating the risk of faulty time

predictions. In experiment one, we have proved the accuracy of this model given a limited

number of article entries [6]. We did this by having four subjects choose their own articles to use

to train the model and test its effectiveness. This resulted in one significant finding: in order for

the model to become more effective, it must be trained using articles of word size and readability.

In experiment two, we have proved that the model is accurate for articles dissimilar with articles

used to train the model further proving the effectiveness of using average word size, word count,

and readability score in our model. We did this by having three subjects train their model with

articles of their preference and having all subjects read the same article to compare predictions.

Since all predictions were within thirty seconds of actual read time, it was concluded that the

model is effective for all kinds of articles. Altogether, these experiments have shown that this

web extension is effective for improving time management.

5. RELATED WORK

Irene Fernandez Monsalve, Stefan L. Frank and Gabriella Vigliocco introduced the surprisal

theory into read time implementing machine learning in order to demonstrate accuracy [7]. They

used lexicalized and unlexicalized models which both produced results hinting at a direct

correlation between surprisal level and reading time. They concluded that surprisal had a

significant effect on reading time. We used machine learning to attempt to guess rather than solve

for reading time so in the short term, surprisal theory calculations will likely be more accurate

and in the long term, machine learning will likely become more accurate.

Rui Liu, Huilin Peng, Yong Chen, and Dell Zhang presented a simultaneous news

recommendation paired with a prediction time deep neural network capable of recommending

news articles as well as providing a read prediction time [8]. They trained a neural network with

large existing data sets and juxtaposed their HyperNews script with similar competitors

concluding that their model outperformed general purpose models in news recommendation after

the time prediction implementation. Because the model we implement concerns smaller datasets,

our SVM (support vector machine) model will likely outperform HyperNews’s neural network

with respect to time prediction. Furthermore, our model is user specific and not generalized

meaning on average, time prediction for each person should be fairly accurate. However,

HyperNews’s model is far stronger at predicting a general time for a collective group of people.

Srini Narayanan and Daniel Jurafsky implemented a Bayesian model, a system based on the

Bayesian interpretation of probability, in order to accurately predict reading time expanding upon

Narayanan and Jurafsky’s 1988 hypothesis that human language comprehension can be modeled

by treating human comprehenders as Bayesian reasoners [9]. Their fully trained model

demonstrated that a Bayesian model of human sentence processing is capable of modeling

reading time data from a syntactic disambiguation task. In general, Bayesian models are more

commonly used for tasks that require a high degree of uncertainty or complexity, while SVMs,

the system our model implements, are more commonly used for tasks that require a high degree

of accuracy, such as text classification. Because of this, it is likely that an SVM model will

outperform a Bayesian model when it comes to accurate reading time predictions.

Computer Science & Information Technology (CS & IT) 237

6. CONCLUSIONS

Time management is important because it helps users make the most of their time and achieve

users’ goals. Our application addresses this problem by providing users with an accurate read

time prediction based on article information and their historical read times. In order to achieve

the best time management, an accurate prediction must be provided which is why in our

experiments, two steps were taken to prove that our prediction model is accurate. The first step

was to prove that the model is accurate for each individual user. We did this by letting subjects

train and test the model with their personal data to evaluate the accuracy of the model. The

second step was to prove that the model was effective for various kinds of articles outside of the

ones used to train the model. We did this by letting subjects train their model with articles of their

choice and having each subject test their model with the same article. The overall accuracy for

both experiments was 90% indicating that this model performed well despite being given a small

dataset and is therefore able to help with time management on a day to day basis.

In terms of accuracy, the biggest limitation to this application is its applicability in the early

stages. It will usually take numerous inputs from the user in order to produce an accurate

outcome. In addition, the model cannot make predictions after only a couple of inputs as the

model would be too inaccurate. In terms of practicability, if the user shortens their reading speed

naturally it might be difficult to produce accurate predictions based on old inputs; however since

users can simply create another profile, this will not be a large problem. Lastly, it might become

tedious to record every article users read using a start, stop, and save button; however it is

necessary due to the fact that users may not be reading at all times and there is simply no other

way to record article read time.

To address some of the limitations previously mentioned, the application may be adjusted to

provide a generic time prediction during model training. The application may also be improved

by switching to a stronger server where web scraping and time prediction can be done quicker.

Finally, the UI could be changed so that the information displayed is customizable to the specific

user.

REFERENCES

[1] Christanti, Viny, Dali S. Naga, and Cheria Benedicta. "Measuring Reading Difficulty Using Lexile

Framework And Gunning Fog Index." Jurnal Teknik dan Ilmu Komputer (2017).

[2] Hearst, Marti A., et al. "Support vector machines." IEEE Intelligent Systems and their applications

13.4 (1998): 18-28.

[3] Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." the Journal of machine Learning

research 12 (2011): 2825-2830.

[4] Van Der Walt, Stefan, S. Chris Colbert, and Gael Varoquaux. "The NumPy array: a structure for

efficient numerical computation." Computing in science & engineering 13.2 (2011): 22-30.

[5] McKinney, Wes. "pandas: a foundational Python library for data analysis and statistics." Python for

high performance and scientific computing 14.9 (2011): 1-9.

[6] van de Schoot, Rens, et al. "Bayesian statistics and modelling." Nature Reviews Methods Primers 1.1

(2021): 1-26.

[7] Monsalve, Irene Fernandez, Stefan L. Frank, and Gabriella Vigliocco. "Lexical surprisal as a general

predictor of reading time." Proceedings of the 13th Conference of the European Chapter of the

Association for Computational Linguistics. 2012.

[8] Liu, Rui, et al. "HyperNews: Simultaneous News Recommendation and Active-Time Prediction via a

Double-Task Deep Neural Network." IJCAI. 2020.

[9] Narayanan, Srini, and Daniel Jurafsky. "A Bayesian model predicts human parse preference and

reading times in sentence processing." Advances in neural information processing systems 14 (2001).

238 Computer Science & Information Technology (CS & IT)

[10] Carlini, Nicholas, Adrienne Porter Felt, and David Wagner. "An evaluation of the google chrome

extension security architecture." 21st USENIX Security Symposium (USENIX Security 12). 2012.

[11] Macan, Therese Hoff. "Time management: Test of a process model." Journal of applied psychology

79.3 (1994): 381.

[12] Jackson, Valerie P. "Time management: a realistic approach." Journal of the American College of

Radiology 6.6 (2009): 434-436.

[13] Graesser, Arthur C., Nicholas L. Hoffman, and Leslie F. Clark. "Structural components of reading

time." Journal of Verbal Learning and Verbal Behavior 19.2 (1980): 135-151.

[14] Mathew, Sajee, and J. Varia. "Overview of amazon web services." Amazon Whitepapers 105 (2014):

1-22.

[15] Bisong, Ekaba. "Introduction to Scikit-learn." Building machine learning and deep learning models

on Google cloud platform. Apress, Berkeley, CA, 2019. 215-229.

© 2023 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

	Abstract
	Oftentimes we lose track of the time we take to skim over a website or article online or we are simply curious about the time it might take for us to read over some text. We might also be curious about our attention span based on the length or difficu...
	Keywords

