Drift Detection in Models Applied to the
Recognition of Intentions in Short Sentences
Using Convolutional Neural Networks for
Classification

Jairo R. Junior and Leandro A Silva

Graduate Program in Electrical and Computer Engineering.
Presbyterian Mackenzie University
Sao Paulo, SP — Brazil

Abstract. Significant advancements have been achieved in natural language processing models for text
classification with the emergence of pre-trained transformers and deep learning. Despite promising results,
deploying these models in production environments still faces challenges. Classification models are contin-
uously evolving, adapting to new data and predictions. However, changes in data distribution over time
can lead to a decline in performance, indicating that the model is outdated. This article aims to analyze
the lifecycle of a natural language processing model by employing multivariate statistical methods capa-
ble of detecting model drift over time. These methods can be integrated into the training and workflow
management of machine learning models. Preliminary results show that the statistical method Mazimum
Mean Discrepancy performs better in detecting drift in models trained with data from multiple domains
through high-dimensional vector spaces after being subjected to an untrained auto-encoder. The classifier
model achieved an accuracy rate of 93% in predicting intentions, using accuracy as the evaluation metric.

Keywords: Intent recognition, Drift detection, Data drift, MLOps (Machine Learning Operations)

1 Introduction

The research on Natural Language Processing (NLP) originated in the 1950s, emerging
as an intersection between artificial intelligence and linguistics [1]. This landscape has
provided avenues for investigations, where algorithms are employed to analyze, compre-
hend, and extract information from human language, enabling the creation of machine
learning models. These models have demonstrated remarkable abilities, such as automatic
summarization, text translation, entity recognition, sentiment analysis, speech, and intent
recognition [1][2].

Intent recognition, also known as natural language understanding, is a subfield of NLP
aimed at comprehending and recognizing the contextual meanings of human communica-
tion, using examples of sentences and intentions classified by machine learning models [2].
In the context of NLP, intent recognition aims to classify user statements into pre-defined
intention categories, according to specific domains [2][3], becoming an essential technique
for building intelligent dialogue systems [4]. The process of intent recognition faces several
challenges, such as the lack of corpora with annotated intentions [5], the detection of mul-
tiple intentions in a single expression, and the irregularity of human expressions, which
characterizes issues of data drift [6][7].

The concept of data drift refers to the variation in the data used to train and validate
a model compared to the data encountered at the time of its implementation, causing
changes in data distribution. This discrepancy can lead to model degradation, resulting in
drift over time [8].

David C. Wyld et . (Eds): Al&FL, SCM, NLPTT, DSCC -2023
pp. 23-36, 2023. CS & IT - CSCP 2023 DOI: 10.5121/csit.2023.131404

https://doi.org/10.5121/csit.2023.131404
https://airccse.org/csit/V13N14.html

24 Computer Science & Information Technology (CS & IT)

Despite significant advances in drift detection for machine learning models on struc-
tured data, few methodologies have addressed drift detection in unstructured data, such as
text and images. Data drift can occur in both the characteristics of sentences (virtual drift)
and the distributions of intentions (real drift) [9]. Virtual drift may be caused by models
trained with insufficient data for all instances or by encountering new words, grammatical
constructions, and changes in writing style, leading to an incorrect prior probability as-
sumption. On the other hand, real drift can be caused by seasonal events of misinformation
[10], sexism [11], clickbait [12], among others.

Efforts are made by machine learning engineers to use machine learning model per-
formance metrics to monitor drift and consequently the model’s performance after it has
been deployed and made available for use in real-world applications. However, this task
faces a significant challenge related to the availability of correct classes during predictions.
While the classes are present in the training data, they may not always be available after
the model is deployed [8]. This gap between the known classes during training and the
unknown classes during the operational phase can impact the model’s performance and
accuracy, necessitating approaches to deal with these data drift cases.

