
David C. Wyld et al. (Eds): MLNLP, NWCOM, DTMN, ASOFT, SIGPRO, AIFZ, CSITY, CLSB - 2023

pp. 23-38, 2023. CS & IT - CSCP 2023 DOI: 10.5121/csit.2023.131603

ENHANCING AUTONLP WITH FINE-TUNED

BERTMODELS: AN EVALUATION OF TEXT

REPRESENTATION METHODS
FOR AUTOPYTORCH

Parisa Safikhani and David Broneske

Department of Research Infrastructure and Methods, DZHW,

 Hannover, Germany

ABSTRACT

Recent advancements in Automated Machine Learning (AutoML) have led to the emergence of

Automated Natural Language Processing (AutoNLP), a subfield focused on automating NLP

model development. Existing NLP toolkits provide various tools and modules but lack a free

AutoNLP version. To this end, architecting the design decisions and tuning knobs of AutoNLP is

still essential for enhancing performance in various industries and applications. Therefore,

analyzing how different text representation methods affect the performance of AutoML systems

is an essential starting point for investigating AutoNLP. In this paper, we present a

comprehensive study on the performance of AutoPyTorch, an open-source AutoML framework

with various text representation methods for binary text classification tasks. The novelty of our

research lies in investigating the impact of different text representation methods on

AutoPyTorch’s performance, which is an essential step toward transforming AutoPyTorch to

also support AutoNLP tasks. We conduct experiments on five diverse datasets to evaluate the

performance of both contextual and noncontextual text representation methods, including one-

hot encoding, BERT (base uncased), fine-tuned BERT, LSA, and a method with no explicit text

representation. Our results reveal that, depending on the tasks, different text representation

methods may be the most suitable for extracting features to build a model with AutoPyTorch.

Furthermore, the results indicate that fine-tuned BERT models consistently outperform other

text representation methods across all tasks. However, during the fine-tuning process, the fine-

tuned model had the advantage of benefiting from labels. Hence, these findings support the

notion that integrating fine-tuned models or a model fine-tuned on open source large dataset,

including all binary text classification tasks as text representation methods in AutoPyTorch, is a

reasonable step toward developing AutoPyTorch for NLP tasks.

KEYWORDS

Automated Machine Learning (AutoML), Automated Natural Language Processing (AutoNLP),

Contextual- and non-contextual text representation, AutoPyTorch, Binary Text Classification,

One-hot encoding, BERT, Fine-tuned BERT, Latent Semantic Analysis (LSA).

1. INTRODUCTION

AutoML, or automated machine learning, is a rapidly growing field that focuses on the

automation of the machine learning process [1]. AutoML selects the appropriate model and

optimizes the hyperparameters without human intervention. Hence, AutoML tools can be a

valuable resource for data scientists, allowing them to save time and streamline their workflow.

These tools can also help democratize access to machine learning by enabling individuals with

https://airccse.org/csit/V13N16.html
https://doi.org/10.5121/csit.2023.131603

24 Computer Science & Information Technology (CS & IT)

less technical expertise to build and deploy models [2]. One key aspect of this process is the

representation of input data. Specifically, when dealing with text data, there is a choice between

contextual and non-contextual representations, both of which involve embedding the text into a

vector space, albeit with or without embedded context. Therefore, the choice of representation

can significantly influence the performance of AutoML in binary text classification tasks. In the

context of AutoML for binary text classification, the choice of representation can also have a

significant impact on the performance and scalability of the resulting models. For example,

contextual representations may require more computational resources and memory, which can

make the AutoML process slower and less scalable. On the other hand, non-contextual

representations may not capture critical context-dependent features, limiting the resulting models’

performance.

In this paper, we will explore the influence of choosing a contextual or non-contextual text

representation on the performance of AutoML in binary text classification on various data sets.

We employed a wide range of text representation methods, such as BERT (base uncased), fine-

tuned BERT, Latent Semantic Analysis (LSA), and one-hot encoding, as well as a method

without any explicit text representation, to investigate their impact on the performance of

AutoML systems in binary text classification tasks. We evaluated the performance of

AutoPyTorch using these text representation methods and two evaluation metrics: the area under

the precision-recall curve (AUPRC) and the micro-averaged F1 score. To the best of our

knowledge, this study represents the first investigation of the use of AutoPyTorch for the natural

language processing task of binary text classification and analysis of the impact of text

representation methods on AutoML performance.

The remainder is structured as follows. In Section 2, we discuss the critical studies on the effects

of text representation techniques on language and deep learning models. Additionally, we provide

an overview of the latest advancements in AutoML models and AutoNLP toolkits. In Section 3,

we formally define our text representation methods and the AutoML model that we use for the

binary classification task. We also introduce our data and the metrics for analyzing our

experiment. In Section 4, we present our results and discuss the evaluations. Finally, Section 5

concludes the work and presents opportunities for further research in AutoNLP.

2. LITERATURE REVIEW

AutoNLP, or Automated Natural Language Processing, is a new subfield of AutoML that

automates NLP model development’s tedious and time-consuming aspects [3]. AutoTrain 1 ,

developed by Hugging Face, streamlines the process of training and implementing NLP models

by providing features such as pre-processing, training, and evaluation for various tasks.

AutoNLPaims to simplify the process for professionals and companies to create and experiment

with state-of-the-art NLP and deep learning models. One of the key features of AutoTrain is the

ability to fine-tune models hosted on the Hugging Face Hub. This platform currently has over

14,000 models available, which can be filtered based on specific tasks, languages, or data sets.

