

David C. Wyld et al. (Eds): MLNLP, NWCOM, DTMN, ASOFT, SIGPRO, AIFZ, CSITY, CLSB - 2023

pp. 125-145, 2023. CS & IT - CSCP 2023 DOI: 10.5121/csit.2023.131609

FORMAL VERIFICATION OF ECOSYSTEM

RESTORATION REQUIREMENTS USING

UML AND ALLOY

Tiago Sousa, Benoˆıt Ries, and Nicolas Guelfi

Department of Computer Science, University of Luxembourg,

Esch-sur-Alzette, Luxembourg

ABSTRACT

United Nations have declared the current decade (2021-2030) as the ”UN Decade on Ecosystem

Restoration” to join R&D forces to fight against the ongoing environmental crisis. Given the

ongoing degradation of earth ecosystems and the related crucial services that they offer to the

human society, ecosystem restoration has become a major society-critical issue. It is required to

develop rigorously software applications managing ecosystem restoration. Reliable models of

ecosystems and restoration goals are necessary. This paper proposes a rigorous approach for

ecosystem requirements modeling using formal methods from a model-driven software

engineering point of view. The authors describe the main concepts at stake with a metamodel in

UML and introduce a formalization of this metamodel in Alloy. The formal model is executed

with Alloy Analyzer, and safety and liveness properties are checked against it. This approach
helps ensuring that ecosystem specifications are reliable and that the specified ecosystem meets the

desired restoration goals, seen in our approach as liveness and safety properties. The concepts

and activities of the approach are illustrated with CRESTO, a real-world running example of a

restored Costa Rican ecosystem.

KEYWORDS

Language and Formal Methods, Formal Software Engineering, Requirements Engineering,

Ecosystem Restoration Modeling, Alloy, UML

1. INTRODUCTION

Ecosystems are complex systems that are crucial to the sustainability of human life on Earth.
With the growing threat of climate change and environmental degradation, there is an

increasing need for software applications that can help us understand and manage the

restoration of ecosystems. Initially the concept of ”Ecosystem restoration” was restricted to

bringing back a degraded ecosystem to its previous state [1]. Nowadays, this concept has
been loosened to integrate climate change and the possibility that strictly reversing to

previous state might not be the optimal solution, UN now defines Ecosystem restoration as

“the process of halting and reversing degradation, resulting in improved ecosystem services
and recovered biodiversity.[...]” [2].

However, developing software applications dealing with ecosystems data is a challeng- ing

task, as it requires a deep understanding of the ecosystem’s structure, behavior, and its
interactions with its environment. During the last decades, the software engineering

community has tackled the problem of modeling complex systems and the verification of

properties on these models. In this paper, we focus our contribution on two early activities of

https://airccse.org/csit/V13N16.html
https://doi.org/10.5121/csit.2023.131609

126 Computer Science & Information Technology (CS & IT)

the software development lifecycle, namely requirements modeling and formal verifica- tion
of requirements models. On the one hand, requirements modeling is typically used in

Software Engineering [3] to improve the communication between stakeholders before

designing and actually producing the system. On the other hand, formal verification tech-

niques are used in different phases of the software development lifecycle. Our approach
focuses on using formal verification to ensure that the ecosystem requirements model meet

some specified restoration-related properties.

In the context of natural ecosystem restoration, the duration for these restoration processes

may take from years to decades before seeing the actual results. As raised bythe UN, there

is an urgency to deal correctly and rapidly with the issues of the current situation both in
terms of financial impact of degraded ecosystems to our society and also in terms of human

impact of the sustainability of our society. That is why we consider software applications

dealing with ecosystem restoration as critical-software applications. As such, formal

methods are necessary to guarantee a rigorous requirements modeling.

The aim of this paper is to show the usefulness in a short-term time-frame of formal methods

for ecosystem restoration requirements. Due to the aforementioned pressuring financial and
human issues, our approach aims at increasing confidence in requirements model and

provide guarantee on the properties of these models.

Our approach is designed in the context of Model-Driven Engineering [4,5]. MDE places

models as first-class citizens within software development lifecycles. Meta-modeling is a key

activity in MDE approaches. Meta-models define a modeling language tailored to specific

concepts of an application domain. Moreover, the definition and usage of a metamodel in
an MDE approach allows for model transformations, from one modeling language to another

modeling language, e.g., from a requirements model to a design model.

Following a typical software engineering approach, requirements artifacts are used as input

for the further development activities, i.e. design and production of the software

applications [3]. In our context, the intention of producing these formally verified re-

quirements models of ecosystems is to use them as input for the development of software
applications helping to manage and understand restoration challenges of ecosystems [6,7].