The challenges faced when dealing with drift in an intent recognition model can vary de-
pending on the nature, extent, and types of deviations present. In certain cases, managing
drift is possible through model retraining; however, in more complex scenarios, develop-
ing a new model with different approaches and parameters may be necessary to achieve
the desired performance. Therefore, it becomes crucial to employ processes that enable
the identification of drift, defining acceptable thresholds to configure proactive alerts for
taking action. With this purpose, the objective of this work is to compare drift detectors
originally designed for low-dimensional vector spaces and apply them to detect drift in
texts, using advanced techniques of natural language processing and dimensionality re-
duction [13]. This approach has the potential to provide higher accuracy and effectiveness
in detecting and handling drift in intent recognition models, contributing to the robustness
and reliability of these systems in real-world applications.

In addition to the introduction that presents the context and objective of the work,
the article is organized in: Section 2, a review of the works related to the theme of this
article is presented; Section 3 brings specific information about the data used in the study
and we present the methodology adopted for the analysis of the collected data; the results
found are detailed in Section 4; finally, in Section 5, it is presented the conclusion and
future work.

2 Related Works

To automate drif detection and notify machine learning engineers about the need to update
the model,automatic drift detectors have been proposed [14][15][16]. However, state-of-
the-art drift detectors face limitations when applied to more advanced natural language
models, as they assume that the input data is in manually-designed, low-dimensional
vector spaces. On the other hand, modern applications employ complex language models
such as transformers and high-dimensional word-embedding layers. Our research builds
upon the studies of [9], which introduced data drift and concepts, including patterns of
change over time, which are part of our drift detection experiments, such as the injection
of out-of-context words. Furthermore, [17] conducted an analysis using unstructured data
with methods like Kolmogorov-Smirnov (KS) and Least-Squares Density Difference, which
also integrate into our comparative experiments between detection methods.

Although there are works that compare drift detectors [18][17], our proposed study aims
to perform a comprehensive comparison of these detectors on complex natural language

Computer Science & Information Technology (CS & IT) 25

processing models, particularly in the context of intent recognition in texts. Additionally,
we investigate the creation of a model using convolutional neural networks for natural
language processing and the applicability of the detector on imbalanced data, which was
introduced into the sentences used to train the model, simulating a real-world usage sce-
nario.

Compared to the existing general approach, our study fills the gap by using unstruc-
tured data from multiple domains through high-dimensional vector spaces after being
subjected to an untrained autoencoder. This promising approach enables a more compre-
hensive and improved analysis of data drift in natural language models, providing a better
understanding of the challenges faced in this context and enhancing the application of
drift detectors in practical scenarios.

3 Preliminaries

3.1 Datasets and Embedding Models

The process of creating the database used in this work was carried out by accessing services
provided by the social media platform Twitter, using a developer platform that allows real-
time access to messages, known as tweets, posted by its users, for research and analysis
purposes.

The data was extracted from February 3, 2023, to March 2, 2023, using intent-related
filters for five categories: music, politics, mowvies, sports, and technology. The collection
was conducted on tweets in the English language, resulting in a total of 67,000 collected
tweets. The distribution of this data is shown in Figure 1.

count

music politic movie technology sport
intent

Fig. 1. Number of sentences extracted by intention

Data from social media present peculiarities that are not found in other unstructured
text databases. Some of these peculiarities include the presence of special characters, icons,
external links, line breaks, and specific terms used on the platform, such as the word ”RT,”
which indicates a reply to another published tweet, as illustrated in Table 1. These unique
characteristics demand a careful approach in processing and analyzing the data collected
from social media to ensure the accuracy and effectiveness of the applied methods.

26 Computer Science & Information Technology (CS & IT)

tweet intent
RT @coot271: She’s in your home.\n\nFULL UNCUT, HD movie; .
thanks to @MethadosA for being the inspiration movie
@gothamfreak_ yea it was wild, shes amazing in the movie too. movie
Interesting results that happened at the box o... movie
RT @MarvelStudios: Check out these photos from the red carpet .
at the Australian movie
RT @nicktiffany95: Take a listen and learn why #TheBatman .
found itself in my Top 10 Films of 2022! movie

Table 1. Example of sentences extracted before the cleaning step

With the established database, the process of data preparation for model training
began, aiming to use the pre-trained transformer BERT as the input layer for the deep
neural network convolutional (CNN).

