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ABSTRACT 
 
United Nations have declared the current decade (2021-2030) as the ”UN Decade on Ecosystem 

Restoration” to join R&D forces to fight against the ongoing environmental crisis. Given the 

ongoing degradation of earth ecosystems and the related crucial services that they offer to the 

human society, ecosystem restoration has become a major society-critical issue. It is required to 

develop rigorously software applications managing ecosystem restoration. Reliable models of 

ecosystems and restoration goals are necessary. This paper proposes a rigorous approach for 

ecosystem requirements modeling using formal methods from a model-driven software 

engineering point of view. The authors describe the main concepts at stake with a metamodel in 

UML and introduce a formalization of this metamodel in Alloy. The formal model is executed 

with Alloy Analyzer, and safety and liveness properties are checked against it. This  approach 
helps ensuring that ecosystem specifications are reliable and that the specified ecosystem meets the 

desired restoration goals, seen in our approach as liveness and safety properties. The concepts 

and activities of the approach are illustrated with CRESTO, a real-world running example of a 

restored Costa Rican ecosystem. 
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1. INTRODUCTION 
 

Ecosystems are complex systems that are crucial to the sustainability of human life on Earth. 
With the growing threat of climate change and environmental degradation, there is an 

increasing need for software applications that can help us understand and manage the 

restoration of ecosystems. Initially the concept of ”Ecosystem restoration” was restricted  to 

bringing back a degraded ecosystem to its previous state [1]. Nowadays, this concept has 
been loosened to integrate climate change and the possibility that strictly reversing to  

previous state might not be the optimal solution, UN now defines Ecosystem restoration as 

“the process of halting and reversing degradation, resulting in improved ecosystem services 
and recovered biodiversity.[...]” [2]. 

 

However, developing software applications dealing with ecosystems data is a challeng- ing 

task, as it requires a deep understanding of the ecosystem’s structure, behavior, and its 
interactions with its environment. During the last decades, the software engineering 

community has tackled the problem of modeling complex systems and the verification of  

properties on these models. In this paper, we focus our contribution on two early activities of 
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the software development lifecycle, namely requirements modeling and formal verifica- tion 
of requirements models. On the one hand, requirements modeling is typically used in 

Software Engineering [3] to improve the communication between stakeholders before 

designing and actually producing the system. On the other hand, formal verification tech- 

niques are used in different phases of the software development lifecycle. Our approach 
focuses on using formal verification to ensure that the ecosystem requirements model meet 

some specified restoration-related properties. 

 
In the context of natural ecosystem restoration, the duration for these restoration processes 

may take from years to decades before seeing the actual results. As raised bythe UN, there 

is an urgency to deal correctly and rapidly with the issues of the current  situation both in 
terms of financial impact of degraded ecosystems to our society and also in terms of human 

impact of the sustainability of our society. That is why we consider  software applications 

dealing with ecosystem restoration as critical-software applications. As such, formal 

methods are necessary to guarantee a rigorous requirements modeling. 
 

The aim of this paper is to show the usefulness in a short-term time-frame of formal methods 

for ecosystem restoration requirements. Due to the aforementioned pressuring financial and 
human issues, our approach aims at increasing confidence in requirements model and 

provide guarantee on the properties of these models. 

 
Our approach is designed in the context of Model-Driven Engineering [4,5]. MDE places 

models as first-class citizens within software development lifecycles. Meta-modeling is a key 

activity in MDE approaches. Meta-models define a modeling language tailored to specific 

concepts of an application domain. Moreover, the definition and usage of a metamodel in 
an MDE approach allows for model transformations, from one modeling language to another 

modeling language, e.g., from a requirements model to a design model. 

 
Following a typical software engineering approach, requirements artifacts are used as input 

for the further development activities, i.e. design and production of the software 

applications [3]. In our context, the intention of producing these formally verified re- 

quirements models of ecosystems is to use them as input for the development of software 
applications helping to manage and understand restoration challenges of ecosystems [6,7]. 

Future work includes the development of a simulation software application that takes this 

verified ecosystem restoration requirements model as input for its simulation con- 
figuration. Another future work thereafter is the development of an AI-based software 

application that generates synthetic data based on the verified ecosystem restoration re- 

quirements model provided by this approach, in order to fill the potential gaps of missing 
real-world data. 

 

In this paper, our main contribution is the proposal of a formal approach for modeling and 

verifying the requirements of ecosystems restoration goals using the standardized Unified 
Modelling Language (UML) and the Alloy formal language. We illustrate our approach with 

a case study by Treuer et al.[8] on the regeneration of a Costa Rican ecosystem. 

 
As a summary, our proposed approach provides tools for producing verified ecosystem 

requirements models including restoration goals. Our approach has the potential to en- hance 

the rigor and reliability of requirements engineering and verification in the domain of natural 
ecosystems restoration. It can help ensure that the ecosystems specifications are reliable and 

meet some given desired restoration goals. We believe that our work makes a valuable 

contribution to the field of formal software engineering applied to ecosystems restoration and 

have practical implications for researchers and practitioners, like political and environmental 
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policymakers. As a further step, the verified ecosystem requirements model will be used in 
an MDE process serving as input for the development of AI-based and remote sensing-based 

applications for dealing with ecosystem restoration data. 

 

The remainder of this paper is structured as follows. In Section 2, we present the run- ning 
example of the Costa Rican ecosystem. We then provide, in Section 3, an overview of the 

requirements specification phase for ecosystem applications, combining it with a literature 

review. Section 3 also presents our UML metamodel for ecosystem requirements and describe 
the key concepts in natural language. We then introduce our formal verifica- tion approach, 

in Section 4, including a formal definition of Alloy concepts and a detailed description of the 

formal modeling process. Then, in Section 5, we review related work on the use of formal 
methods for requirements engineering and verification in the domain of natural ecosystems. 