The Hugging Face datasets library also comprises over 100 public data sets. Some popular

models available through Hugging Face include BERT base, RoBERTa, DistilBERT, Sentence

Transformers, GPT-2, T5-base, and ALBERT. Additionally, the framework also provides several

models for summarization tasks, such as Distilbart-xsum, Bart-large-cnn, Pegasus-large, and Mt5.

The other current AutoNLP toolkit, Metatext2, facilitates the training and deployment of state-of-

the-art machine learning models for various NLP tasks, such as text classification and entity

1 https:https://huggingface.co/autotrain
2 https://metatext.io/

 3 https://docs.neuralspace.ai/

Computer Science & Information Technology (CS & IT) 25

recognition. These toolkits also offer multi-language support and secure data handling in addition

to NLP model training and deployment. Furthermore, the AutoNLP algorithm from Neural

Space3further streamlines the NLP model development process by automatically determining the

optimal pipeline, features, and model for a given data set and scaling requirements. This

eliminates the need for manual selection and testing of different methods, thus, saving time and

effort in the development process. Additionally, the algorithm can be applied to different

languages, ensuring optimal results across various language contexts. The entire AutoNLP

toolkits are paid versions. Investigating AutoNLP is crucial because it can significantly enhance

the performance and precision of tasks related to natural language processing in various industries

and applications. Therefore, analyzing how different text representation methods affect the

performance of AutoML systems could be a likely starting point for developing open-access

AutoNLP.

Previous research has investigated the effectiveness of different text representation methods in

NLP tasks. [4] developed a method for evaluating and comparing sentence representations from

different dimensions, focusing on the impact of dimensionality on the resulting representations.

They found that sentence representations based on averaged Word2vec embeddings were very

effective in encoding information about sentence length, while LSTM auto-encoders were

particularly good at capturing word order and word content. Shen et al. [5] conduct a comparative

study between Simple Word-Embedding based Models (SWEMs) and word-embedding-based

RNN/CNN models in order to evaluate the added value of sophisticated compositional functions

in text sequence modeling. The study found that SWEMs, which consist of parameter-free

pooling operations, exhibit comparable or even superior performance in the majority of cases

considered. [6] compares the effectiveness of two types of text representations, word-based and

context-based when used as features for training a statistical classifier. The study tests three

classification problems using different representation models such as ELMo, Universal Sentence

Encoder, Neural-Net Language Model, and FLAIR. The results indicate that context-based

representations perform better than word-based representations like Word2Vec, GloVe, and the

two adapted using the MESH ontology. [7] compares the language understanding abilities of two

models, BERT and Word2vec. The results showed that while BERT can account for the context

of words within a sentence, its overall understanding of sentences is similar to that of Word2vec,

which does not consider the context. Additionally, they found that BERT can encode information

about sentences even within individual word embeddings and, in some cases, performs better than

when using full-sentence embeddings.

Building upon the related work in the field, which has explored the effectiveness of different text

representation methods in NLP tasks, our research aims to provide a deeper understanding of how

these methods can be employed within the context of AutoPyTorch. Specifically, we seek to

identify which types of text representation methods should be integrated into the AutoPyTorch

framework to advance its development for AutoNLP tasks. By evaluating the performance of

various contextual and non-contextual text representation methods in AutoPyTorch, we can gain

valuable insights that will contribute to the development of more accurate and robust

classification models created by AutoPyTorch, for the advancement of future AutoNLP

frameworks. This investigation will not only help optimize AutoPyTorch for natural language

processing tasks, but also provide a foundation for further research in the emerging field of

AutoNLP.

26 Computer Science & Information Technology (CS & IT)

3. METHODOLOGY

In this section, we describe the state of the art in text representation methods and introduce our

used text representation methods and tokenization. After a brief introduction to AutoPytorch, we

present our used data sets and the evaluation metric in detail.

The methodology and experiments in this work are visually summarized in Figure 1, providing a

clear and concise overview of the research process.

Fig.1. Visual summary of the methodology and experiments.

3.1. Text Representation

Text representation is a crucial step in natural language processing tasks. One common method

for text representation is through word embeddings, which map words to a highdimensional

vector space. There are two main types of word embeddings:

1. Non-contextual word embeddings are a way of representing words in a distributed

representation space by assigning each word in a vocabulary a vector in a lookup table.

These vectors are trained on task data alongside other model parameters. However, non-

contextual word embeddings have two main limitations: they are fixed and do not change

based on the context in which a word appears, and they cannot represent words that are not

in the vocabulary [8].

2. Contextual word embeddings are a method for representing words in a distributed

representation space that takes into account the context in which a word appears. This is

achieved by using a neural encoder that maps a sequence of words to a sequence of

contextual embeddings. These embeddings are dynamic, meaning that they change based

on the context in which a word appears, allowing them to capture the polysemous and

context-dependent nature of words. This is in contrast to non-contextual word embeddings,

which are fixed and do not change based on context [9].

3.2. One-Hot Encoding

For machine learning algorithms to process textual data, the data must first be converted into a

numeric format. One standard method for doing this is called ”one-hot encoding,” where each

word in the text is represented by a sparse vector with only one element set to 1 and all other

elements set to 0 [10]. It creates a binary vector representation of the categorical features by

encoding each category as a unique value in the vector [1]. This encoding method works well for

texts with a finite set of vocabulary words. Still, it can result in very sparse high-dimensional

feature vectors for texts when the majority are unique words. Despite this limitation, one-hot

Computer Science & Information Technology (CS & IT) 27

encoding is popular due to its simplicity and effectiveness for neural networks with discrete

activation functions. The resulting one-hot vector for a word can be thought of as an 1xN matrix

with all 0s except for a single 1 indicating the presence of that word. This method allows for a

more expressive representation of categorical data in text [11][12].

