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ABSTRACT 
 
Language models’ growing role in natural language processing neces- sitates a 

deeper understanding of their linguistic knowledge. Linguistic probing tasks have 

become crucial for model explainability, designed to evaluate models’ understanding of 

vari- ous linguistic phenomena. Objective: This systematic review critically assesses the 

linguistic knowledge of language models via linguistic probing, providing a 

comprehensive overview of the understood linguistic phenomena and identifying future 

research areas. Method: We performed an extensive search of relevant academic 

databases and analyzed 57 articles pub- lished between October 2018 and October 
2022. Results: While language models exhibit extensive linguistic knowledge, 

limitations persist in their comprehension of specific phe- nomena. The review also 

points to a need for consensus on evaluating language models’  linguistic knowledge 

and the linguistic terminology used. Conclusion: Our review offers an extensive look 

into linguistic knowledge of language models through linguistic probing tasks. This 

study underscores the importance of understanding these models’ linguistic capabilities 

for effective use in NLP applications and for fostering more explainable AI systems. 
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1. INTRODUCTION AND BACKGROUND 
 
BERTology and its Significance The recent advancements in deep learning techniques 

have led to the popularity of neural language models, particularly transformer-based mod- 

els, which have achieved state-of-the-art performance on various natural language un- 

derstanding tasks. Despite their exceptional performance, how these models acquire and 
utilize linguistic information is still uncertain. 

 

Transformers, first introduced by [23], have demonstrated outstanding results in a wide 
range of NLP tasks, such as machine translation [23, 25], question answering [67], text 

classification [26], and semantic role labeling [27]. The remarkable development of pre-

trained language models [67, 28, 29] has sparked questions about what specific aspects of 

language these models capture and do not capture. As a result, an area of research called 
BERTology has emerged. 

 

https://airccse.org/csit/V13N16.html
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BERTology is an important study area for understanding the inner workings of large pre-
trained models such as BERT. The BERT model is one of the most significant models in 

NLP, and the term ”BERTology” is widely used in the research community. Prominent 

recent research has included studies on the self-attention mechanism [30–33], the role of 

individual neurons in the BERT model [34], gradient-based methods [35], and the visual- 
ization of attention weights [36]. For a more comprehensive overview of the field, please 

refer to [83], who present a general overview of BERTology, and [68], who review analysis 

methods in neural language processing. 
 

The importance of understanding linguistic information  in  language  models  (LMs) and the 

need for accurate and comprehensive linguistic information in LMs have been emphasized 
by [4], [18], [19], [20] [21]. 

 

More profound and fine-grained linguistic knowledge can help improve the models’ per- 

formance and increase their explainability. Recent research in NLP and machine learning has 
underlined the critical need for explainability and interpretability [38–41]. Understand- ing 

complex models’ decision-making processes, particularly with intricate data, poses a 

significant challenge, potentially impeding research progress. [73] further underscored the 
necessity of comprehending BERT models’ inner workings to facilitate improvements and 

strides towards general AI. 

 

Investigation of linguistic information through probing.  
 

This  review  explores linguistic knowledge encoded in LMs, focusing specifically on studies 
employing probing tasks for their investigations. Probing tasks, as detailed by [42, 8, 43, 10], 

offer an intricate lens through which to scrutinize the capabilities of these models. 

 
To elaborate, probing involves training a simplified classifier on the static represen- tations 

produced by a language model, each targeting a particular linguistic task [44, 45]. The 

classifier ingests single-word representations, and the precision of the probing subsequently 

establishes the extent of linguistically relevant knowledge encoded in these representations. This 
operation can be carried out in a zero-shot scenario [46, 47], make use of structural probes 

[48], or, more conventionally, entail the training and assessment of uncomplicated classifiers 

on diagnostic tasks [45, 49]. 
 

The concept of ”linguistic probing” is geared towards discerning how much a pre- trained 

model has gleaned about a given linguistic abstraction from the raw data, as portrayed by 

[50–52], and [68]. According to [69], this operation unfolds in several stages: 
 

(1) choosing an annotated dataset that transforms the theoretical abstraction of interest  into a 

predictive task, such as the Penn Treebank [53] adapted to Stanford dependencies or the DM 
corpus from [54]’s shared task [55]; (2) pre-training the model, for instance, RoBERTa or 

BERT; (3) training a ”ceiling” model with refined representations that serve as a 

benchmark for optimal performance with pre-trained representations; (4) training a 
supervised ”probe” model with the pre-trained, static representations, typically utilizing a 

simple, low-capacity model like a linear classifier; and (5) contrasting the performance of the 

probe model on unseen data with the ceiling model, thereby estimating how much the pre-

trained model is inherently capable of performing the task or what pertinent features it can 
reveal to the probe model. 