We focus on recent studies that use UML and Alloy or similar formal methods, as well as 

studies that apply these methods to remote sensing applications. Fi- nally, in Section 6, we 

discuss future directions for our research, how the contribution in this paper fits in a 
software development process. 

 

2. CRESTO RUNNING EXAMPLE 
 
In this section, we introduce the CRESTO1 running example based on the real-life case 

study as presented by Treuer et al. [8]. 

 

The study, conducted in the Guanacaste Conservation Area (GCA), a protected region in 
northwestern Costa Rica, addresses the pressing issue of tropical forest restoration. The GCA 

covers 1,000 square kilometers and encompasses a diverse range of habitats, includ- ing 

tropical dry forests affected by deforestation and degradation from human activities.  The 
research in [8] focuses on exploring new methods for restoring these ecosystems, with 

particular attention given to the use of agricultural waste, to improve forest restoration. The 

study was carried out in two distinct zones within the GCA, designated as Modulo II 
experimental zone and Control Zone. Modulo II, a 3-hectare region, was treated with 12,000 

metric tons of orange waste from a nearby juice factory, while the Control Zone, a  

neighbouring region of equal size, was left untreated. Both zones had similar initial ecologi- 

cal characteristics, referring to the variety of plant and animal species, vegetation, and soil  
composition, as well as initial degradation levels, which indicates the extent of damage to the 

natural ecosystem caused by factors such as pollution, deforestation or invasive species. 

Researchers monitored both zones for over a decade, collecting data on vegetation, soil,  and 
overall ecosystem health. Their findings indicated significant improvements in Modulo II, 

such as plant diversity, soil fertility, and more rapid forest restoration compared to the 

untreated Control Zone. This suggests that using agricultural waste can be an effective  
and inexpensive approach to restoring degraded tropical forests, which play a critical role in 

preserving global biodiversity and mitigating climate change. 

 

We use CRESTO to illustrate the applicability of our approach to modeling ecosystem 
restoration requirements and checking safety and liveness properties by applying formal 

verification techniques. 

 

3. REQUIREMENTS SPECIFICATION OF ECOSYSTEMS 
 

In this section, we focus on the initial stage of a simple waterfall software engineering life  

cycle [3]: the requirements engineering phase. We delve into its application in the context of 

ecosystem restoration requirements. 
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Understanding and managing intricate relationships between various entities and prop- erties 
is important for the success of rehabilitation efforts [1] such as restoration or moni- toring of 

complex ecosystems. The specialized metamodel depicted in Figure 1 provides a semi-

formal framework to capture and analyze these relationships, enabling stakeholders to make 

informed decisions related to ecosystem restoration requirements. 
 

By presenting the different concepts within our specialized metamodel and emphasiz- ing the 

motivation behind them, we aim to provide a comprehensive abstraction of the relationships 
and factors involved in ecosystem requirements. In the following subsections, we introduce 

and describe in a systematic manner each concept related to our metamodel, depicted in 

Figure 1. First, each concept is presented informally, then we present how it has been 
integrated in our metamodel and finally, we illustrate its usage in CRESTO. 

 
1 CRESTO stands for ”Costa Rica Restoration” 

 

 
 

Fig. 1. Metamodel for Ecosystem Requirements Specification 

 

3.1. Ecosystem 
 

In our approach, an ecosystem is a natural environment with its own unique charac- teristics, 

consisting of various species, regions, restoration goals, and potentially nested sub-
ecosystems. It aims to capture the organization, complexity and interrelationships of the 

components within a natural environment and their sub-ecosystems. 

 
In our metamodel (see Fig. 1), the Ecosystem class has associations with Species, Region, 

RestorationGoal, and a recursive association with itself for subEcosystems. These relationships 

help model the different aspects of an ecosystem and its interactions with various components. 
 

Finally, in CRESTO, the Guanacaste Conservation Area (GCA) is modeled as an 

ecosystem, as it is a protected region in northwestern Costa Rica where the study focuses on 

restoring tropical forests. 
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3.2. Region 
 

A region represents a geographical area of an ecosystem, defined by a set of line segments. It 

helps to model and define specific spatial aspects and characteristics of the environment. 
 

In our metamodel (see Fig. 1), the Region class has an association with the Segment class. This 

relationship helps define the boundaries of a region and allows for the modeling of complex 
shapes and areas within an ecosystem. 

 

In CRESTO, both the Modulo II and the Control Zone are regions part of the GCA 

ecosystem. 
 

3.3. Segment 
 

A segment is a line that helps define the boundaries of a region. It consists of start and 

end points with their respective X and Y coordinates, allowing for the accurate modeling of 

the shape and size of an ecosystem region. 
 

The Segment class in our metamodel (see Fig. 1) is used in a composition relation- ship with 

the Region class, enabling the construction of complex shapes and areas to accurately represent 
the different region zones of an ecosystem. 

 

In CRESTO, the borders of the Modulo II and Control Zone regions are defined with a 
set of segments, helping to specify the area where the orange waste is applied and the area 

left untreated for comparison. 

 

3.4. Species 
 

A species is an abstract representation of living organisms that inhabit in one or more 
ecosystems. It models the diversity and interactions of various life forms within an ecosys- 

tem. 

 

In our metamodel (see Fig. 1), the Species class has an association with the Ecosystem class, 
indicating that a species inhabits an ecosystem. This relationship models the pres- ence 

and distribution of different species as part of ecosystems. 

 
In CRESTO, Species could represent various plants, animals, and microorganisms that are 

part of the tropical forest ecosystem in the GCA. For instance, the Hyparrehenia and 

Byrsonima plants are particular examples of a species in CRESTO. Hyparrehenia is a plant 

species found in the ModuloII region, whereas Byrsonima is a plant associated with the 
Control Zone. The diverse species found in these two regions exemplify restoration- related 

properties. 