Future work includes the development of a simulation software application that takes this

verified ecosystem restoration requirements model as input for its simulation con-
figuration. Another future work thereafter is the development of an AI-based software

application that generates synthetic data based on the verified ecosystem restoration re-

quirements model provided by this approach, in order to fill the potential gaps of missing
real-world data.

In this paper, our main contribution is the proposal of a formal approach for modeling and

verifying the requirements of ecosystems restoration goals using the standardized Unified
Modelling Language (UML) and the Alloy formal language. We illustrate our approach with

a case study by Treuer et al.[8] on the regeneration of a Costa Rican ecosystem.

As a summary, our proposed approach provides tools for producing verified ecosystem

requirements models including restoration goals. Our approach has the potential to en- hance

the rigor and reliability of requirements engineering and verification in the domain of natural
ecosystems restoration. It can help ensure that the ecosystems specifications are reliable and

meet some given desired restoration goals. We believe that our work makes a valuable

contribution to the field of formal software engineering applied to ecosystems restoration and

have practical implications for researchers and practitioners, like political and environmental

Computer Science & Information Technology (CS & IT) 127

policymakers. As a further step, the verified ecosystem requirements model will be used in
an MDE process serving as input for the development of AI-based and remote sensing-based

applications for dealing with ecosystem restoration data.

The remainder of this paper is structured as follows. In Section 2, we present the run- ning
example of the Costa Rican ecosystem. We then provide, in Section 3, an overview of the

requirements specification phase for ecosystem applications, combining it with a literature

review. Section 3 also presents our UML metamodel for ecosystem requirements and describe
the key concepts in natural language. We then introduce our formal verifica- tion approach,

in Section 4, including a formal definition of Alloy concepts and a detailed description of the

formal modeling process. Then, in Section 5, we review related work on the use of formal
methods for requirements engineering and verification in the domain of natural ecosystems.

We focus on recent studies that use UML and Alloy or similar formal methods, as well as

studies that apply these methods to remote sensing applications. Fi- nally, in Section 6, we

discuss future directions for our research, how the contribution in this paper fits in a
software development process.

2. CRESTO RUNNING EXAMPLE

In this section, we introduce the CRESTO1 running example based on the real-life case

study as presented by Treuer et al. [8].

The study, conducted in the Guanacaste Conservation Area (GCA), a protected region in
northwestern Costa Rica, addresses the pressing issue of tropical forest restoration. The GCA

covers 1,000 square kilometers and encompasses a diverse range of habitats, includ- ing

tropical dry forests affected by deforestation and degradation from human activities. The
research in [8] focuses on exploring new methods for restoring these ecosystems, with

particular attention given to the use of agricultural waste, to improve forest restoration. The

study was carried out in two distinct zones within the GCA, designated as Modulo II
experimental zone and Control Zone. Modulo II, a 3-hectare region, was treated with 12,000

metric tons of orange waste from a nearby juice factory, while the Control Zone, a

neighbouring region of equal size, was left untreated. Both zones had similar initial ecologi-

cal characteristics, referring to the variety of plant and animal species, vegetation, and soil
composition, as well as initial degradation levels, which indicates the extent of damage to the

natural ecosystem caused by factors such as pollution, deforestation or invasive species.

Researchers monitored both zones for over a decade, collecting data on vegetation, soil, and
overall ecosystem health. Their findings indicated significant improvements in Modulo II,

such as plant diversity, soil fertility, and more rapid forest restoration compared to the

untreated Control Zone. This suggests that using agricultural waste can be an effective
and inexpensive approach to restoring degraded tropical forests, which play a critical role in

preserving global biodiversity and mitigating climate change.

We use CRESTO to illustrate the applicability of our approach to modeling ecosystem
restoration requirements and checking safety and liveness properties by applying formal

verification techniques.

3. REQUIREMENTS SPECIFICATION OF ECOSYSTEMS

In this section, we focus on the initial stage of a simple waterfall software engineering life

cycle [3]: the requirements engineering phase. We delve into its application in the context of

ecosystem restoration requirements.

128 Computer Science & Information Technology (CS & IT)

Understanding and managing intricate relationships between various entities and prop- erties
is important for the success of rehabilitation efforts [1] such as restoration or moni- toring of

complex ecosystems. The specialized metamodel depicted in Figure 1 provides a semi-

formal framework to capture and analyze these relationships, enabling stakeholders to make

informed decisions related to ecosystem restoration requirements.

By presenting the different concepts within our specialized metamodel and emphasiz- ing the

motivation behind them, we aim to provide a comprehensive abstraction of the relationships
and factors involved in ecosystem requirements. In the following subsections, we introduce

and describe in a systematic manner each concept related to our metamodel, depicted in

Figure 1. First, each concept is presented informally, then we present how it has been
integrated in our metamodel and finally, we illustrate its usage in CRESTO.