One-hot encoding is a non-contextual process that only considers the categories of a categorical

feature and does not consider the relationships between different categories or their ordering. It

treats each category as a separate and distinct entity and encodes it as a binary vector without

considering any other information about the data. In one-hot encoding, each token is represented

by a unique vector that only contains binary values indicating the presence or absence of the

token in the text. This means that tokens with similar meanings or contexts are not grouped

together, and the representation of each token is not influenced by the context in which it appears

[11].

3.3. Keras Tokenization

The tokenization function in Keras4converts text into a sequence of tokens, which are later

transformed into numerical indices. It does not take context into account and is not a

representation method itself, but it can be used in conjunction with contextual word embeddings.

There are multiple tokenization granularities available in Keras, including word-level, character-

level, and subword-level tokenization. Word-level tokenization, which breaks down text into

individual words, is the most basic form of tokenization, but it can be less effective than more

advanced methods at handling rare words and preserving sentence meaning [13].

3.4. BERT’s Text Representation

BERT’s contextual representation of text is built upon the transformer architecture, which utilizes

the self-attention mechanism. This mechanism empowers the model to assign different weights to

words within the input text, considering their contextual connections with other words [14]. The

pre-training phase of BERT consists of two unsupervised learning tasks: masked language

modeling (MLM) and next sentence prediction (NSP), which aid the model in acquiring rich

contextual representations of text that can later be fine-tuned for specific NLP tasks [15]. The

original proposed BERT utilizes WordPiece embeddings with a 30,000-token vocabulary and

differentiates sentence pairs using a unique token ([SEP]). Additionally, a learned embedding is

added to each token to indicate the sentence it belongs to. The aggregate sequence representation

for classification tasks is obtained from the final hidden state corresponding to the unique

classification token ([CLS]). The input representation for each token is created by summing the

respective token, segment, and position embeddings [15]. Although during the pre-training stage,

BERT learns contextualized representations for tokens from a large text corpus using masked

language modeling (MLM) and next sentence prediction (NSP) tasks but the [CLS] token is not

explicitly trained at this stage. The [CLS] token acquires its importance during the finetuning

phase when BERT is adapted for a specific downstream task, such as sentiment analysis or text

classification. In this phase, the [CLS] token’s representation is employed as an aggregate

representation of the entire input sequence, and the model is trained to generate meaningful

sentence-level predictions using this representation [15].

4 https://keras.io/

28 Computer Science & Information Technology (CS & IT)

3.5. Latent Semantic Analysis

Latent Semantic Analysis (LSA) is a method of analyzing the meaning of words based on the way

they are used in a large body of text [16]. It is a technique used in natural language processing to

represent texts in a vector-based form to capture their semantic meaning [17]. The theory is that

the context in which a word is used determines its meaning, and this can be represented by

statistical computations on a corpus of text. LSA is an accurate reflection of human knowledge in

various ways, such as matching human scores on vocabulary tests, mimicking human judgments

of word categories, and simulating human patterns of the word association. It can also accurately

predict passage coherence and the learn ability of passages for individual students and estimate

the quality and quantity of knowledge contained in an essay [18].

LSA computes text similarity and selects the most efficient and relevant words. Formerly known

as Latent Semantic Indexing (LSI), LSA was improved for information retrieval tasks, where it

selects a few documents closely related to a query from an extensive collection. LSA employs

different approaches, such as keyword matching, weighted keyword matching, and vector

representation, based on the frequency of word occurrences in documents. To rearrange data,

LSA uses Singular Value Decomposition (SVD). LSA breaks down documents into topics and

words to capture their underlying meaning [17].

In our work, we utilized LSA as a contextual text representation method to provide input to

AutoPyTorch, using text that had already been contextualized.

3.6. AutoPyTorch and its Data Pre-Processing

Auto-PyTorch is a framework for automating the deep learning process. It optimizes the neural

network architecture and the training hyperparameters using a multi-fidelity optimization

technique. This framework is built using the PyTorch library and can handle all aspects of the

deep learning process, including data preprocessing, network architecture selection, training

techniques, and regularization methods. Additionally, it includes features such as warm starting

optimization by sampling configurations from pre-defined portfolios and automated ensemble

selection [1].

AutoPyTorch’s input embedding system prepares the input data for model training. The system

takes training features X train and training targets Y train as inputs, and optionally, holdout

features X test and holdout targets Y test. For the X train features, the input embedding system

performs type and dimensionality checks to ensure that the data is in a supported format, such as

a list, NumPy array, Pandas DataFrame or Series, or SciPy sparse matrix. The system applies an

ordinal encoder to convert the columns into numeric values if the data contains categorical,

boolean, or string columns. For the Y train targets, the system checks for dimensionality and

missing values. If the task is a classification task, an encoder is applied to encode the target

classes. The scikit-learn library’s one-hot encoder is utilized as a text encoder for processing text

data[1]. Essentially, AutoPyTorch chooses between One-Hot Encoder and No-Encoder based

on the get hyperparameter search space() method of the EncoderChoice class. If the dataset

contains only numerical columns, then it defaults to No-Encoder. Otherwise, it creates a

configuration space containing both One-Hot Encoder and No-Encoder and selects the default

encoder based on the default argument passed to get hyperparameter search space(). If no

default is provided, it tries to select One-Hot Encoder; if that is not supported, it selects No-

Encoder. However, this behavior can be modified by passing an include or exclude list to get

hyperparametersearchspace(), which will restrict the available choices for the encoder [1].