 

It should be clarified that this review focuses not on the specific probing techniques or the 
detailed processes used in the studies. Instead, the principal objective is to analyze the nature 
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and extent of linguistic knowledge absorbed by LMs. 
 

This review’s choice of papers investigating linguistic features of LMs, specifically through 

probing, was deliberate. Probing tasks, due to their fine-grained analysis and specific focus 

on linguistic knowledge, provide an excellent lens to study these models’  complex, often 
opaque, learning processes. Moreover, probing provides a controlled envi- ronment for 

inspecting LMs, enabling exploring particular linguistic features in isolation. This targeted 

focus facilitates understanding whether and to what extent these models have successfully 
learned to encode specific linguistic information during training. 

 

However, we also recognize that probing is one tool in the evaluation toolkit, and its results 
must be interpreted in context([14], [15], [16]). To complement probing, future work might 

investigate model competence using tasks that require integrating multiple types of linguistic 

knowledge. 

 

Objectives.  

 

The purpose of this systematic literature review is to summarize state of the art in using 
linguistic knowledge of pre-trained language models since 20181. The review aims to 

identify gaps in current research and propose areas for further study. Additionally, the review 

aims to provide a theoretical basis for further developing pre- trained language models and 
contributes to research on the explainability of LMs. The research questions of this review 

are: 

– RQ1: Which linguistic phenomena have been investigated in pre-trained language 
mod- els since 2018? 

– RQ2: Which language models were mostly investigated? 

– RQ3: Which natural languages were investigated? Which languages might need 
more research? 

– RQ4: Which mode of language is the current focus of the research? 

– RQ5: Which linguistic phenomena should be considered while probing for linguistic 

knowledge in language models? 

The scope and goals of the review are: 

– Summary of existing knowledge on the linguistic knowledge of language models. 

– Identify gaps in current research to suggest areas for further investigation. 

– Providing a framework/background for further development of pre-trained language 

models. 

– Contribution to the newly developed area of interpretability and explainability of 
com- putational linguistics, seeking to understand how models capture natural 

language phenomena [57, 68, 58]. 

– Attempt to create a comprehensive overview assisting and encouraging future 
studies on the linguistic knowledge of language models. 

 

By addressing these questions and goals, this review aims to advance our understanding of the 
linguistic knowledge encoded in LMs and contribute to the broader goal of creating more 

explainable and interpretable AI systems. 

 

2. RELATED SECONDARY STUDIES 
 

While this systematic literature review is the first comprehensive examination of the lin- 

guistic features represented in LMs using probing methods, it is essential to acknowledge  
and highlight other relevant research in this field. 
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[10] used an edge probing technique to determine the degree to which the BERT model 
contains linguistic information, revealing a sequence of linguistic processing capabilities, from 

part-of-speech tagging to coreference resolution. 

 

[11] offered a comprehensive survey of over 150 existing literature pieces on the BERT 

model. The study explored the model’s architecture, pre-training, and fine-tuning pro- cesses, 

and discussed its overparameterization issue, suggesting compression techniques such as 
knowledge distillation and pruning. 

 

[12] assessed the transition from traditional Distributional Semantic Models (DSMs) 
to deep learning-based representations in NLP. The paper argued that while models like 

BERT perform well in lexical semantics, debates over type representations persist, and 

handling complex commonsense knowledge remains a challenge. 
 

[13] evaluated deep neural networks’ syntactic capabilities in NLP tasks. While DNNs  

demonstrated substantial syntactic understanding, they fell short of human competence. 

1 Release year of BERT. See [67] 

 

These studies provide valuable insights into different aspects of LMs, including their 

representational abilities, architecture, parameterization, compression techniques, and syn- tactic 
and semantic knowledge. While this systematic literature review focuses specifically on 

probing methods and linguistic phenomena, these secondary studies contribute to the broader 

understanding of LMs and their linguistic capabilities. 

 

3. REVIEW METHODS 
 

This systematic literature review was conducted according to guidelines set by [1], [5], [6],  

and divided into three phases: review planning, conducting, and reporting. The review 
structure follows the PRISMA 2020 Checklist [84]. 

 

3.1.Eligibility Criteria 
 

Inclusion criteria. The following types of papers will be included: 

– Studies that used linguistic probing techniques to investigate the linguistic 
knowledge of a pre-trained language model. 

– The language of the article is either English or German. 

– The article was published after January 2018. 

– Full content of the article is available online for academic use. 

– The study is related to the specified search keywords. 

– The study is a peer-reviewed publication. 

Exclusion criteria. The following types of papers will be excluded: 

– Studies that did not use linguistic probing techniques to investigate the linguistic 

knowledge of a pre-trained language model. 