 
3.5. Restoration Goal 
 
A restoration goal refers to one objective for restoring a specific ecosystem. Such goals can 

involve various objectives such as improving water quality or accelerate forest regeneration, to 

name a few. 
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In our metamodel (see Fig. 1), the Restoration Goal class has associations with the Ecosystem 
and Property classes. These relationships models the context and conditions for achieving a 

restoration goal. Moreover, it has an association with the Goal Type class, enabling the 

specification of different goal types for the restoration, such as biodiversity, carbon 

sequestration or soil improvement. 
 

In CRESTO, the desired increase in biodiversity, soil fertility, and forest restoration  with 

the application of the orange waste property in the Modulo II region is modeled as a 
RestorationGoal. 

 

3.6. Property 
 

The Property concept represents key factors, conditions, or characteristics associated with an 

ecosystem that play a crucial role in understanding its health, restoration, or degra-dation. By 
capturing these properties, stakeholders can gain valuable insights into the ecosystem’s 

current state, assess the impact of specific interventions, and devise targeted strategies for 

restoration, conservation, or management, among others. 
 

A property is a representation of various attributes and characteristics of an ecosystem that 

play a role in determining its health, restoration, or degradation. Properties are 

associated with a particular origin and a type, which helps classify them based on their nature 
and function in the ecosystem. 

 

In our metamodel (see Fig. 1), the Property class is associated with the RestorationGoal and 
PropertyType classes. These relationships represent the various types of properties and how they 

relate to the restoration goal of an ecosystem. 

 
In CRESTO, the Property concept is used to represent the application of agricultural waste, 

specifically orange waste, in the restoration goal of the Modulo II zone. The waste’s  origin, 

from a juice factory in Costa Rica, and its classification as a human-originated factor, are 

important pieces of information to understand its effect on the ecosystem. 
 

3.7. Property Type 
 
A property type serves as a means to classify various properties of an ecosystem. It differ - 

entiates between the distinct origins, nature, and functions of properties that influence the 

ecosystem’s health, restoration, or degradation. Furthermore, it contributes to a compre- 
hensive understanding of the ecosystem’s characteristics and their impact on its restoration 

goals. 

 
In our UML metamodel (see Fig. 1), the PropertyType class has two different special- izations, 

namely HumanProperty and NaturalProperty. Properties caused by human activities are specified 

with the HumanProperty specialization, while properties resulting from non-human factors are 

specified with NaturalProperty. 
 

For instance, in CRESTO, the PropertyType is used to classify the type of orange waste as 

HumanProperty since it is sourced from a factory in Costa Rica. 
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3.8. Goal Type 
 

A goal type functions as a medium to classify restoration goals within an ecosystem. It  

categorizes restoration goals according to their specific objectives and targets, which are 
essential for understanding the desired outcomes of restoration efforts and measuring their 

progress. 

 
In our UML metamodel (see Fig. 1), the GoalType class has specializations named Biodiversity, 

Carbon Sequestration and Soil Improvement. These specializa- tions represent different aspects 

of ecosystem restoration that may be prioritized depend- ing on the context and requirements of 

a particular ecosystem. By incorporating the GoalType concept and its specializations into the 
metamodel, stakeholders can better define, understand, and manage the diverse objectives of 

ecosystem restoration efforts. 

 
In CRESTO, the desired increase in biodiversity, soil fertility, and rapid forest restora- tion 

with the application of orange waste in the Modulo II region is an example of a 

restoration goal that could be classified as Biodiversity and SoilImprovement. 
 

4. FORMAL VERIFICATION OF ECOSYSTEM REQUIREMENTS 
 

The previous section provides an overview of our specialized metamodel for ecosystem 

requirements specification, which captures and analyzes relationships between various en- 
tities and properties within ecosystems. The metamodel is designed to facilitate decision- 

making in ecosystem restoration requirements, while providing a semi-formal framework for 

modeling and understanding the concepts and relationships involved in ecosystem re- 
quirements. It presents the concepts in a systematic manner, and demonstrates how they have 

been integrated into the metamodel and modeled in CRESTO. 

 

In this section, the focus shifts to the field of formal methods and their usage for the 
formal verification of ecosystem requirements within a software engineering context. As 

software systems become more complex, the need for robust verification and validation 

techniques grows increasingly important. Formal methods offer a rigorous, mathematically- 
based approach to specify and to verify software systems, thus increasing confidence in the 

validity of the requirements. 

 
Hence, to create our formalization, we use Alloy [9], a formal modeling and specifica- tion 

language based on first-order logic and inspired by the Z specification language [10] and 

object-oriented modeling languages such as UML [11]. Alloy offers a powerful and 

expressive means to model and analyze complex requirements. 
 

Our formalization is designed to allow stakeholders to accurately define the desired 

restoration requirements of an ecosystem, facilitating the detection, the elimination of 
inconsistencies and errors in the early stages of the software development lifecycle. Conse- 

quently, the application of the Alloy language contributes to a higher level of confidence in 

the validity of ecosystem requirements. 
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Moreover, to verify the properties and constraints of a given model, the Alloy Analyzer, a 
finite model finder that accompanies the Alloy language, can be used to automatically check, 

within a finite bound, whether an Alloy model satisfies the specified constraints [12]. Alloy 

is used for a variety of purposes including the precise specification of complex systems. In 

this context, the automated analysis capabilities can help identify potential errors or design 
flaws during the verification phase. 

 

In this section, we present a translation from UML to Alloy. Then we define the se- 
mantics of the core concepts in the Alloy language followed by a formalization of our  

metamodel, presented in Section 2. Moreover, we present the CRESTO Alloy instance 

and finally, we present the verification of safety and liveness properties, with respect to  
CRESTO. 