The BERT (Bidirectional Encoder Representations from Transformers) model is a
machine learning approach based on deep neural networks known as Transformers. Unlike
traditional natural language processing (NLP) models that read text in a single direction,
BERT is bidirectional, meaning that it considers the context of each word from the words
that precede and follow it [19].

The training process of BERT involves a prior pre-training step, where the model
is exposed to large amounts of unlabeled text to learn the contextual representation of
words in a general task of predicting masked words. Subsequently, the model is fine-tuned
in a specific task, known as fine-tuning, where it is provided with a labeled dataset for a
particular task, such as intent classification in an intelligent dialogue.

The combination of BERT with a Convolutional Neural Network (CNN) involves using
the output of BERT, which is a contextual representation of words in a text, as input for
the CNN. The CNN is responsible for processing and extracting relevant features from the
word representations to perform classification [20].

The CNN is a neural network architecture particularly suitable for feature extraction
in high-dimensional data, such as text. It uses convolutional filters to scan through the text
representation and to identify important patterns and features. These filters can detect
different characteristics, such as keywords or syntactic patterns, which can be useful for
the classification task.

In the context of text classification, the CNN uses convolutional filters to detect pat-
terns and features in the word representations provided by BERT. Then, these features
are passed through additional layers of the CNN to learn more complex relationships be-
tween words. Finally, the output of the CNN is used to perform classification into desired
categories or intentions.

This approach of combining BERT with a CNN is powerful because BERT provides rich
contextual representations of words, capturing important contextual information, while
the CNN extracts relevant features from these representations for the classification task.
This combination results in a highly effective text classification model capable of handling
nuances and complexities present in natural language data [21].

To ensure the coherence of the model input with the proposed architecture [21], the
following steps were performed, namely:

— Adapting the vector space created through word tokenization, limiting the number of
tokens per sentence between 50 and 150, based on the average analysis of sentence
lengths, as illustrated in the figure 2;

Computer Science & Information Technology (CS & IT) 27

— Tokenizing each word of the tweet sentences, generating token sequences for each sen-
tence;

— Converting the token sequences into corresponding numeric IDs for each token, using
the vocabulary of the BERT model;

— Padding the sequences to ensure they all have the same length;

250 7

200

150 4
100 4
50
0-

music politic movie technology sport
intent

count

Fig. 2. Number of tokens by sentences and intent

The tokenization step involves breaking down the text into small token units using a
vocabulary of words, facilitating the correct separation of sentence tokens. For the tok-
enization process, the WordPiece model extracted from the pre-trained BERT model with
12 layers and 768 dimensions was used to generate the tokenizer. Before tokenization, some
tasks were performed, such as normalizing uppercase letters to lowercase and including
the tokens ”[CLS]”, used as a token to indicate the start of a new sentence, and the token
"[SEP]”, which represents the end of a sentence and the start of a new one, both necessary
as input for the classification model.

In addition to tokenization and transforming words into their respective IDs, the classi-
fier model requires a fixed sentence length as input, due to the varying number of tokens in
each sentence. To meet this requirement, the model uses the token ”[PAD]” to distinguish
and handle the convolution process in the neural network.

3.2 Intention recognition

With the aim of recognizing and classifying each tweet sentence into an intent, we adopted
a deep learning model called Convolutional Neural Network (CNN) [21], as illustrated in
Figure 3.