– Articles written in languages other than English or German. 

– Articles published before January 2018. 

– Full content of the article is unavailable. 

– The study is not related to the specified search keywords. 

– The study is not a peer-reviewed publication. 
 

The choice of these inclusion and exclusion criteria helps us to ensure that our systematic  

literature review is focused on a specific area of research (1) and captures the most relevant 
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and current information (2). Additionally, the review is able to focus on recent studies 
that are most relevant to the current state of the field (3). This is particularly important 

since BERT, being one of the first pre-trained language models, was introduced in 2018 

by [67] after which the field of BERTology slowly started to emerge. Requiring that the  

full content of the article is available online and that the study is related to the specified 
search keywords also helps to ensure that the review includes only accessible, high-quality, 

and relevant studies (4). By requiring that the studies be peer-reviewed (5), the review can 

exclude studies that may not have undergone rigorous review and evaluation by experts in the 
field, helping to ensure that the review includes only studies that have been evaluated and 

considered trustworthy by other experts in the area. 

 

3.2.Information sources 
 

The review involved a comprehensive automatic search of multiple databases, including 
ACM, Scopus, and IEEE and a semi-manual search of ACL, BlackboxNLP,  and  COLING 

2022. The sites were accessed as seen in Table 1 in the Appendix. 

 

3.3.Search strategy 
 

The search strategy was developed following the PRESS 2015 Checklist mcgowan2016press 
and the critical search points from the Cochrane Handbook higgins2019cochrane. The search 

terms were organized into four clusters: TOPIC, TASK, DOMAIN, and METHOD. The 

final search terms used can be found in Table 2 in the Appendix. The search was limited 
to articles published in English or German between October 2018 and October 2022. 

 

3.4.Selection process 
 

The initial search identified 455 studies, which were then screened for duplicates, resulting in 

408 articles for further evaluation. The inclusion and exclusion criteria were applied to 
select a final set of 57 studies for inclusion in the review. Two independent reviewers  

conducted the selection process, with any discrepancies resolved through discussion. The 

study selection process followed the Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA) guidelines. Studies focusing solely on developing and improving 
probing techniques without investigating linguistic information and investigating probing for 

factual knowledge were excluded. Language-vision models were also not considered due to the 

limited scope of the review. 

 

3.5.Data collection process 
 

Two independent reviewers performed data extraction using a pre-designed data extraction form. 

The extracted data included the title, year of publication, authors, main findings,  model 

investigated, analyzed linguistic phenomena and their linguistic level, mode of lan- guage 
(written vs. spoken), the natural language analyzed, and the main findings of the studies 

reviewed. The relevance of each extracted data field to the research questions is  provided in 

Table 3 in the Appendix. 

 

3.6.Synthesis methods 
 

A thematic analysis was conducted on the data obtained from the selected studies to identify 

prevalent trends and themes. This comprehensive synthesis analyzed various as- pects, 
including the models under investigation, linguistic phenomena and levels, language modes, 
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key findings, and the natural languages examined. 
 

This rigorous examination helped identify and  categorize key findings and trends  in the 

literature, contributing to a holistic understanding of linguistic features in pre-trained 

language models and addressing the review’s research questions. 
 

A summary table was constructed to enhance data presentation, providing an overview of the 

included studies2. This resource enables easy comparison and reference, benefiting 
researchers interested in the linguistic knowledge of pre-trained language models. 

 

This synthesis methodology, grounded in robust data analysis, offers valuable insights into 
pre-trained language models’ linguistic capabilities. 

 

4. RESULTS AND DISCUSSION 
 

After synthesizing the corpus, we can now answer our research questions. Subsequently, we 
present identified research gaps that open further directions for future work. The relevant  

papers that were included in our survey will be referred to with their ID numbers (see Table 

4 in the Appendix. 
 

2 The extracted data will be published upon completion. 

 

4.1.Answers to research questions 

 

Based on the findings of our literature review, we will now address the research questions posed 
in this review. 

 

Findings related to  RQ1:  Which  linguistic  phenomena  have  been  

investigated in pre-trained language models since 2018?  
 
Research on pre-trained language mod- els (PTLMs) has made significant strides since 

2018, offering new insights into their ca- pabilities and their encoded linguistic knowledge. 

Analyzing the provided dataset offers a comprehensive overview of the predominant 
research areas and the linguistic phenomena under investigation in PTLMs. 

 

Our analysis shows that the area of semantics has seen considerable interest in PTLM 

research. Numerous phenomena such as metaphor identification [ID1], noun properties and 
entailment [ID2], semantic attributes and values [ID3], predicate-argument structures and 

semantic role labeling [ID4], idiomatic meanings of noun compounds [ID5], lexical  

entailment and negation [ID6], and similes [ID8] have been investigated. These studies  
significantly contribute to understanding how PTLMs encode and represent semantic re- 

lationships. 