Computer Science & Information Technology (CS & IT) 29

3.7. Data

In this study, we employed binary classification text datasets, each containing up to 8,000 entries.

Some datasets originally had more entries, but we limited them to 8,000 to ensure a fair

comparison across all experiments. We have randomly reduced them while keeping the

proportions of positive and negative labels. One of the reasons for this restriction is that using

datasets with a higher number of entries leads to memory storage issues. In the following section,

we provide an overview of the datasets used in our work, along with brief descriptions.

1. The Colbert5data-set is a collection of text data that was used to investigate the use of

BERT (Bidirectional Encoder Representations from Transformers) sentence embeddings

for humor detection. The dataset is balanced [19].

2. The Corpus of Linguistic Acceptability (CoLA) 6 is a dataset used to evaluate the

performance of NLP models in identifying grammatical errors in texts. It consists of a

collection of English sentences labeled as either ”acceptable” or ”unacceptable” based on

their grammatical quality. It is used as a benchmark for evaluating the performance of NLP

models on a binary classification task. CoLA is a not-balanced small data set with 8,605

sentences [20].

3. The IMDB7Movie Reviews data set is a collection of movie reviews from the Internet

Movie Database (IMDB) website, which has been widely used for sentiment analysis and

natural language processing tasks. The data set comprises 25,000 movie reviews from

IMDB, labeled according to their sentiment. For example, reviews with a rating of less than

five are labeled as ”negative,” while those with a rating of 7 or higher are labeled as

”positive.” Reviews with scores between 5 and 6 are not included in the dataset. The data

set was created specifically for sentiment analysis. No movie has more than 30 reviews in

the data set.

4. The Sarcasm Detection8dataset is a collection of news headlines labeled as either sarcastic

or not sarcastic. The data is balanced.

5. The finished sentences9 data set can be used to build a model that can identify if a sentence

is complete or incomplete. This is a useful task in natural language processing, as it allows

for the detection of sentences that are left unfinished or open to interpretation. This

capability can improve the clarity of text data in various applications. The data set is not

balanced and was obtained from various news headlines. The process of assigning labels to

the data was done manually and via one task software.

We chose these datasets from different domains having different characteristics because this

variety should help in evaluating the robustness and generalization capabilities of the model.

3.8. Evaluation Metric

5https://www.kaggle.com/datasets/deepcontractor/200k-short-texts-for-humor detection

6https://www.kaggle.com/datasets/krazy47/cola-the-corpus-of-linguistic-acceptability

7https://www.kaggle.com/datasets/mwallerphunware/imbd-movie-reviews-for-binary-sentimentanalysis

8https://www.kaggle.com/datasets/theynalzada/news-headlines-for-sarcasm-detection 9

https://www.kaggle.com/datasets/johoetter/is-this-sentence-completed

30 Computer Science & Information Technology (CS & IT)

AutoML systems should be evaluated with the same level of care as ML algorithms. One critical

practice for evaluating AutoML, which we considered in this work, is separating the datasets used

for system development from those used for evaluation [21]. In this paper, we evaluate the

performance of our model using two commonly used metrics in the field of machine learning,

particularly in classification tasks: the area under the precision-recall curve (AUPRC) and the

micro-averaged F1 score.

1. The area under the precision-recall curve (AUPRC) or the area under the receiver

operating characteristic curve (AUROC) are metrics specifically designed to evaluate the

performance of a model on imbalanced data. These metrics are less sensitive to changes in

precision and recall and are, therefore, more robust in imbalanced data. The AUPRC is calculated

by summing the individual precision-recall pairs that make up the curve, and then multiplying by

the width of each pair. The formula for calculating the AUPRC is as follows:

Where precisioni and recalli are the precision and recall of the model at thresholdi, and ∆thresholdi

is the difference in threshold between the current pair and the next pair. This formula assumes

that the precision-recall curve is a series of discrete points, with each point representing a

different threshold value.

In practice, the precision-recall curve is often continuous. The AUPRC is calculated using the

definite integral of the precision and recall values over the range of threshold values. This can be

written as follows:

where precision(t) and recall(t) are the precision and recall of the model at threshold t. This

integral is often calculated numerically using a method such as the trapezoidal rule. In this work,

we use this metric because, as mentioned, some of our data is imbalanced [22].

2. F1 score is a widely used performance metric in machine learning, particularly in

classification tasks. It provides a balance between precision and recall and is a commonly used

measure of a model’s accuracy. The micro version of the F1 score calculates the metric globally

by aggregating the true positives, false negatives, and false positives over all classes. This

approach is useful when all classes are of equal importance, and their distribution is not known

[23].

Both micro-averaged F1 score and AUPRC are both useful in evaluating the performance of a

model, but they provide different perspectives on the model’s performance. Micro averaged F1

score offers a balance between precision and recall, while AUPRC focuses on the performance of

the model in identifying positive instances.