In the CNN architecture, the first layer of the neural network was built using the
pre-trained BERT model. This layer is responsible for transforming each input generated
in the pre-processing step into a matrix representation of word embeddings, allowing cal-
culations in the convolutional layers. In this process, each sentence is converted into a
matrix representation, where the number of rows in the matrix corresponds to the num-
ber of words in the sentence. This word embeddings matrix enables efficient information
processing in the convolutional neural network, contributing to the accurate recognition
of intents in tweet sentences.

at position ¢ of the vector. The normalization term is given by >

28 Computer Science & Information Technology (CS & IT)

+ activation function

convolution 1-max softmax function
} A poolin regularization
/ pooling v } intnisiayer
\ 3 region sizes: (2,3,4) 2 feature — \ 4
Sentence matrix 2 filters for each region maps for 6 univariate D dasses
7%5 size each vectars |:|
totally 6 filters region size concatenated

together to form a
single feature
vector

like

this
movie

very
much

Fig. 3. Inspired architecture for text classification using convolutional neural networks [21]

In addition to the embedding layer, the model was composed of other features, namely:

Convolution layers: The model consists of 3 one-dimensional convolution layers with
2, 3, and 4 kernels, respectively. Each convolution layer was trained with 100 filters
using the ReLLU activation function defined by equation 1

1, ifz>0

0, c.c.

ReLU(x) = max{0,z} ReLU'(z) = { (1)
Max pooling layers: One-dimensional layer responsible for retrieving the value of
each filter generated by the convolution layers.

Dense layer: Layer composed of 256 neurons that receive the concatenated results
from the max-pooling layer and apply the ReLU activation function. 1;

Dropout layer: Layer to prevent overfitting;

Dense layer result: Output layer of the model consisting of 5 neurons that use the
softmax activation function 2 returning a probability for each of the classes;

eyi
n
Z]’:leyi

In Equation 2, y is the vector subjected to the softmax function, and e¥ is the element

Yi N .
%=1 » which ensures

(2)

softmax(y); =

Computer Science & Information Technology (CS & IT) 29

a probability distribution that satisfies 0 > softmaz(y); < 1. The number of classes, or
possible outputs, is given by n.

After the cleaning and preprocessing step, the database was left with approximately
48,000 records. For the training phase, the database was shuffled and divided into batches
of 32 records each, which were fed to the model for 10 epochs.

3.3 Evaluation of the classification model

From the database formed after the cleaning and preprocessing process, 80% of the data
was allocated for model training, and 20% for validation. Categorical cross-entropy was
employed as the loss function, expressed by Equation 3

N
1
Categoric crossentropy(w) = N Z yilog(9:) + (1 — yi)log(1 — ;) (3)
i=1

where ; is the i-th scalar value of the network output, y; is the desired output, and N
is the number of network outputs.

The Adam optimizer [22] was used to update the weight parameters of the convolu-
tional network, with the aim of minimizing the loss function with a learning rate of 0.0001.
Accuracy, calculated through Equation 4, was the chosen metric to evaluate the neural
network during the training and validation steps. Using the sentences classified as true
positive (TP), false positive (FP), true negative (TN), and false negative (FN) from a
confusion matrix.

TP+TN

Acc = 4
“TTPYTN+FP+FN (4)

3.4 Drift detectors

For the detection of classifier model drift, three detectors were used, including one univari-
ate statistical detector:: Kolmogorov-Smirnov (KS) and two multivariate statistical detec-
tors: Mazimum Mean Discrepancy (MMD) and Least-Squares Density Difference (LSDD),
The goal was to identify deviations in the relationship between the data used in training
and the data generated by subsequent predictions after the model was trained, as follows:

Kolmogorov-Smirnov (KS): Statistical test of agreement between two probability
distributions using the maximum absolute difference between the distributions.

Mazximum Mean Discrepancy (MDD): Kernel-based static independence test for
multivariate 2-sample tests through the equation

MMD(F,p.q) = ||np — pqll (5)

MDD is a distance-based measure between two distributions p and ¢ based on the
mean embeddings p, — g in a reproducing Kernel Hilbert space space F.
Last-squares density difference detector (LSDD): Method for multivariate
2-sample tests. The least-squares density difference between two distributions is found
through p and ¢, where X is defined by the equation

LSDD(p,) = /X (p(2) — q(x))* da. (6)

Given two samples, it is possible to calculate an estimate of the least-squares density
between the two underlying distributions and use them as a test statistic to determine
whether a sample belongs or not to a reference set.