 

4.1. Translation from UML to Alloy 
 

Semantics, in the context of formal languages, refers to the meaning or interpretation of the 

symbols and expressions used in a language [13]. Specifically, we focus on the op- erational 
semantics, which defines the meaning of a formal language by describing the execution and 

evaluation of its expressions in terms of state transitions [14] to establish a mapping 

between UML and Alloy expressions. Hence, we can harness the complemen- tary strengths 

of both languages, enabling a comprehensive and precise representation of complex systems. 
 

The remainder of this sub-section presents a manual mapping between UML and Alloy, 

which we performed in the context of this article, highlighting the correspondences between their 
respective concepts, such as classes and signatures, attributes and fields, relationships and 

cardinalities, and inheritance. 

 

– Classes and Signatures: 

• UML classes are mapped to Alloy signatures, enabling the definition of objects 

structures in each respective language. 

• UML abstract classes are mapped to Alloy abstract signatures, which provide a 
base template that other classes or signatures can extend. 

– Attributes and Fields: 

• UML class attributes are mapped to Alloy signature fields, which represent the 

properties or attributes of objects in the corresponding set. 

• UML attribute data types are mapped to corresponding Alloy data types such as 

Int or String, which constrain the values that can be assigned to a field. 

– Relationships and Cardinalities: 

• UML relationships such as association, aggregation and composition are mapped 

to Alloy signature fields with appropriate multiplicity, which specify the number of related 

objects allowed in each direction. 

• UML relationship cardinalities are expressed using Alloy set cardinalities such 

as one, lone, some, and set, which specify the number of objects that can be related 

to another object through a particular relationship. 

– Inheritance: 

• UML inheritance is mapped to Alloy’s ‘extends’ keyword, which allows a signature  

to inherit the properties and relationships of another signature. 

 
 



Computer Science & Information Technology (CS & IT)                                        133 

 

4.2. Formal Definition of Alloy Core Concepts 
 

In this sub-section, we provide a mathematical formal definition and description of the 

semantics of the Alloy language, using first-order logic. Within the scope of this paper, we 
consider the Alloy specification only as a collection of signatures, facts, and predicates. It is 

worth mentioning that the Alloy language also includes other concepts, such as assertions,  

functions, and modules, which contribute to its semantics. Our aim in this section is to define 
the core principles and underlying characteristics of the Alloy language that are relevant in 

our formalization of ecosystem restoration requirements verification in the context of formal 

methods and software engineering. 
 

Definition 1. 

 

 An Alloy specification, denoted as spec,  is defined as a triple 〈Sig,  Fact, Pred〉 where: 

– Sig is a set of Alloy signatures. 

– Fact is a set of Alloy facts. 

– Pred is a set of Alloy predicates. 

 

Definition 2.   

 

An Alloy signature s ∈  Sig is defined as a triple 〈Atoms, Fields, Constraints〉where: 

– Atoms ⊆  ATOMS, where ATOMS is the set of all possible atoms in the universe. 

• ∀ a ∈  Atoms, a belongs to exactly one signature. Each atom a can be thought of as an 

element of a signature s. 

– Fields consists of a relation R ⊆  Sig × Types, where: 

Types is a set of types, which can be either user signature 2 or built-in signatures 
3 of the Alloy language. 

• Each field represents a relationship between instances of s and other signatures 

(user or built-in), with varying cardinality based on the model’s definition. 

– Constraints comprise a set of constraints, denoted by a set of first-order logical formu- 

las, ϕ. 

• Each constraint ϕ is a logical expression involving Atoms and Fields of the 

signature 

s. 

2 User signatures are explicitly defined by the modeler within the Alloy specification to represent specific 
concepts or relationships part of the problem domain being modeled. 
3 Built-in signatures are predefined in the Alloy language and represent fundamental data types to use 
across any Alloy model. 

 

Definition 3.  
 

An Alloy fact f ∈ Fact is defined as a constraint that is applied to spec, represented as a 

first-order logical formula φ: 

– Each fact f is a logical expression involving Atoms, Fields, and Signatures present 

in the Alloy specification spec. 
 

Definition 4.  

 

An Alloy predicate p ∈ Pred is defined as a reusable constraint represented as a 

parameterized first-order logical formula ξ: 

• 
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– Each predicate p has a set of parameters and is a logical expression involving Atoms, 

Fields, Signatures as well as the parameters. 

– Predicates can be invoked within facts, assertions, or other predicates, providing a 
modular way to express constraints and properties within spec. 

 

4.3. Metamodel Formalization 
 

Following the general translational rules of the Sub-section 4.1 and the formal definition of 

the semantics of the Alloy language using first-order logic in Sub-section 4.2, we now 
present a detailed Alloy formalization of our semi-formal UML metamodel, previously 

presented in Section 3. The formalized metamodel serves as the foundation for specifying 

ecosystem restoration requirements. The formalization of the metamodel concepts are 

systematically presented using signatures, fields, and constraints, combined with their  Alloy 
implementation, which constitutes the metamodel specification. 

 

Ecosystem is defined formally as a signature sEcosystem ∈ Sig, where: 

– Fields: 

• RhasSpecies ⊆ sEcosystem × sSpecies 

• Rregions ⊆ sEcosystem × sRegion 

• RrestorationGoal ⊆ sEcosystem × sRestorationGoal 

• RsubEcosystems ⊆ sEcosystem × sEcosystem 

– Constraints: 

• ϕEcosystem = ∀ e ∈  sEcosystem : |Rregions(e)| ≥ 1 

• ϕEcosystem = ∀ e ∈  sEcosystem : |RsubEcosystems(e)| ≥ 0 
 

The constraints on the Ecosystem signature indicate that each Ecosystem must have at  least 

one associated Region and can have zero or more sub-ecosystems. The Alloy code 

representation of the Ecosystem concept is shown below: 
 
sig Ecosystem { 
hasSpecies: set Species, regions: set Region, 
restorationGoal: lone RestorationGoal, subEcosystems: set Ecosystem 

} { 
#regions >= 1 
#subEcosystems >= 0 
} 
Listing 1.1. Alloy code for the Ecosystem concept. 