4. EXPERIMENTAL SETUP

In this study, we conducted five experiments to evaluate the performance of AutoPyTorch in

binary classification tasks using different text representation methods, including both contextual

and non-contextual approaches. In each experiment, we applied a specific text representation

technique to the input data and used the output as input to AutoPyTorch for binary classification

Computer Science & Information Technology (CS & IT) 31

on all data sets. Each experiment is evaluated on all datasets with the two metrics AUPRC and

micro-averaged F1 score, presented in the last section. The experiments are as follows:

Configuration 1: Default text representation of AutoPyTorch (one-hot encoding) In the first

experiment, we employed AutoPyTorch’s built-in non-contextual text representation method,

one-hot encoding, to transform the input data. This technique converted the categorical text data

into a numerical format appropriate for the binary classification task. To ensure this, we provided

the input data as a string, as AutoPyTorch would not utilize its built-in non-contextual text

representation method if given numeric data.

Configuration 2: Non-representation method In the second experiment, we employed Keras’

tokenization to provide numeric data as input to AutoPyTorch. This method involved using the

Keras library’s tokenizer to convert text data into sequences of integers. By providing

AutoPyTorch with numerical input data, we bypassed its built-in text representation method. We

then used AutoPyTorch to train and evaluate binary classification models on all data sets with the

preprocessed numeric input.

Configuration 3: BERT base (uncased) In the third experiment, we used the pure BERT base

(uncased) model, a contextual text representation method, to process the input data. We fed the

input text data into the BERT model and extracted the output representations. These

representations were then given as input to AutoPyTorch for binary classification tasks on all data

sets. This experiment aimed to explore the impact of using BERT embeddings, a contextual

method, on the performance of AutoPyTorch’s binary classification models.

Configuration 4: Latent semantic analysis In the fourth experiment, we used Latent Semantic

Analysis (LSA), a contextual text representation method, to process the input text data. We

transformed the input text data using LSA, a technique for reducing the dimensionality of the text

data while preserving the semantic relationships between words. After applying LSA, we

provided the output representations as input to AutoPyTorch for binary text classification tasks on

all data sets. This study aimed to evaluate the effectiveness of binary classification models created

using AutoPyTorch when utilizing contextual text representation based on LSA.

Configuration 5: Fine-tuned BERT models In the fifth experiment, we fine-tuned the BERT

model on each of the five data sets, resulting in five different fine-tuned BERT models. To

tokenize the input text data, we employed the BERT tokenizer from the Hugging Face

Transformers library. To ensure consistency, we set a maximum sequence length of 128 tokens,

padding or truncating input sequences as needed. The datasets were divided into 80 percent for

training and 20 percent for validation. For all five datasets, we employed the same

hyperparameters, including a batch size of 2, a learning rate of 2e−5, an epsilon of 1e−8, and the

optimizer AdamW. The optimal behaviorof models was achieved when we chose two epochs for

the Colbert, CoLA, and finished sentence datasets while opting for three epochs for the IMBD

and sarcasm detection.

We used each of these fine-tuned models as contextual text representation methods for their

corresponding data sets. After obtaining the output representations from the finetuned BERT

models, we provided them as input to AutoPyTorch for binary classification tasks on each data

set. This experiment aimed to investigate the effectiveness of using finetuned BERT models as

contextual text representations in conjunction with AutoPyTorch for building binary classification

models.

32 Computer Science & Information Technology (CS & IT)

5. RESULTS AND ANALYSIS

In this section, we will present the results of the five experiments conducted using the different

text representation methods, including both contextual and non-contextual approaches. We will

compare the performance of binary classification models built by AutoPyTorch across these

experiments using the evaluation metrics discussed earlier, i.e., the area under the precision-recall

curve (AUPRC) and the micro-averaged F1 score. We will also analyze the impact of the various

text representation techniques on the model’s performance and discuss any notable observations.

To provide a more comprehensive view of our experiments and to observe the impact of text

representation methods per task, we have organized the results according to each dataset across

all five experiments into individual tables.

Humor detection. The results of all five experiments on the Colbert Dataset can be observed in

Table 1. The results display superior values for the AUPRC compared to the

Table 1. Performance of AutoPyTorch on Colbert dataset with different text representation methods for

binary text classification task.

micro-averaged F1 scores across all text representation techniques. Significantly higher AUPRC

values compared to micro-averaged F1 score values, observed in all text representation methods

except for the fine-tuned BERT, demonstrate that the models are good at ranking the positive

examples higher than the negative ones. The Model, which AutoPyTorch makes with fine-tuned

BERT as text representation method, can identify negative examples as well as positive ones. It

may be the case that the classifiers impacted by other representation methods are too strict and

reluctant to classify some positive examples as positive. Alternatively, the classifier may make

too many false positives, leading to low precision and a low micro-averaged F1 score.

Fine-tuned BERT method greatly outperforms the other text representation methods,

demonstrating its effectiveness for the binary text classification task of detecting humor. That is

due to its inherent advantages and task-specific adaptation during fine-tuning as updating the

model’s weights based on the target dataset. This process enables the model to learn humor-

related patterns and nuances, making it more effective at identifying humor.

LSA employs singular value decomposition (SVD) to reduce dimensionality, which aids in

uncovering latent relationships between words and documents. This ability enables LSA to

discern patterns in the text that can be beneficial for humor detection, even though it may not

capture enough contextual information as effectively as fine-tuned BERT. This could serve as

evidence for why LSA demonstrates significantly better performance compared to BERT

uncased, as it effectively captures underlying patterns in humor detection tasks without relying on

contextual understanding.

The results also indicate no significant difference between the performance of onehot encoding,

non-representation, and BERT without fine-tuning. While all these three methods demonstrate

satisfactory performances, there is still potential for improvement.