1 CRESTO stands for ”Costa Rica Restoration”

Fig. 1. Metamodel for Ecosystem Requirements Specification

3.1. Ecosystem

In our approach, an ecosystem is a natural environment with its own unique charac- teristics,

consisting of various species, regions, restoration goals, and potentially nested sub-
ecosystems. It aims to capture the organization, complexity and interrelationships of the

components within a natural environment and their sub-ecosystems.

In our metamodel (see Fig. 1), the Ecosystem class has associations with Species, Region,

RestorationGoal, and a recursive association with itself for subEcosystems. These relationships

help model the different aspects of an ecosystem and its interactions with various components.

Finally, in CRESTO, the Guanacaste Conservation Area (GCA) is modeled as an

ecosystem, as it is a protected region in northwestern Costa Rica where the study focuses on

restoring tropical forests.

Computer Science & Information Technology (CS & IT) 129

3.2. Region

A region represents a geographical area of an ecosystem, defined by a set of line segments. It

helps to model and define specific spatial aspects and characteristics of the environment.

In our metamodel (see Fig. 1), the Region class has an association with the Segment class. This

relationship helps define the boundaries of a region and allows for the modeling of complex
shapes and areas within an ecosystem.

In CRESTO, both the Modulo II and the Control Zone are regions part of the GCA

ecosystem.

3.3. Segment

A segment is a line that helps define the boundaries of a region. It consists of start and

end points with their respective X and Y coordinates, allowing for the accurate modeling of

the shape and size of an ecosystem region.

The Segment class in our metamodel (see Fig. 1) is used in a composition relation- ship with

the Region class, enabling the construction of complex shapes and areas to accurately represent
the different region zones of an ecosystem.

In CRESTO, the borders of the Modulo II and Control Zone regions are defined with a
set of segments, helping to specify the area where the orange waste is applied and the area

left untreated for comparison.

3.4. Species

A species is an abstract representation of living organisms that inhabit in one or more
ecosystems. It models the diversity and interactions of various life forms within an ecosys-

tem.

In our metamodel (see Fig. 1), the Species class has an association with the Ecosystem class,
indicating that a species inhabits an ecosystem. This relationship models the pres- ence

and distribution of different species as part of ecosystems.

In CRESTO, Species could represent various plants, animals, and microorganisms that are

part of the tropical forest ecosystem in the GCA. For instance, the Hyparrehenia and

Byrsonima plants are particular examples of a species in CRESTO. Hyparrehenia is a plant

species found in the ModuloII region, whereas Byrsonima is a plant associated with the
Control Zone. The diverse species found in these two regions exemplify restoration- related

properties.

3.5. Restoration Goal

A restoration goal refers to one objective for restoring a specific ecosystem. Such goals can

involve various objectives such as improving water quality or accelerate forest regeneration, to

name a few.

130 Computer Science & Information Technology (CS & IT)

In our metamodel (see Fig. 1), the Restoration Goal class has associations with the Ecosystem
and Property classes. These relationships models the context and conditions for achieving a

restoration goal. Moreover, it has an association with the Goal Type class, enabling the

specification of different goal types for the restoration, such as biodiversity, carbon

sequestration or soil improvement.

In CRESTO, the desired increase in biodiversity, soil fertility, and forest restoration with

the application of the orange waste property in the Modulo II region is modeled as a
RestorationGoal.

3.6. Property

The Property concept represents key factors, conditions, or characteristics associated with an

ecosystem that play a crucial role in understanding its health, restoration, or degra-dation. By
capturing these properties, stakeholders can gain valuable insights into the ecosystem’s

current state, assess the impact of specific interventions, and devise targeted strategies for

restoration, conservation, or management, among others.

A property is a representation of various attributes and characteristics of an ecosystem that

play a role in determining its health, restoration, or degradation. Properties are

associated with a particular origin and a type, which helps classify them based on their nature
and function in the ecosystem.

In our metamodel (see Fig. 1), the Property class is associated with the RestorationGoal and
PropertyType classes. These relationships represent the various types of properties and how they

relate to the restoration goal of an ecosystem.

In CRESTO, the Property concept is used to represent the application of agricultural waste,

specifically orange waste, in the restoration goal of the Modulo II zone. The waste’s origin,

from a juice factory in Costa Rica, and its classification as a human-originated factor, are

important pieces of information to understand its effect on the ecosystem.