 

In Listing 1.1, we define the Ecosystem signature with four fields: hasSpecies, regions,  
restorationGoal, and subEcosystems, representing sets of Species, Region, a single Restora- 

tionGoal, and a set of Ecosystem objects, respectively. 

 
Region is defined formally as a signature sRegion ∈  Sig, where: 

– Fields: 

• Rlines ⊆ sRegion × sSegment 

– Constraints: 

• ϕRegion  = ∀ r ∈  sRegion  : |Rlines(r)| ≥ 3 
 

The constraint on the Region signature states that each Region must have at least three 
associated Segments. The constraint is based on the fact that a region is a two-dimensional 

object that requires a closed boundary to enclose an area. To form a closed boundary, at least 
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three line segments are needed that meet at three distinct points to create a closed shape, such 
as a triangle. Therefore, the constraint  ensures that  each Region object  has at least three 

associated Segments to form a closed shape, which is necessary to define a region. The 

Alloy code representation of the Region concept is shown below: 

 
sig Region { 
lines: set Segment 
} { 
#lines >= 3 
} 
Listing 1.2. Alloy code for the Region concept. 
 

In Listing 1.2, we define the Region signature with one field named lines, corresponding to a 

set of Segment. The cardinality constraint, as previously mentioned, ensures that each Region 
has at least three associated Segments. 

 

Segment is defined formally as a signature sSegment ∈  Sig, where: 

– Fields: 

• RstartX   ⊆ sSegment × String 

• RstartY    ⊆ sSegment × String 

• RendX   ⊆ sSegment × String 

• RendY    ⊆ sSegment × String 

– Constraints: None 
 

The Segment signature does not have any constraints, as it simply represents a line segment 

defined by two endpoints with x and y coordinates, simplified as a String type. The Alloy 

code representation of the Segment concept is shown below: 
 
sig Segment { 
startX: one String, startY: one String, endX: one String, endY: one String 
} 

Listing 1.3. Alloy code for the Segment concept. 

 

In Listing 1.3, we define the Segment signature with four fields: startX, startY, endX, and 

endY, representing the x and y coordinates of the start and end points of a line segment. 

 
Species is defined formally as an abstract signature sSpecies ∈  Sig, where: 

– Fields: 

• Rinhabits ⊆ sSpecies × sEcosystem 

• RscientificName   ⊆ sSpecies × String 

– Constraints: 

• ϕSpecies  = ∀ sp ∈  sSpecies  : |Rscientif icN ame(sp)| = 1 
 

The constraint on the Species signature indicate that each Species must have exactly one 

associated scientific name. The Alloy code representation of the Species concept is shown 

below: 
 
abstract sig Species { inhabits: set Ecosystem, scientificName: one String, 
} 

Listing 1.4. Alloy code for the Species concept. 

 

In Listing 1.4, we define the abstract Species signature with two fields: inhabits and 
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scientificName, representing a set of Ecosystem and a String, respectively. 
 

Property is defined formally as a signature sP roperty ∈  Sig, where: 

– Fields: 

• Rorigin ⊆ sProperty × String 

• RoriginT ype ⊆  sProperty × sPropertyT ype 

• Rweight ⊆ sProperty × Int 

• RusedInRestoration ⊆ sProperty × sRestorationGoal 

 

The Property signature does not have any constraints, as it represents a characteristic of 

the ecosystem restoration goal that is derived from a specific origin and has a certain weight. 
The Alloy code representation of the Property concept is shown below: 

 
sig Property { 
origin: one String, originType: one PropertyType, weight: one Int, 
usedInRestoration: set RestorationGoal 
} 
Listing 1.5. Alloy code for the Property concept. 
 

In Listing 1.5, we define the Property signature with four fields: origin, originType, weight, 

and usedInRestoration, representing a String, a single PropertyType, an integer value, and a 

set of RestorationGoal, respectively. 
 

RestorationGoal is defined formally as a signature sRestorationGoal ∈  Sig, where: 

– Fields: 

• Ron ⊆ sRestorationGoal × sEcosystem 

• RrestorationProp ⊆ sRestorationGoal × sProperty 

• RgoalT ype ⊆ sRestorationGoal × sGoalT ype 

– Constraints: 

• ϕRestorationGoal  = ∀ rg ∈  sRestorationGoal  : |Ron(rg)| = 1 

• ϕRestorationGoal  = ∀ rg ∈  sRestorationGoal  : |RrestorationP rop(rg)| = 1 

• ϕRestorationGoal  = ∀ rg ∈  sRestorationGoal  : |RgoalT ype(rg)| ≥ 1 
 
The constraints on the RestorationGoal signature indicate that each instance must be  

associated with exactly one Ecosystem, exactly one Property, and at least one GoalType.  The 

Alloy code representation of the RestorationGoal concept is shown below: 
sig RestorationGoal { on: one Ecosystem, 
restorationProp: one Property, goalType: some GoalType, 
} { 
#goalType >= 1 
} 

 
Listing 1.6. Alloy code for the RestorationGoal concept. 

 
In Listing 1.6, we define the RestorationGoal signature with three fields: on, restora- 

tionProp, and goalType, representing a single Ecosystem, a single Property, and a set of 

GoalType, respectively. 