 

Similarly, investigations within the domain of syntax have been prevalent,  with  a focus on 
syntactic dependencies [ID9, ID10, ID11, ID12] and part-of-speech tagging [ID13, ID14]. 

These research initiatives illuminate PTLMs’ grasp of sentence structure and their ability to 

generate grammatically correct sentences. Several studies also probe PTLMs’  understanding 
of hypernymy, hyponymy, synonymy, and meronymy [ID15, ID16], revealing their ability to 

encode and use both semantic and syntactic relationships. 
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Discourse analysis and pragmatics have been explored less frequently, yet they provide 
valuable insights into PTLMs’ ability to comprehend context, speaker intentions,  and 

discourse coherence [ID17]. Similarly, studying morphology and orthography  can shed 

light on PTLMs’ knowledge of word forms, inflection, and spelling variations [ID18,  ID19]. 

Analyzing typological properties can gauge PTLMs’ cross-linguistic generalization of 
linguistic knowledge [ID20], and research on textual analysis and speech recognition can 

improve the robustness and context-awareness of PTLMs [ID21]. For a detailed visual 

representation of investigated linguistic levels and specific linguistic features alongside with 
the ID numbers of the corresponding papers, consider Figure 3 in A and for the distribution 

of papers investigating different linguistic levels, see Figure 1. 

 
Although PTLMs can handle syntactic and semantic information reasonably well, a bias 

towards syntax is noticeable [ID18]. This bias is evident in the implicit embedding of 

syntax trees in deep models’ vector geometry [ID17], contrasting with specific models’  

failure to encapsulate the dependency tree structure, such as in the case of Multimodal- 
BERT [ID34]. This skew towards syntax underlines a significant challenge in NLP: creating 

models that excel in both syntactic and semantic understanding. 

 
Remarkably, state-of-the-art LMs such as BERT, mBERT, and ELMo exhibit an im- 

pressive, incomplete capability to encapsulate linguistic phenomena. They adeptly en- code 

metaphorical [ID1] and syntactic knowledge [ID17, ID18, ID35], underlined by the 
structured dependency relationships and linguistic features embedded within these models 

[ID16]. However, limitations are evident in these models’ understanding of specific lin- 

guistic phenomena such as negation, sarcasm, irony, modality, idioms, and non-standard 

spelling [ID3] and in identifying semantic equivalence between distinct lexical references  to 
the same concept [ID4]. 

 

There are notable disparities in how LMs handle different levels of linguistic knowl- edge. 
They exhibit proficiency in extracting semantic proto-role properties [ID25], encoding 

contextualized representations of predicates [ID9], and handling agentive positions [ID19]. 

Still, they struggle with consistently capturing semantics [ID56] and show instability in cat - 

egories involving lexical semantics, logic, and predicate-argument structure [ID52]. These 
disparities highlight the ongoing challenge of developing models that understand linguistic 

nuances as well as humans do. 

 
However, the flexibility of these models indicates promising future progress. For in- stance, 

while having a minimal impact on core and low-level information, fine-tuning 

methodologies improve the performance of models like BERT on downstream tasks [ID7, 
ID42]. Larger models outperform smaller ones at character-level tasks [ID20], and the 

emergence of the feature-based approach in lexical semantics [ID6] reveals potential direc- 

tions for future advancements. 

 
Regarding cross-lingual proficiency, these models demonstrate good knowledge trans- 

ferability between languages and datasets, provided annotation consistency exists [ID1].  

However, potential biases are discernible, such as mBERT’s tendency to mirror the infor- 
mation distribution for languages typologically similar to English [ID28] and its limited  

semantic consistency across languages [ID39]. 

 
Despite the progress made in machine-based language comprehension, a significant gap 

exists between the performance of these models and human linguistic proficiency,  especially 

for tasks requiring a deeper understanding of linguistic knowledge [ID14, ID45,  ID47]. The 

challenge lies in bridging these ’gaps’ in the linguistic knowledge obtained from single 



74         Computer Science & Information Technology (CS & IT) 

pretraining objectives and in exploring the combination of diverse pretraining goals for a 
more holistic understanding [ID21]. 

 

Future work should not only aim to  build  models  that  can  perform  specific  tasks but also 

to create systems capable of nuanced, human-like understanding of language. Although this 
might be challenging, it represents an exciting frontier for exploration and innovation in the 

field. 

 
 

 
 

Fig. 1. The distribution of investigated linguistic levels. 
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Findings related to  RQ2:  Which  language  models  were  mostly  

investigated?  
 