30 Computer Science & Information Technology (CS & IT)

4 Our proposal

4.1 Comparison of drift detectors

For the comparison step, the following processes were performed: splitting the training
data for reference and validation of the detector, tokenization of sentences, generating
word embeddings of the generated tokens, reducing the dimension of each embedding
through an autoencoder, calibrating each chosen detection method in the work, and finally,
a hypothesis test to conclude the effectiveness of the detector, as illustrated in Figure 4.

Two-Sample Test(s) Combined Test Statistic &
Shift Detection

=N

Fig. 4. Illustration of the process to detect data set change. Source and destination data are fed through
a dimensionality reduction process and subsequently analyzed through statistical hypothesis testing [16]

X source

Dimensionality
Reduction

X target

The data used for the calibration of the detectors were the same as those used for
training the classifier model, which served as reference data for the detection methods. The
reference data is divided into 10 batches, each containing 1,000 sentences. The first batch is
used for the hypothesis test (HO) with the aim of evaluating whether the detector generates
false positives when a new accuracy, not different from the average of the reference samples,
is characterized as a deviation, potentially indicating drift in the already deployed model.
The other batches were divided and organized according to Table 2.

Batch|Reference data|Unbalanced data
1 1000 tweets 0 tweets

2 900 tweets 100 tweets
3 800 tweets 200 tweets
4 700 tweets 300 tweets
5 600 tweets 400 tweets
6 500 tweets 500 tweets
7 400 tweets 600 tweets
8 300 tweets 700 tweets
9 200 tweets 800 tweets
10 100 tweets 900 tweets

Table 2. Data separation for detector evaluation

To evaluate the sensitivity and specificity of the detectors, batches containing controlled
drift data were created by including out-of-context words in each sentence, with the aim of
unbalancing each batch, as presented in Table 2. For this task, the 10 most used words in
each intention were analyzed, as shown in Figure 5. These words were separated and later
injected into sentences different from those that characterize their domain. For example,
for sentences related to music, words more common in the intentions corpus of mouwies,
politics, sports, and technology were injected. This approach allowed the creation of batches
of data with controlled drift, for the evaluation of the detectors under different conditions
of imbalance and deviation.

Computer Science & Information Technology (CS & IT) 31

snow

S O o : m horror
e R v e & 1 2 £ dont
show + = S : muchy =

- 5

need i

officialn. night 1M :E,' o

Fig. 5. Word cloud generated with frequent words for music and film intents

The purpose of creating this subset is to assess the speed and reliability with which
the drift detectors detect the gradually introduced drift. The injection of out-of-context
words was carried out following some criteria, as described below:

— In sentences with more than 10 tokens and less than 20 tokens, two words corresponding
to other intentions were imputed, randomly inserted between the middle and the end
of the sentence;

— In sentences with more than 20 tokens, three words corresponding to other intentions
were imputed, randomly inserted at the beginning, middle, and end of the sentence;

— In cases where the sentence had a predefined intention, the token corresponding to
that intention was removed.

Both detectors were initialized using the hypothesis test measure, p-value, with a
threshold value of 0.05, defined as the threshold for the existence or absence of devia-
tion or difference between the samples. Table 3 assists in this interpretation.

P-value Interpretation

P<0,01 very strong evidence against HO
0,01<= P <0,05|moderate evidence against HO
0,05<= P <0,10|suggestive evidence against HO
0,10<=P little or no real evidence against HO
Table 3. Reasonable interpretation of p-values in statistical hypothesis tests [23]

4.2 Dimensionality reduction

Detecting drift in raw or tokenized texts is not effective as they do not adequately represent
the semantics of the input [17]. Similar to the process of training the classifier model, the
data was preprocessed to extract contextual embeddings of the sentences, using the pre-
trained BERT model as the tokenizer and word embedding.