Computer Science & Information Technology (CS & IT) 33

The relatively small difference between one-hot encoding and the non-representation method

suggests that the non-contextual text representation and non-representation methods may not have

effectively identified meaningful features within this dataset. It could be due to the fact that

humor detection is a challenging task in natural language processing due to the complex and

nuanced nature of humor. The limited performance of both methods in the challenging and

complex task of humor detection could be attributed to their inability to capture the intricacies of

humor, such as context, wordplay, and cultural references [24].

The behavior of BERT without fine-tuning, which is based on a deep neural network, is fragile.

Although the representation can generate a general representation of the meanings of words in the

text, it cannot find good features that allow building the optimal humor detection model with

AutoPyTorch. Using this deep neural network for this task brings no credit compared to non-

representation and one-hot encoding approaches.

Grammatical error detection. In Table 2, the results obtained from the analysis of the dataset

CoLA are presented. While the fine-tuned BERT method demonstrates superior performance in

terms of AUPRC, it should be noted that the other approaches also exhibit strong performance. It

is due to the fact that grammatical errors are often consistent across different contexts [25]. For

example, a misplaced modifier will be an error regardless of the context in which it appears. This

makes it easier for the non-contextual approaches to learning to detect these errors. However, it is

essential to note that non-deep learning approaches may struggle with more complex grammatical

errors that require an understanding of the surrounding context to detect. In these cases, as results

show, fine-tuned BERT is more effective.

The LSA method demonstrates good performance on the CoLA dataset using both metrics. LSA

represents sentences as high-dimensional vectors in a semantic space, where dimensions

correspond to latent semantic features. LSA can identify grammaticality patterns by analyzing

word distribution across these dimensions, such as specific syntactic structures or linguistic cues.

The excellent performance of the LSA here is also because of the LSA’s ability to detect

grammatical patterns through the presence or absence of specific words or phrases.

The significant difference between AUPRC and F1 score values in non-representation and BERT

base (uncased) models arises from dataset imbalance. AUPRC is preferred for imbalanced

datasets when positive examples are more important than negative ones, as it better captures

classifier performance for minority classes. This difference suggests that the classifiers created by

AutoPyTorch using non-representation and BERT as text representation methods may be

overfitting to the majority class and not able to generalize well to the minority class. However, a

high AUPRC indicates that adjusting the threshold could improve the micro-averaged F1 score.

Table 2. Performance of AutoPyTorch on CoLAdataset with different text representation methods for

binary text classification task.

Text representation AUPRC [%] Micro

averaged

method F1 Score [%]

One-Hot Encoding 84.69 69.37

Non-representation 85.07 29.68

BERT base (uncased) 85.12 29.07

LSA 85.78 71.59

Fine-tuned BERT 87.43 74.68

34 Computer Science & Information Technology (CS & IT)

Sentiment analysis of movie reviews. The results from analyzing the IMBD dataset during five

experiments can be seen in Table 3. The dataset consists of movie reviews that exhibit specific

language patterns, unique vocabulary, and various sentence structures. Since sentiment analysis

treats negative samples as equally important as positive ones, the micro-averaged F1 score

provides a more reliable metric for evaluating classifier performance, taking both precision and

recall into account. The results show relatively high micro-averaged F1 scores for the simple

approaches one-hot encoding, and non-representation methods. It might be attributed to the

presence of specific and polarizing words that strongly indicate positive or negative sentiment in

movie reviews. These methods could easily capture these words or phrases, despite their lack of

consideration for context or semantic relationships between words.

While the fine-tuned BERT achieves the best performance, the gap between it and BERT base

(uncased) regarding AUPRC is quite small. This demonstrates that in the large texts of reviews,

BERT base (uncased) can identify positive examples similar to the fine-tuned BERT but cannot

classify them accurately and hase a higher false positive rate.

The results also indicate that LSA has the poorest performance on this dataset. It is due to the fact

that LSA cannot understand semantic context, especially concerning word order and negation.

For instance, it treats ”not good” similarly to ”good” as the context of ’not’ being a negation is

lost. LSA’s dimensionality reduction technique can also cause loss of important information and

its inability to differentiate between subjective and objective expressions, coupled with scalability

issues for large sentences of this dataset.

Table 3. Performance of AutoPyTorch on IMBD dataset with different text representation methods for

binary text classification task.

Text representation AUPRC [%] Micro

averaged

method F1 Score [%]

One-Hot Encoding 75.62 50.25

Non-representation 75 50

BERT base (uncased) 75.96 48.06

LSA 65 51

Fine-tuned BERT 76.23 68.17

Sarcasm detection. An analysis of the sarcasm detection dataset was conducted across five

experiments, with the results presented in Table 4. The table highlights that the best performance

is achieved using the fine-tuned BERT text representation method and non-representation

method. The fine-tuned BERT model demonstrates its ability to capture semantic and syntactic

information within the text, making them a strong choice for sarcasm detection tasks. On the

other hand, utilizing AutoPyTorch without any text representation method involves providing

numerical input data and allowing the model to learn features directly from the tokenized text.