In recent years, numerous pre-trained language models (LMs) have been the subject of an 

investigation to explore their linguistic capabilities. Analyzing the dataset provided  has 

revealed valuable insights into the LMs that garnered the most attention within the research 

community. 
 

Our findings highlight that the research community has primarily focused on probing the 

linguistic knowledge of three prominent LMs: BERT, RoBERTa, ELMo, and mBERT. 
These models have been extensively studied across various linguistic tasks, including se- 

mantic analysis, syntactic parsing, and discourse analysis. 

 

While BERT, Roberta, ELMo, and mBERT have received the most attention, other  LMs 
have also been explored to a lesser extent. These include GPT2, XLM-R, BiLSTM, 

fastText, and GloVe. While not as extensively studied as the models mentioned above, 

these LMs have also made valuable contributions to our understanding of language models’ 
linguistic capabilities. For a more detailed overview, please, consider Figure 2. 

 

The comprehensive exploration of these LMs has shed light on their proficiency in 
understanding semantics, syntax, and discourse. However, it is crucial to acknowledge 

that the full extent of the linguistic knowledge encoded within these models is yet to be fully 

comprehended. The field of pre-trained language models continues to evolve rapidly, with the 

emergence of novel models regularly. Hence, future investigations may involve exploring the 
linguistic properties of these newer models and comparing them to the more established ones. 
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Findings related to RQ3: Which natural languages were investigated? Which 

languages might need more research?  

 

Numerous studies have extensively explored English LMs and their variants, to assess 

their linguistic knowledge and performance on various tasks. This emphasis on English 
reflects its dominance as a global language and the availability of large-scale English 

corpora for training LMs. 

 
However, in addition to English, several other languages have been investigated, in- cluding 

German, French, Spanish, Chinese, Italian, Portuguese, Dutch, Russian, Turkish,  Arabic, and 

Finnish. Research on these languages has aimed to evaluate the effectiveness of LMs in 
capturing language-specific linguistic phenomena and understanding the nuances of diverse 

linguistic structures. 

 

However, the results highlight specific languages that may require further research attention. 
Languages such as Hindi, Japanese, Korean, Swahili, and Indonesian have had relatively 

fewer studies investigating their linguistic properties within the context of pre- trained 

language models. Conducting more research on these languages would provide valuable 
insights into how well LMs capture the intricacies of their specific linguistic characteristics. 

For a more detailed overview, please, consider Figure 4 in the Appendix. 

 
Furthermore, low-resource languages also warrant additional investigation. These lan- 

guages may include regional dialects, indigenous languages, or languages with fewer digital 

resources. Exploring the behavior and performance of LMs on these languages can help  

bridge the existing gaps and promote inclusivity in natural language processing research and 
applications. 

 

Findings related to RQ4: Which mode of language is the current focus of the 

research?  
 
Based on our review, it is evident that most studies have focused on written text rather 

than speech. The results strongly emphasize exploring the linguistic capabilities of pre-trained 

language models in written languages. These studies have delved into various linguistic 

phenomena in written language already thoroughly discussed in 4.1. 
 

However, it is essential to acknowledge that research on the linguistic capabilities of pre- 

trained language models in speech is also significant, although relatively less prevalent than 
written text. Therefore, further exploration of this modality is necessary to understand the 

models’ performance in transcribing spoken language and capturing phonetic, prosodic , and 

intonational features. 
 

Findings related to RQ5: Which linguistic phenomena should be 

considered while probing for linguistic  knowledge  in  language  models? 
 

The  proficiency  of LMs in comprehending and producing natural language heavily 

depends on their ability to handle various linguistic phenomena, as highlighted by [70]. This 
idea resonates with the ”rediscovery hypothesis” put forth by [18], which emphasizes the 

importance of in-depth linguistic understanding for maximizing language model 

performance. 
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In light of our research findings, we suggest conducting a focused investigation into the 
following linguistic phenomena. 

 

Nuances of expression: This includes comprehension of sarcasm, irony [ID3], id- iomatic 

meanings [ID11], and non-standard spelling. Improving models’ handling of these nuances 
is key to robust language understanding. 

 

Cross-linguistic transferability:  Investigating  the  generalizability  and  adaptability of 
LMs across diverse languages can uncover ways to enhance cross-lingual performance [ID1, 

ID29]. 

 
Semantic complexity: Complex semantic structures, including semantic roles and predicate-

argument structures, often pose challenges to LMs [ID9, ID25]. Probing these areas can 

yield insights for improved semantic understanding. 

 
Interplay of syntax  and  pragmatics:  LMs  need  to  handle  pragmatic  phenomena like 

negation, conversational implicatures, and other speech acts efficiently for real-world 

communication [ID13, ID23]. 