The embedding space of the BERT model used for sentence embedding consists of a
768-dimensional vector. Due to the size of this space, calibrating the model may require
high computational cost to perform statistical calculations and may not capture token
similarities effectively after the embedding process. To handle high-dimensional data, it
is common to reduce dimensionality before performing hypothesis tests [16]. Therefore, a
drift detector can be applied to the lower-dimensional data, capturing token similarities
and dissimilarities more effectively among the analyzed samples. The dimensionality reduc-
tion process was performed using an Untrained Autoencoder (UAE), where the data was

32 Computer Science & Information Technology (CS & IT)

processed and transformed into a lower-dimensional space, resulting in 32 dimensions per
embedded sentence, as opposed to the initial 768 dimensions generated by the pre-trained
BERT model. This approach made the detection process more efficient and effective, with
minimal loss of relevant information for drift analysis in the data.

4.3 Experimental Results

Table 4 presents the results obtained from different CNN model trainings, varying the
number of epochs.

Epoch|1 2 3 4 5 6 7 8 9 10

Loss |0.1925|0.1848|0.1845|0.1972|0.2136|0.2558|0.2352(0.2359|0.2448|0.2530

Acc 0.9367]0.9383|0.9384(0.9385(0.9398]0.9381{0.9397|0.9379(0.9397|0.9391
Table 4. Model performance by training epoch

The obtained results were experimentally validated, and it was decided to extrapolate
the values up to 10 epochs of training, at which point a reduction in the model’s per-
formance was observed. After these 10 epochs, the model achieved an accuracy of 93%.
Figure 6 illustrates the optimization process (a) and the performance (b) of the CNN over
the 10 epochs of training.

Results of categorical cross entropy (a)

0.25 4

0.20 4

0.15 7

w

0.10

0.05 7 —— Training loss

—— Validation loss

2 4 [} 8 10
Accuracy training and validation (b)

—— Training acc
0.99 - —— validation acc

0.98 -
0.97

0.96 -

Accuracy

0.95 4

0.94 - -

2 4 6 8 10
Epochs

Fig. 6. Performance result of the classifier model

After submitting new data to the trained model, containing imbalanced data, all pre-
dictions were grouped into batches and submitted to the created detectors. Overall, all

Computer Science & Information Technology (CS & IT) 33

detection methods were able to distinguish the drift in all batches. Through Figure 7, it
can be observed that as the batches were submitted with an increase in incorrectly clas-
sified data, as illustrated in Figure 8, the standard deviation between the predicted data
and the reference data, used to calibrate the detector, increased appropriately.

— MMD
LSDD
— KS

e ———

batch 1 batch 2 batch 3 batch 4 batch 5 batch & batch 7 batch 8 batch 9 batch 10
batchs

Fig. 7. Statistical p-value analysis based on batches created and methods used for drift detection

1000 —— correct predictions
incorrect predictions

800

predictions
2
s

g

\

200

batch 1 batch 2 batch 3 batch 4 batch 5 batch 6 batch 7 batch 8 batch 9 batch 10
batchs

Fig. 8. Result of data classification when submitted to batches with unbalanced data

Based on the configurations of the generated batches for analysis, we evaluated the
confidence of the drift detectors by increasing the incorrect predictions, simulating a real-
world scenario for the intention movie. An ideal drift detector produces a low p-value when
no drift is identified and a low standard deviation with few or no incorrect predictions.

When analyzing the standard deviation, as shown in Figure 9, and the statistical mea-
sure p-value, illustrated in Figure 7, between the imbalanced data and the reference data,
we observed that the Kolmogorov-Smirnov (KS) method performed the worst compared to
the other methods. On the other hand, the Mazimum Mean Discrepancy (MMD) method
performed the best among the methods used. The MMD method showed good performance
in detecting drift in the batch of data separated for the hypothesis test, and its perfor-
mance remained consistent as the batches were subjected to an increase in imbalanced
data.

34 Computer Science & Information Technology (CS & IT)

— Ks
0.0175 LSDD

— MMD
00150
00125

0.0100

distance

00075

00050
00025 —————/

0.0000

batch 1 batch 2 batch 3 batch 4 batch 5 batch 6 batch 7 batch 8 batch 9 batch 10
batchs

Fig. 9. Standard deviation based on batches created between reference data and unbalanced data

5 Conclusion

In conclusion, intelligent dialogues, addressed in this study through intention recognition
methods, have proven to be an increasingly utilized technology in the industry to solve a
variety of problems. However, ensuring continuous performance and effectiveness of these
models over time has become crucial for their practical application.