 
PropertyType  is defined formally as an abstract signature sP ropertyT ype ∈  Sig without any 

fields or constraints. It serves as a base for more specific types of properties (such as 

”Human” or ”Natural”) related to the ecosystem restoration process. The Alloy code  
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representation of the PropertyType concept is shown in Listing 1.7. 
abstract sig PropertyType {} 

 
Listing 1.7. Alloy code for the PropertyType concept. 

 

GoalType is defined formally as an abstract signature sGoalT ype ∈  Sig, without any fields or 

constraints. It serves as a base for more specific types of goals related to the ecosystem 
restoration process. In Listing 1.8, we define the abstract GoalType signature. 
abstract sig GoalType {} 

 
Listing 1.8. Alloy code for the GoalType concept. 

 

4.4. Formalization  of  CRESTO 
 

In the previous sub-section, we presented the detailed Alloy formalization of our semi- 

formal UML metamodel, established through the application of the translational rules  
outlined in sub-section 4.1 and the formal definition of the semantics of the Alloy language 

using first-order logic in sub-section 4.2. 

 

Building on this foundation, in this sub-section, we apply the concepts and constructs 
derived from the formalized metamodel to the CRESTO running example. Our objective 

is to illustrate how our formalized metamodel can be used in the context of a real-world 

ecosystem restoration project, highlighting the process of specifying requirements using a  
formal approach. 

 
// Ecosystem instances 
one sig GCA extends Ecosystem {} 
one sig ModuloII, ControlZone extends Ecosystem {} 

 
fact { 
GCA.subEcosystems = ModuloII + ControlZone 

} 

 
// Region instances 

one sig ModuloRegion, ControlRegion extends Region {} 

 
// Segment instances 
one sig S1, S2, S3, S4, S5, S6, S7, S8 extends Segment {} 

 
fact { 
ModuloRegion.lines = S1 + S2 + S3 + S4 ControlRegion.lines = S5 + S6 + S7 + S8 

} 

 
// Species instances 
one sig Hyparrhenia, Byrsonima extends Species {} 

 
fact { 
Hyparrhenia.inhabits = ModuloII Byrsonima.inhabits = ModuloII Hyparrhenia.scientificName = "Hyparrhenia rufa" 

Byrsonima.scientificName = "Byrsonima crassifolia" 
} 

 
// Property instances 

one sig OrangeWaste extends Property {} 
fact { 
OrangeWaste.origin = "Juice Factory" OrangeWaste.originType = Human OrangeWaste.weight = 1 
OrangeWaste.usedInRestoration = ForestRestoration 
} 
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// RestorationGoal instances 
one sig ForestRestoration extends RestorationGoal {} 
fact { 
ForestRestoration.on = ModuloII ForestRestoration.restorationProp = OrangeWaste 
ForestRestoration.goalType = Biodiversity + CarbonSequestration + SoilImprovement 
} 

 
// PropertyType instances 
one sig Human extends PropertyType {} 

 
// GoalType instances 
one sig Biodiversity, CarbonSequestration, SoilImprovement extends GoalType {} 

 
Listing 1.9. Alloy instances for the CRESTO running example. 

 
We now present a detailed explanation of the Alloy instance for the CRESTO running 

example, as shown in Listing 1.9. 

 

– Ecosystem instances: We define GCA, ModuloII, and ControlZone as instances of the 
Ecosystem. The fact specifies that GCA has two sub-ecosystems: ModuloII and Con- 

trolZone. 

 

– Region instances: We define ModuloRegion and ControlRegion as instances of the 

Region. 
 

– Segment instances: We define eight instances of the Segment: S1, S2, S3, S4, S5, 

S6, S7, and S8. The fact associates the segments with the regions; ModuloRegion contains  

segments S1 to S4, while ControlRegion contains segments S5 to S8. 
 

– Species instances: We define Hyparrhenia and Byrsonima as instances of the Species.  

The fact specifies that both species inhabit the ModuloII ecosystem and sets their scientific 

names. 

 

– Property instances: We define OrangeWaste as an instance of the Property. The fact 
sets the origin, originType, weight, and restoration usage of OrangeWaste. 

 

– RestorationGoal instances: We define ForestRestoration as an instance of the Restora- 

tionGoal. The fact associates ForestRestoration with the ModuloII ecosystem, Or- 
angeWaste property, and sets the goal types: Biodiversity, CarbonSequestration, and 

SoilImprovement. 

 

– PropertyType instances: We define Human as an instance of PropertyType. This rep- 

resents the origin type of the OrangeWaste property, indicating that it originates from human 
activities. 

 

– GoalType instances: We define Biodiversity, CarbonSequestration, and SoilImprove- 

ment as instances of GoalType. These instances represent the types of restoration goals 
in CRESTO. 

 

This presentation shows how the various instances relate to each other, providing a compre- 

hensive representation of the ecosystem restoration requirements with respect to CRESTO. 
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4.5. Verification of Safety and Liveness Properties 
 

Building upon the previous sections, where we formally defined the core concepts of Al- loy 

and presented the formalization of our UML metamodel, we now focus on verifying safety 
and liveness properties in our Alloy specification model for natural ecosystem re- 

quirements. Safety properties ensure that undesirable situations do not occur throughout the 

system’s operation, whereas liveness properties guarantee that the system progresses towards 
desired outcomes, such to a restoration goal in this context. By verifying these properties, we 

aim to identify potential issues or inconsistencies in our specification model, thereby 

enhancing its reliability and robustness. 

 
Thereby, we utilize the Alloy Analyzer to assess the validity of our model, presented in sub-

section 4.4, against a short list of safety and liveness properties, as a proof of concept of our 

approach. The subsequent subsections outline the derivation of these properties,  the 
associated Alloy assertions, and the analysis of the verification results obtained using the 

Alloy Analyzer. 