 

Morphological features: Research into morphological phenomena, including inflec- tional 

morphology and derivational processes, can enhance models’ capability for morpho- logical 
ambiguity resolution [ID15, ID44]. 

 

Discourse understanding: Language models’ ability to understand hierarchical struc- 

tures, coherence relations, and global coherence within texts significantly influences their 
capacity for coherent language generation [ID22]. 

 

Semantic richness: Investigating more complex lexical phenomena can help improve the 
depth and accuracy of models’ semantic representations [ID6, ID49]. 

 

Language typology: The study of distinct typological features can uncover potential 

biases and improve language model performance across diverse language families [ID39]. 

 

Contextual pragmatics: Enhancing models’ understanding of discourse through in- depth 

studies of contextual pragmatics, including anaphora resolution and presupposition 
projection, can further improve their contextual awareness [ID7]. 

 

This comprehensive investigation can facilitate the development of linguistically richer, more 
accurate, and explainable LMs, propelling advancements in the field of NLP. 

 

4.2.Implications for future research 
 

The findings outlined in the preceding section have illuminated our understanding of the current 

state of linguistic knowledge encoded within LMs. These insights also provide a robust 
foundation for guiding future research within NLP, mainly as we aim to advance the 

capabilities of LMs and enhance their linguistic comprehension. 

 

Delving deeper into complex linguistic phenomena like negation, sarcasm, irony, id- iomatic 
expressions, and non-standard spelling [ID3] is vital. The observed limitations of current 

models highlight the necessity for innovative training methodologies, augmentation of training 

data with diverse linguistic examples, and the design of architectures tailored to handle 
such intricate linguistic challenges. 
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Simultaneously, the gap in models’ abilities to understand semantic structures [ID4], coupled 
with their underperformance in semantic tasks compared to syntactic ones [ID56], accentuates 

the need for research to enhance semantic representation within these models. The stratified 

nature of LMs provides a ripe opportunity for exploration. Unraveling the rationale behind the 

distribution of linguistic knowledge across various layers [ID18, ID35] and strategizing how 
this knowledge can be effectively utilized for a range of downstream tasks is an enticing 

research direction. 

 
Furthermore, the ability of LMs to transfer linguistic knowledge across languages [ID1,  

ID28, ID39] presents exciting prospects for building models with better cross-lingual gen- 

eralizability. Future research could focus on facilitating cross-lingual knowledge transfer, 
addressing language representation biases, and enhancing the semantic consistency of mul- 

tilingual models. 

 

An intriguing line of inquiry also examines how different pretraining objectives could be 
harmoniously combined, given the gaps in linguistic knowledge derived from single 

pretraining objectives [ID21]. This could entail the development of novel pretraining tech- 

niques that leverage a broad spectrum of linguistic goals, capturing both syntactic and 
semantic knowledge to cultivate more comprehensive and robust LMs. 

 

Moreover, future research should aim to diversify the linguistic coverage of LMs, ad- dressing the 
mentioned underrepresented languages and focusing on low-resource languages to enable the 

development of more inclusive and robust natural language processing sys- tems. 

 

Lastly, the inclusion of linguistic formalism into NLP research ([4], [18], [19], [20], [21]) 
promises to enhance the transparency and systematicity of research. Similarly, focusing on 

finer-grained linguistic features in future probing studies and exploring less-studied lin- 

guistic areas will assist in a more profound understanding of language models’ capabilities.  
By addressing these  issues  and  harnessing  the  potential  of  these  opportunities,  we can 

aspire to develop LMs that offer a more nuanced and sophisticated understanding of human 

language. 

 

5. CONCLUSION 
 

In this systematic literature review, we evaluated the linguistic knowledge of LMs through 

linguistic probing tasks. Our findings indicate that LMs possess a high level of linguistic 
expertise, but there are still limitations and gaps in their understanding of specific lin- guistic 

phenomena. We also identified a need for consensus in evaluating their linguistic knowledge 

and terminology. 
 

This review provides an unbiased overview of current research on language models’  

linguistic capabilities and their potential for natural language processing applications and 

explainable AI systems. We highlight the importance of future research focusing on fine- 
grained linguistic analysis, incorporating linguistic formalism, and considering additional  

linguistic features. We recommend providing clear annotation guidelines to address these 

limitations and ensure NLP research transparency and systematicity. 
 

In conclusion, this review underscores the significance of linguistic knowledge in en- 

hancing language models’ accuracy, performance, and interpretability. By addressing the  

identified limitations and adopting a linguistically-informed approach, researchers can ad- 
vance our understanding of LMs and contribute to developing more robust and explainable AI 

systems. Exploring fine-grained linguistic features, incorporating linguistic formalism, and 
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considering a wide range of linguistic phenomena will drive innovation and practical 
applications across domains and industries. 