The high performance could be attributed to the specific nature of the Sarcasm dataset, which

might contain patterns or features that can be effectively captured even without sophisticated text

representation methods. After observing the surprising results of the non-representation approach,

we analyzed the dataset. We found that the most repeated bigram in the non-sarcastic sentences

was the name ”Kamala Harris” followed by ”Anderson Cooper”. This made it easier for

AutoPyTorch to find a relation between these names and the non-sarcastic label without any text

representation. However, this does not provide sufficient evidence to support the use of this

method for sarcasm detection. The fact that these names were repeated frequently in non-sarcastic

sentences may have been a coincidence and does not necessarily indicate a strong relationship

Computer Science & Information Technology (CS & IT) 35

with the non-sarcastic label. Therefore, relying solely on this nonrepresentation method may

result in a good performance on non-sarcastic data but is not generalizable to other contexts.

Table 4. Performance of AutoPyTorch on Sarcasm dataset with different text representation methods for

binary text classification task.

Text representation AUPRC

[%] method

Micro

averaged

F1 Score [%]

One-hot encoding 73.45 53.09

Non-representation 92.44 88.13

BERT base (uncased) 74.29 51.4

LSA 89.60 82.26

Fine-tuned BERT 92.47 90.63

Sentence completion detection. Table 5 presents the experimental results on the imbalanced

sentence completion dataset. Fine-tuned BERT models outperform other models, demonstrating

their ability to effectively capture the necessary contextual information to determine whether a

sentence is complete.

As evidenced by their AUPRC scores, both contextual and non-contextual approaches exhibit

strong and comparable performances. This could be because determining whether a sentence is

complete does not always depend on context. AutoPyTorch may be able to detect patterns directly

without relying on text representation.

The low micro-averaged F1 score obtained by the non-representation method suggests that the

model made by AutoPyTorch struggles to distinguish between false positives and false negatives.

It may indicate that the classifier is overfitted to the completed sentences and not able to

generalize well to the unfinished sentences.

Table 5. Performance of AutoPyTorch on Sentence finished dataset with different text representation

methods for binary text classification task.

Text representation AUPRC [%] Micro

averaged

method F1 Score [%]

One-hot encoding 89.60 79.20

Non-representation 90.16 19.67

BERT base (uncased) 90.06 80.13

LSA 89.60 79.20

Fine-tuned BERT 94.54 87.78

In summary, across all five distinct datasets, the fine-tuned BERT model consistently outperforms

other text representation methods, achieving superior results in both the AUPRC metric and the

micro-averaged F1 score. This demonstrates the effectiveness and adaptability of fine-tuned

BERT models in capturing the nuances and contextual information required for various binary

text classification tasks. Furthermore, it highlights the efficiency of fine-tuned BERT models as

feature extractors for AutoPyTorch, enabling the development of more accurate and robust

classification models.

36 Computer Science & Information Technology (CS & IT)

6. CONCLUSION AND FUTURE WORK

In this paper, we have evaluated the performance of AutoPyTorch on various binary text

classification tasks using different text representation methods. Our experiments across five

distinct datasets demonstrate the superior performance of fine-tuned BERT models, which

consistently achieve the highest AUPRC and micro-averaged F1 scores. These results highlight

the effectiveness and adaptability of fine-tuned BERT models in capturing the nuances and

contextual information required for diverse binary text classification tasks. Additionally, the

integration of fine-tuned BERT models as feature extractors for AutoPyTorch has proven to be

efficient, enabling the development of more accurate and robust classification models.

However, our study also reveals that simple text representation methods, such as one hot

encoding, as well as non-representation methods, can still achieve relatively high performance on

specific tasks, such as grammatical error detection or pattern dependence tasks. This observation

suggests that, particularly in the absence of labeled training data, more sophisticated approaches

may not be strictly necessary, depending on the specific characteristics of the dataset and the task

at hand.

For future work, several avenues can be explored to extend this research:

1. Investigating other advanced contextual text representation methods, such as

RoBERTa,GPT, and XLNet, to assess their impact on AutoPyTorchfor building models for

binary classification tasks.

2. Examining the performance of AutoPyTorch on multi-class and multi-label text

classification tasks.

3. To enable AutoPyTorch to evolve towards AutoNLP, integrating multiple fine-tunedBERT

models or even a single fine-tuned BERT model, fine-tuned using a large corpus of

available data, could provide significant benefits. Additionally, incorporating task-

dependent non-representational approaches as text representation methods in its framework

can further enhance its capabilities. This would allow users to leverage the improved

performance of task-specific contextual representations without having to preprocess their

text data manually. Broadening the selection of pre-trained models within AutoPyTorch

would offer more options for users and allow them to select a model that best aligns with

their particular NLP task. This robust integration could substantially improve

AutoPyTorch’s efficiency across a diverse set of NLP tasks, thereby establishing it as a

more resilient and flexible tool in the realm of automated machine learning for NLP.

REFERENCES

[1] Zimmer, L., Lindauer, M., &Hutter, F. (2021). Auto-pytorch: Multi-fidelity metalearning for

efficient and robust autodl. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9),

3079-3090.

[2] Python, M. U., &Gridin, I. Automated Deep Learning Using Neural Network Intelligence.

[3] Kulkarni, A., Shivananda, A., & Kulkarni, A. (2022). Natural language processing projects: Build

nextgeneration NLP applications using AI techniques. Apress.

[4] Adi, Y., Kermany, E., Belinkov, Y., Lavi, O., & Goldberg, Y. (2016). Fine-grained analysis of

sentenceembeddings using auxiliary prediction tasks. arXiv preprint arXiv:1608.04207.

[5] Shen, D., Wang, G., Wang, W., Min, M. R., Su, Q., Zhang, Y., ...&Carin, L. (2018). Baseline

needsmore love: On simple word-embedding-based models and associated pooling mechanisms.

arXiv preprint arXiv:1805.09843.