The multivariate methods Least-Squares Density Difference (LSDD) and Maximum
Mean Discrepancy (MMD) demonstrated the ability to identify degradation in intention
recognition models after their deployment, as evidenced by the standard deviation and
p-value hypothesis tests between the reference data and the unbalanced data. This early
drift detection capability is essential for alerting machine learning engineers to the need
for model updates and ensuring their continuous effectiveness.

The convolutional neural network adopted as the deep learning model demonstrated
a performance of 93% in predicting intentions, measured by accuracy as an evaluation
metric. This proves the effectiveness of this approach for intention recognition in texts,
contributing to a more enhanced experience in intelligent dialogues.

Based on the obtained results, it becomes evident the importance of adopting effec-
tive methods for detecting drift in intention recognition models, especially in real-world
environments where data may undergo significant changes over time. The application of
LSDD and MMD methods has shown to be highly promising in maintaining reliability
and adequate performance of models in production.

In summary, this study contributed to enhancing the understanding of drift detection in
intention recognition models, presenting efficient approaches for monitoring and managing
these models in practical scenarios. It is expected that these findings will further drive the
utilization of intelligent dialogues in various fields, providing more robust and effective
solutions for the industry and society as a whole.

In future work, we would like to further explore the effect of different dimensionality
reduction techniques on drift detectors, incorporating new approaches in generating text
embeddings, for instance, based on diverse models such as LLAMA and GPT.

References

1. Nadkarni, Prakash M and Ohno-Machado, Lucila and Chapman, Wendy W. Natural language pro-
cessing: an introduction. Journal of the American Medical Informatics Association, vol. 18, 2011, pp.
544-551.

2. Jiao Liu and Yanling Li and Min Lin. Review of Intent Detection Methods in the Human-Machine
Dialogue System. Journal of Physics: Conference Series, vol. 1267, 2019, pp. 012-059.

Computer Science & Information Technology (CS & IT) 35

3. Ravuri, Suman and Stoicke, Andreas. A comparative study of neural network models for lexical intent
classification. 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU),
2015, pp. 368-374.

4. Mctear, Michael and Seminck, Olga. Conversational AI: Dialogue Systems, Conversational Agents, and
Chatbots by Michael McTear. Massachusetts Institute of Technology Press (MIT Press), vol. 13, 2022,
pp. 1-4.

5. Stefan Larson and Anish Mahendran and Joseph J. Peper and Christopher Clarke and Andrew Lee and
Parker Hill and Jonathan K. Kummerfeld and Kevin Leach and Michael A. Laurenzano and Lingjia
Tang and Jason Mars. An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction.
CoRR, vol. abs/1909.02027, 2019.

6. Xie, Wenxiu and Gao, Dongfa and Ding, Ruoyao and Hao, Tianyong”. A Feature-Enriched Method for
User Intent Classification by Leveraging Semantic Tag Expansion. Springer International Publishing,
2018, pp. 224-234

7. Fernandez-Martinez, Fernando and Griol, David and Callejas, Zoraida and Luna Jiménez, Cristina. An
approach to intent detection and classification based on attentive recurrent neural networks, 2021.

8. Patrick Lindstrom and Sarah Jane Delany and Brian Mac Namee. Handling Concept Drift in a Text
Data Stream Constrained by High Labelling Cost. AAAI Press, 2010.

9. Gama, Jodo and Zliobaitundefined, Indrundefined and Bifet, Albert and Pechenizkiy, Mykola and
Bouchachia, Abdelhamid. A Survey on Concept Drift Adaptation. Association for Computing Ma-
chinery, 2014, vol. 46,pp. 224-234

10. Kumar, Srijan and West, Robert and Leskovec, Jure. Disinformation on the Web: Impact, Charac-
teristics, and Detection of Wikipedia Hoaxes. International World Wide Web Conferences Steering
Committee, 2016, pp. 591-602.