 

6. LIMITATIONS 
 
While this systematic literature review provides valuable insights into the linguistic knowl- 

edge of LMs, certain limitations should be acknowledged. As with any review, there is the 

potential for subjectivity or misunderstanding in the filtering and data extraction process.  
Future studies could benefit from involving a larger team of reviewers and implementing 

inter-rater reliability measures to address this limitation to ensure consistency. 

 

Another limitation is the lack of emphasis on systematic linguistic features in some of  the 
studies included in this review. Future studies should strive for a more linguistically- 

informed approach to overcome this limitation, incorporating linguistic formalism and 

considering a broader range of linguistic phenomena. 
 

Furthermore, this review focused primarily on published studies in English and Ger- man. 

While efforts were made to include a diverse range of studies, valuable research in other 
languages may not be captured in this review. Future reviews should consider ex- panding 

the scope to include studies in various languages to ensure a more comprehensive 

understanding of language models’ linguistic capabilities. 

 
Lastly, it is essential to note that LMs and linguistic probing are rapidly evolving. The 

studies included in this review were conducted until a specific date, and new research may 

have emerged since then. 
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Table 1. Information sources 

 
Source Date Search 

ACM 04.10.22 automatic 

Scopus 30.09.22 automatic 

IEEE 03.10.22 automatic 

ACL 05.10.22 semi-

manual 

BlackboxNLP 05.10.22 semi-manual 
 

COLING 2022 13.10.22 semi-manual 

 

Table 2. Keyword searches 
 

Source Keyword search 
 

ACM [[Full Text: ”linguistic features”] OR [Full Text: ”linguistic information”] 

OR [Full Text: ”linguistic”] OR [Full Text: ”linguistics”] OR [Full Text: ”linguistic 

knowledge”] OR [Full Text: ”semantic”] OR [Full Text: ”syntactic”] OR [Full Text: 

”lexical”] OR [Full Text: ”pragmatic”]] AND [[Title: ”probing”] OR [Title: ”probe”] OR 

[Title: ”probes”] OR [Title: ”probed”]] AND [[Full Text: ”pre-trained”] OR [Full Text: ”lan- 

guage”] OR [Full Text: ”models”] OR [Full Text: ”lms”]] AND [Publication Date: 

(01/01/2018 TO *)] 
Scopus ( TITLE-ABS-KEY ( ”linguistic features” OR ”linguistic information” 

OR ”linguis- tic” OR ”linguistics” OR ”linguistic knowledge” OR ”semantic” OR 

”syntactic” OR ”lexical” OR ”pragmatic” ) AND TITLE ( ”probing” OR ”probe” OR 

”probes” OR ”probed” ) AND TITLE-ABS-KEY ( ”pre-trained” OR ”language” OR 

”models” OR ”LMs” ) ) AND PUBYEAR ¿ 2017 AND ( LIMIT-TO ( SUBJAREA , 

”COMP” ) ) AND ( LIMIT-TO ( LANGUAGE , ”English” ) ) 

IEEE (”Full Text & Metadata”:”linguistic features” OR ”Full Text & 

Metadata”:”linguistic information” OR ”Full Text & Metadata”:”linguistic” OR ”Full Text & 

Meta- data”:”linguistics” OR ”Full Text & Metadata”:”linguistic knowledge” OR ”Full Text & 

Metadata”:”semantic” OR ”Full Text & Metadata”:”syntactic” OR ”Full Text &  

Metadata”:”lexical” OR ”Full Text & Metadata”:”pragmatic”) AND (”Document  
Title”:”probing” OR ”Document Title”:”probe” OR ”Document Title”:”probes” OR  

”Document Title”:”probed”) AND (”Full Text & Metadata”:”pre-trained” OR ”Full Text & 

Metadata”:”language” OR ”Full Text & Metadata”:”models” OR ”Full Text & 

Metadata”:”lms”) 

BlackboxNLP   1) ”prob*” in title 2) no ”prob*” in title 

ACL 1) ”probing” / ”probe” in title 2) ”probing” / ”probe” in abstract COLING 

2022 1) ”probing” / ”probe” in title 2) ”probing” / ”probe” in abstract 

 
Table 3. Extraction form (following [17]) 

 

Data Description Relevance 
 

Title Overview 
Year Overview 
Authors Overview 

Model Which model was investigated? RQ2 
Ling. phenomena Which linguistic information was investigated? RQ1, RQ5 Ling. 
level What linguistic level was the analysis at? RQ1, RQ5 
Language and its mode What language was investigated? Was it written or spo- RQ3, RQ4 
ken? 
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Fig. 3. The distribution of investigated linguistic levels and linguistic features with the ID 

numbers of the corresponding papers. 