[6] Joshi, A., Karimi, S., Sparks, R., Paris, C., &MacIntyre, C. R. (2019). A comparison of word-

basedand context-based representations for classification problems in health informatics. arXiv

preprint arXiv:1906.05468.

Computer Science & Information Technology (CS & IT) 37

[7] Miaschi, A., &Dell’Orletta, F. (2020, July). Contextual and non-contextual word embeddings: an

indepth linguistic investigation. In Proceedings of the 5th Workshop on Representation Learning for

NLP (pp. 110-119).

[8] Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new

perspectives.IEEE transactions on pattern analysis and machine intelligence, 35(8), 1798-1828.

[9] Qiu, X., Sun, T., Xu, Y., Shao, Y., Dai, N., & Huang, X. (2020). Pre-trained models for natural

languageprocessing: A survey. Science China Technological Sciences, 63(10), 1872-1897.

[10] Davis, M. J. (2010). Contrast coding in multiple regression analysis: Strengths, weaknesses, and

utilityof popular coding structures. Journal of data science, 8(1), 61-73.

[11] Bagui, S., Nandi, D., Bagui, S., & White, R. J. (2021). Machine learning and deep learning for

phishingemail classification using one-hot encoding. Journal of Computer Science, 17, 610-623.

[12] Bisong, E., &Bisong, E. (2019). Introduction to Scikit-learn. Building Machine Learning and

DeepLearning Models on Google Cloud Platform: A Comprehensive Guide for Beginners, 215-229.

[13] Gulli, A., & Pal, S. (2017). Deep learning with Keras. Packt Publishing Ltd.

[14] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ...&Polosukhin,

I.(2017). Attention is all you need. Advances in neural information processing systems, 30.

[15] Devlin, J., Chang, M. W., Lee, K., &Toutanova, K. (2018). Bert: Pre-training of deep

bidirectionaltransformers for language understanding. arXiv preprint arXiv:1810.04805.

[16] Landauer, T. K., &Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic

analysistheory of acquisition, induction, and representation of knowledge. Psychological review,

104(2), 211.

[17] Brants, T., Chen, F., &Tsochantaridis, I. (2002, November). Topic-based document

segmentationwith probabilistic latent semantic analysis. In Proceedings of the eleventh international

conference on Information and knowledge management (pp. 211-218).

[18] Landauer, T. K., Foltz, P. W., &Laham, D. (1998). An introduction to latent semantic

analysis.Discourse processes, 25(2-3), 259-284.

[19] Annamoradnejad, I., &Zoghi, G. (2020). Colbert: Using bert sentence embedding for

humordetection.arXivpreprint arXiv:2004.12765, 1(3).

[20] Warstadt, A., Singh, A., & Bowman, S. R. (2019). Neural network acceptability judgments.

Transactions of the Association for Computational Linguistics, 7, 625-641.

[21] Milutinovic, M., Schoenfeld, B., Martinez-Garcia, D., Ray, S., Shah, S., & Yan, D. (2020, July).

Onevaluation of automl systems. In Proceedings of the ICML Workshop on Automatic Machine

Learning (Vol. 2020).

[22] Wang, G., Yang, M., Zhang, L., & Yang, T. (2022, May). Momentum accelerates the convergence

ofstochasticauprc maximization. In International Conference on Artificial Intelligence and Statistics

(pp. 3753-3771). PMLR.

[23] Chase Lipton, Z., Elkan, C., &Narayanaswamy, B. (2014). Thresholding classifiers to maximize F1

score. arXiv e-prints, arXiv-1402.

[24] Ezrina, E. V., &Valian, V. (2023). Do bilinguals get the joke? Humor comprehension in mono-

andbilinguals. Bilingualism: Language and Cognition, 26(1), 95-111.

[25] James, C. (2013). Errors in language learning and use: Exploring error analysis. Routledge.

AUTHORS

ParisaSafikhani is a research scientist at the German Centre for Higher Education Research and Science

Studies (DZHW). She holds an M.Sc. degree in electrical engineering and automation technology from

LUH and obtained her Bachelor’s degree in electrical and telecommunication engineering from Arak

University. Currently, she is pursuing her PhD in the field of artificial intelligence, with a specific focus on

AutoML and NLP.

David Broneske is the head of the department Infrastructure and Methods at the German Centre for Higher

Education Research and Science Studies (DZHW), Hannover. He received his PhD in Computer Science

from the University of Magdeburg, where he also pursued his Master’s and Bachelor’s Studies in Computer

Science. His research interests include main-memory database systems, interdisciplinary data management,

and the application of artificial intelligence in various domains.

38 Computer Science & Information Technology (CS & IT)

APPENDIX

Fig.2. Potential percentage improvement of fine-tuned BERT model as a text representation method for

AutoPyTorch compared to other examined representation methods, based on micro averaged F1 Score

values.

Fig.3. Potential percentage improvement of fine-tuned BERT model as a text representation method for

AutoPyTorch compared to other examined representation methods, based on AUPRC values.

© 2023 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

	1. Introduction
	2. Literature Review
	3. Methodology
	3.1. Text Representation
	3.2. One-Hot Encoding
	3.3. Keras Tokenization
	3.4. BERT’s Text Representation
	3.5. Latent Semantic Analysis
	3.6. AutoPyTorch and its Data Pre-Processing
	3.7. Data
	3.8. Evaluation Metric

	4. Experimental Setup
	5. Results and Analysis
	6. Conclusion and Future Work
	References
	Authors
	Appendix