11. Ghosh Chowdhury, Arijit and Sawhney, Ramit and Shah, Rajiv Ratn and Mahata, Debanjan.YouToo?
Detection of Personal Recollections of Sexual Harassment on Social Media. Association for Computa-
tional Linguistics, 2019, pp. 2527-2537.

12. Chen, Yimin and Conroy, Niall J. and Rubin, Victoria L. Misleading Online Content: Recognizing
Clickbait as ”False News”. Association for Computing Machinery, 2015, pp. 15-19.

13. Chen, Yimin and Conroy, Niall J. and Rubin, Victoria L. Misleading Online Content: Recognizing
Clickbait as ”False News”. Association for Computing Machinery, 2015, pp. 15-19.

14. Arthur Gretton and Karsten M. Borgwardt and Malte J. Rasch and Bernhard Schoélkopf and Alexander
Smola. A Kernel Two-Sample Test. Journal of Machine Learning Research, 2012, vol. 13,pp. 723-773.

15. David Lopez-Paz and Maxime Oquab. Revisiting Classifier Two-Sample Tests, 2017.

16. Rabanser, Stephan and Giinnemann, Stephan and Lipton, Zachary. Failing Loudly: An Empirical
Study of Methods for Detecting Dataset Shift. Inc Curran Associates, vol. 32, 2019.

17. Feldhans, Robert and Wilke, Adrian and Heindorf, Stefan and Shaker, Mohammad Hossein and Ham-
mer, Barbara and Ngonga Ngomo, Axel-Cyrille and Hiillermeier, Eyke. Drift Detection in Text Data
with Document Embeddings. Springer-Verlag, 2021, pp. 107-118.

18. Lucas Baier and Niklas Kiihl and Gerhard Satzger. How to Cope with Change? - Preserving Validity
of Predictive Services over Time, 2019

19. Jacob Devlin and Ming-Wei Chang and Kenton Lee and Kristina N. Toutanova. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding, 2018.

20. Yoon Kim. Convolutional Neural Networks for Sentence Classification. CoRR, 2014

21. Ye Zhang and Byron C. Wallace. A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional
Neural Networks for Sentence Classification. CoRR, vol. abs/1510.03820, 2015.

22. Kingma, Diederik P. and Ba, Jimmy. Adam: A Method for Stochastic Optimization, 2014.

23. H. Arsham. Kuiper’s P-value as a measuring tool and decision procedure for the goodness-of-fit test.
Journal of Applied Statistics, vol. 15, 1988, pp. 131-135.

Authors

Jairo R Junior Graduated in Information Systems from Mackenzie University, he pur-
sued post-graduation in Data Science at Mackenzie University, and currently, he is enrolled
in the Master’s program in Electrical Engineering, also at Mackenzie University. Presently,

36 Computer Science & Information Technology (CS & IT)

he work as a software engineer consultant at Telefonica Brasil. As a research focus, he has
mainly been involved in areas related to Natural Language Processing, including Artificial
Neural Networks, Machine Learning, Natural Language Processing, and Data Mining.

Leandro A Silva Graduated in Computer Engineering, he holds a Master’s and Ph.D.
from the Polytechnic School of the University of Sao Paulo (USP). Currently, he is a
Professor at the Faculty of Computing and Informatics (FCI) and a faculty member of
the Academic Stricto-Sensu Graduate Program in Electrical Engineering and Computing
(PPGEEC) and the Professional Stricto-Sensu Graduate Program in Applied Comput-
ing (PPGCA). Additionally, he serves as the Coordinator of Research Funding (CFP)
at the Office of Research and Postgraduate Studies (PRPG) of Mackenzie Presbyterian
University (UPM). As research focus, he has primarily worked in areas related to Data
Science, including Artificial Neural Networks, Machine Learning, Data Mining, Big Data,
and Pattern Recognition.

© 2023 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