 
Table 4. List of the studies reviewed for the survey. 

 
ID Author(s) Title 

1 Aghazadeh, Ehsan; Fayyaz, Mohsen; 

Yaghoobzadeh, Yadollah 

Metaphors in Pre-Trained Language 

Models: Probing and Generalization 

Across Datasets and Languages 

2 Apidianaki, Marianna; Gar\’\i Soler, 

Aina 

ALL Dolphins Are Intelligent and 

SOME Are Friendly: Probing BERT 
for Nouns’ Semantic Properties and 

their Prototypicality 

3 Barnes, Jeremy; Øvrelid, Lilja; 

Velldal, Erik 

Sentiment Analysis Is Not Solved! 

Assessing and Probing Sentiment 

Classification 

4 Beloucif, Meriem; Biemann, Chris Probing Pre-trained Language Models 

for Semantic Attributes and their Values 

5 Biddle, Rhys; Rybinski, Maciek; Li, 

Qian; Paris, Cecile; Xu, Guandong 

Harnessing Privileged Information for 

Hyperbole Detection 

6 Branco,  Ant ónio;  Ant ónio  

Rodrigues,  Joao;  Salawa,  Malgorzata;  

Branco,  Ruben;  Saedi,  Chakaveh 

Comparative Probing of Lexical 

Semantics Theories for Cognitive 

Plausibility and Technological 

Usefulness 

7 Cai, J.; Zhu, Z.; Nie, P.; Liu, Q. A Pairwise Probe for Understanding 
BERT Fine-Tuning on Machine 

Reading Comprehension 

8 Chen, Weijie; Chang, Yongzhu; 

Zhang, Rongsheng; Pu, Jiashu; Chen, 

Guandan; Le Zhang; Xi, Yadong; 

Chen, Yijiang; Su, Chang 

Probing Simile Knowledge from Pre-

trained Language Models 

9 Conia, Simone; Navigli, Roberto Probing for Predicate Argument 

Structures in Pretrained Language 

Models 

10 Dai, Yuqian; Kamps, Marc de; Sharoff, 

Serge 

BERTology for Machine Translation: 

What BERT Knows about Linguistic 

Difficulties for Translation 

11 Garcia, M.; Vieira, T. K.; Scarton, 
C.; Idiart, M.; Villavicencio, A. 

Probing for idiomaticity in vector space 
models 
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David 

Examining Cross-lingual Contextual 

Embeddings with Orthogonal Structural 

Probes 

29 Limisiewicz,  Tomasz;  Mare ček,  
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36 Mü ller-Eberstein,  Max;  van  der  Goot,  

Rob;  Plank,  Barbara 

Probing for Labeled Dependency Trees 

37 Patil, Rajaswa; Dhillon, Jasleen; 
Mahurkar, Siddhant; Kulkarni, 

Saumitra; Malhotra, Manav; Baths, 

Veeky 

VyA Colorless Green Benchmark for 
Syntactic Evaluation in Indic 

Languages 

38 Puccetti, Giovanni; Miaschi, Alessio; 

Dell’Orletta, Felice 

How Do BERT Embeddings Organize 

Linguistic Knowledge? 

39 Rama, Taraka; Beinborn, Lisa; Eger, 

Steffen 

Probing Multilingual BERT for 

Genetic and Typological Signals 

40 Ravichander, Abhilasha; Belinkov, 

Yonatan; Hovy, Eduard 

Probing the Probing Paradigm: Does 

Probing Accuracy Entail Task 

Relevance? 

41 Ravichander, Abhilasha; Hovy, 

Eduard; Suleman, Kaheer; Trischler, 

Adam; Cheung, Jackie Chi Kit 

On the Systematicity of Probing 

Contextualized Word Representations: 

The Case of Hypernymy in BERT 

42 Richardson, K.; Hu, H.; Moss, L. S.; 
Sabharwal, A. 

Probing natural language inference 
models through semantic fragments 

43 Richardson, K.; Sabharwal, A. What does my qa model know? Devising 

controlled probes using expert knowledge 
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Y.;  Schü tze,  H. 

Quantifying the contextualization of 

word representations with semantic class 
probing 

 

 
 

© 2023 By AIRCC Publishing Corporation. This article is published under the Creative Commons 

Attribution (CC BY) license. 


	1. Introduction and Background
	2. Related secondary studies
	3. Review Methods
	3.1. Eligibility Criteria
	3.2. Information sources
	3.3. Search strategy
	3.4. Selection process
	3.5. Data collection process
	3.6. Synthesis methods

	4. Results and Discussion
	4.1. Answers to research questions
	4.2. Implications for future research

	5. Conclusion
	6. Limitations
	References
	Authors
	A Appendix