 

4.6. SAFETY PROPERTIES 
 

 Species required for a restoration goal are already present within the ecosystem be- 

ing  restored. This safety property is important for ecosystem restoration verification for 
several reasons. First, ensuring that the species required for a restoration goal are 

present within the ecosystem being restored helps maintain the consistency of the 

restoration process. This consistency is vital for successful restoration projects, as it 
ensures that the targeted ecosystem has the necessary species to meet the de- sired restoration 

objectives. Second, if the required species are not present within the ecosystem, the 

restoration process may face various challenges. For example, the ab- sence of some species 
could result in a slower ecosystem restoration, as presented in CRESTO. Lastly, by verifying 

the presence of the required species in the target ecosys- tem, stakeholders can better allocate 

resources for the restoration process, allowing the prioritization of other essential aspects of 

the restoration project. In Figure 3, we show the Alloy Analyzer output presenting a 
counterexample for the safety property check. Such counterexample allows stakeholders 

using our approach to detect inconsistencies, iteratively refine their model, and enhance their 

restoration process’s accuracy and robustness. 
 
assert speciesInRestorationGoal { 

all g: RestorationGoal | g.on.hasSpecies = (g.restorationProp. usedInRestoration.on.hasSpecies) 
} 
check speciesInRestorationGoal 

 

 The restoration process should operate on an ecosystem. This safety property empha- 
sizes the importance of ensuring that the restoration goal operates specifically on an 

ecosystem, rather than on an unrelated or irrelevant entity. This is essential to guar- antee 

that the formal verification and restoration requirements are applied to the ap- propriate 
context. In Figure 2, the Alloy Analyzer did not find counterexamples of the property. This 

validity result suggests that our formalization effectively ensures that the restoration 

process is applied to the appropriate context, specifically targeting ecosystems and 

contributing to their restoration goal. 
 
assert RestorationShallOccurOnEcosystem { 
all rp: RestorationGoal | rp.on in Ecosystem 
} 

check RestorationShallOccurOnEcosystem 
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 Liveness Properties 

 

1. Eventually, every species should have a habitat. This liveness property highlights the 

important goal of ecosystem restoration efforts: providing suitable habitats for every species. 

Ensuring that each species has a habitat is essential to support biodiversity and maintain 
the overall health of the ecosystem. By emphasizing this property, the formal verification 

process can help guide restoration efforts towards achieving this  critical objective, 

contributing to the long-term success of ecosystem recovery. In our verification, depicted in 
Figure 2, we were able to confirm the validity of the property. 

 
assert EverySpeciesHasHabitat { 
all s: Species | some e: Ecosystem | s.inhabits = e}check Every Species Has Habitat 

 

2. Eventually, every ecosystem has a restoration goal associated with it. This liveness 
property is essential to create a more resilient and sustainable global environment, as it 

encourages the development and implementation of restoration plans for all ecosystems, 

regardless of their current state. In contrast to the previous liveness property, our model 
execution with the Alloy Analyzer identified a counterexample. The presence of such 

counterexample indicates that our formalization approach can effectively allow the detection 

of important cases that are essential to uncover during verification phases. 

 
assert EveryEcosystemHasRestorationProcess { 
all e: Ecosystem | some rp: RestorationGoal | rp.on = e 
} 
check EveryEcosystemHasRestorationProcess 

 

5. ASSESSMENT 
 
The following assessment provides a summary of the research method used, as well as a 

factual overview of the strengths and weaknesses of our approach and highlights key 

contributions in the context of software engineering and formal methods. 
 

Our research method, which is based on a case study, allows us to explore the spe- cific 

context of ecosystem restoration requirements and obtain valuable insights into our 
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Fig. 2. Alloy Analyzer output for the ”RestorationShallOccurOnEcosystem” safety property and 

”Ev- erySpeciesHasHabitat” liveness property. The output reveals that no counterexamples are 

found for both properties, indicating that the assertion may be valid within our formal model. 

 

formalization approach. By analyzing a single, simple case in detail, we can uncover the 
nuances and intricacies involved in the verification of ecosystem restoration requirements. 

This detailed understanding of the case, combined with our formalization in Alloy, enables us 

to develop a more general and abstract solution that can be applied to a wider range of 
cases in the domain of ecosystem restoration requirements. The use of a case study research 

method allows us to establish a solid foundation in real-world contexts and ef- fectively 

address the practical challenges faced by stakeholders in the field of ecosystem restoration 
requirements. However, its weakness is related to the lack of generalizability. By focusing 

on a single case study, we may not be able to thoroughly evaluate the appli- cability and 

effectiveness of our approach across a broader range of case studies differing from the initial 

one. Although case studies can provide valuable insights into specific in- stances, it may be 
difficult to generalize our approach to other cases, potentially limiting the overall robustness 

and validity of our approach. 

 
In the context of ecosystem restoration, the application of Alloy and UML offers signif- icant 

benefits, including clarity in defining requirements, rigorous verification capabilities  and 

early error detection. However, these languages also present weaknesses such as com- plexity 

and scalability, particularly for Alloy. Alloy, as any formal language can be complex and 
may require a significant learning curve, posing a barrier for stakeholders who are not  

familiar with these languages. Scalability is crucial for any formal verification approach, 

as it determines the method’s ability to handle larger, more complex models and require- 
ments. While Alloy enables automatic analysis and provides an adaptable solution for  

various complexities of ecosystem requirements verification, it faces challenges when deal- 

ing with larger, more complex models. The Alloy Analyzer’s finite model finder explores 
a vast solution space within a finite bound, based on the small scope hypothesis. This  

hypothesis asserts that most errors in a model can be detected within a small instance, al- 
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Fig. 3. Alloy Analyzer output presenting a counterexample for the ”speciesInRestorationGoal” 

safety property check. The counterexample demonstrates that species may not be present in an 

ecosystem with a restoration goal associated with it, which invalidates the defined safety property 

in our formal model lowing for efficient verification of complex requirements. The Alloy Analyzer 

leverages this principle, however, its performance may degrade as the complexity of the model 
increases [15], which is a limitation to consider. 

 

Nevertheless, our approach demonstrates its effectiveness by identifying inconsisten- cies 

and errors in the early stages of the software development lifecycle. By providing a  
formalized metamodel in Alloy, our method enables stakeholders to precisely capture the 

intended requirements of an ecosystem as well as restoration goals. This level of preci- sion 

reduces ambiguities and enhances the clarity of communication among stakeholders,  
contributing to a higher level of confidence in the validity of ecosystem requirements. 

 

Our work contributes to integrate formal methods into software engineering by offer - ing a 

robust and efficient approach for formalizing and verifying ecosystem restoration re- 
quirements using Alloy. This enhances the quality and reliability of software systems while 

advancing formal methods and software engineering in this domain, laying the groundwork 

for future research and innovation. 
 

6. RELATED WORK 
 

The application of modeling languages and formal methods has become increasingly im- 

portant across various domains. In this related work section, we provide an overview of  
existing research utilizing UML and formal methods, highlighting the unique contributions  

of our approach in addressing the challenges of ecosystem restoration. 

 
UML has been praised as the ”de facto standard” of software engineering [16]. Despite this, 

its application extends beyond software engineering and into fields such as environ- mental 

modeling and sustainable ecosystem management [17]. For instance in [18], Khaiter et al. 
conceptualized a UML metamodel for an environmental software modeling frame- work, 
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which serves as a tool for addressing sustainability tasks. Their work outlines the 
framework’s multi-layered architecture and its primary software components, using UML 

diagrams to depict the internal functional logic of each component. Compared to those 

studies, our approach applies a semi-formal UML metamodel specifically for ecosystem 

restoration requirements and formalizes it with formal methods such as Alloy. Hence, our  
approach leverages the strengths of both approaches to create more robust and reliable 

models, particularly in the context of software engineering. 

 
The use of formal methods remains relatively limited in the ecosystem domain, likely due to 

the complex, dynamic, and often non-linear nature of ecological systems that pose challenges 

for applying formal techniques. Nevertheless, there are a handful of studies where formal 
methods have been successfully employed within the ecosystem domain. 

 

For instance, in [19], Thomas et al. discuss the application of model-checking within 

ecosystems, automatically assessing the dynamics of ecological systems by verifying whether a 
state-transition graph satisfies a dynamical property expressed as a temporal logic for - mula. 

This article offers an inventory of existing ecological state-transition graphs and a clear 

presentation of the model-checking methodology, using ecosystem vegetation models as 
examples. Additionally, in [20], Konigsberg et al. present a formal methodology for 

modeling and verifying predator-prey interactions in an ecosystem using first-order logic and 

qualitative methods to verify satisfiability and address performance concerns. Finally, in 
[21], Largouët et al. propose a qualitative modeling approach based on timed automata 

formalism, coupled with model-checking techniques, to evaluates ecosystem property dy- 

namics and temporal evolution in response to various management options. 

In contrast to the cited papers, our work sets itself apart by adopting a comprehensive 
approach to ecosystem restoration and by formalizing the restoration requirements using the 

Alloy language. Our key contribution lies in proposing a rigorous approach for spec- ifying 

and verifying ecosystem restoration requirements, encompassing a wider ecological context 
and addressing various aspects of the restoration process. 

 

7. PERSPECTIVES 
 

This paper provides a foundation for further exploration in formal verification of ecosystem 
requirements within software engineering. Several directions for future work can build upon and 

refine the current work. 

 
It is important to address the generalizability limitation of our research method. Hence, future 

work could involve conducting additional case studies or employing complementary research 

methods to further assess and validate the applicability of our approach to ecosys- tem 
restoration requirements verification in software engineering. Additionally, expanding the 

metamodel to allow the formalization and specification of more concepts related to 

ecosystems is important for improving the overall scope and effectiveness of our method. 

Moreover, we are working on the  application  of  the  Alloy  specification  language  for the 
formalization of a conceptual framework that delineates the concepts of dependability and 

resilience [22], which can be applied in the context of natural ecosystem restoration. This 

initiative aims at establishing a rigorous foundation for modeling the fundamental 
characteristics that contribute to the robustness and adaptability of ecological systems. 

Consequently, this will facilitate the development of more efficacious strategies for the 

restoration of deteriorated ecosystems and the assurance of their long-term sustainability. The 

motivation for this aspect of our research is to leverage formal verification with Alloy in 
order to connect the theoretical comprehension and practical execution of ecological 

restoration efforts, thus providing a more rigorous and reliable basis for decision-making. 
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This approach aims at empowering decision-makers to make well-informed decisions that 
promote ecosystem health and resilience, ensuring that restoration efforts are grounded in a 

robust and dependable framework. 

 

8. CONCLUSION 
 
In this paper, we introduced a formal approach for modeling and verifying the require- ments 

of ecosystems restoration goals using UML and Alloy. By enhancing the rigor and reliability 

of requirements engineering and verification in the domain of natural ecosys- tems 
restoration, our approach offers valuable insights for researchers, practitioners, and  

policymakers alike. Furthermore, the verified ecosystem requirements model could serve as a 

foundation for AI-based and remote sensing applications in ecosystem restoration data 
management. Ultimately, this work contributes significantly to the field of formal software 

engineering applied to ecosystems restoration, helping to ensure the development of reliable 

ecosystem specifications that meet specified restoration goals. 
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