3.7. Property Type

A property type serves as a means to classify various properties of an ecosystem. It differ -

entiates between the distinct origins, nature, and functions of properties that influence the

ecosystem’s health, restoration, or degradation. Furthermore, it contributes to a compre-
hensive understanding of the ecosystem’s characteristics and their impact on its restoration

goals.

In our UML metamodel (see Fig. 1), the PropertyType class has two different special- izations,

namely HumanProperty and NaturalProperty. Properties caused by human activities are specified

with the HumanProperty specialization, while properties resulting from non-human factors are

specified with NaturalProperty.

For instance, in CRESTO, the PropertyType is used to classify the type of orange waste as

HumanProperty since it is sourced from a factory in Costa Rica.

Computer Science & Information Technology (CS & IT) 131

3.8. Goal Type

A goal type functions as a medium to classify restoration goals within an ecosystem. It

categorizes restoration goals according to their specific objectives and targets, which are
essential for understanding the desired outcomes of restoration efforts and measuring their

progress.

In our UML metamodel (see Fig. 1), the GoalType class has specializations named Biodiversity,

Carbon Sequestration and Soil Improvement. These specializa- tions represent different aspects

of ecosystem restoration that may be prioritized depend- ing on the context and requirements of

a particular ecosystem. By incorporating the GoalType concept and its specializations into the
metamodel, stakeholders can better define, understand, and manage the diverse objectives of

ecosystem restoration efforts.

In CRESTO, the desired increase in biodiversity, soil fertility, and rapid forest restora- tion

with the application of orange waste in the Modulo II region is an example of a

restoration goal that could be classified as Biodiversity and SoilImprovement.

4. FORMAL VERIFICATION OF ECOSYSTEM REQUIREMENTS

The previous section provides an overview of our specialized metamodel for ecosystem

requirements specification, which captures and analyzes relationships between various en-
tities and properties within ecosystems. The metamodel is designed to facilitate decision-

making in ecosystem restoration requirements, while providing a semi-formal framework for

modeling and understanding the concepts and relationships involved in ecosystem re-
quirements. It presents the concepts in a systematic manner, and demonstrates how they have

been integrated into the metamodel and modeled in CRESTO.

In this section, the focus shifts to the field of formal methods and their usage for the
formal verification of ecosystem requirements within a software engineering context. As

software systems become more complex, the need for robust verification and validation

techniques grows increasingly important. Formal methods offer a rigorous, mathematically-
based approach to specify and to verify software systems, thus increasing confidence in the

validity of the requirements.

Hence, to create our formalization, we use Alloy [9], a formal modeling and specifica- tion

language based on first-order logic and inspired by the Z specification language [10] and

object-oriented modeling languages such as UML [11]. Alloy offers a powerful and

expressive means to model and analyze complex requirements.

Our formalization is designed to allow stakeholders to accurately define the desired

restoration requirements of an ecosystem, facilitating the detection, the elimination of
inconsistencies and errors in the early stages of the software development lifecycle. Conse-

quently, the application of the Alloy language contributes to a higher level of confidence in

the validity of ecosystem requirements.

132 Computer Science & Information Technology (CS & IT)

Moreover, to verify the properties and constraints of a given model, the Alloy Analyzer, a
finite model finder that accompanies the Alloy language, can be used to automatically check,

within a finite bound, whether an Alloy model satisfies the specified constraints [12]. Alloy

is used for a variety of purposes including the precise specification of complex systems. In

this context, the automated analysis capabilities can help identify potential errors or design
flaws during the verification phase.

In this section, we present a translation from UML to Alloy. Then we define the se-
mantics of the core concepts in the Alloy language followed by a formalization of our

metamodel, presented in Section 2. Moreover, we present the CRESTO Alloy instance

and finally, we present the verification of safety and liveness properties, with respect to
CRESTO.

4.1. Translation from UML to Alloy

Semantics, in the context of formal languages, refers to the meaning or interpretation of the

symbols and expressions used in a language [13]. Specifically, we focus on the op- erational
semantics, which defines the meaning of a formal language by describing the execution and

evaluation of its expressions in terms of state transitions [14] to establish a mapping

between UML and Alloy expressions. Hence, we can harness the complemen- tary strengths

of both languages, enabling a comprehensive and precise representation of complex systems.

The remainder of this sub-section presents a manual mapping between UML and Alloy,

which we performed in the context of this article, highlighting the correspondences between their
respective concepts, such as classes and signatures, attributes and fields, relationships and

cardinalities, and inheritance.

– Classes and Signatures:

• UML classes are mapped to Alloy signatures, enabling the definition of objects

structures in each respective language.

• UML abstract classes are mapped to Alloy abstract signatures, which provide a
base template that other classes or signatures can extend.

– Attributes and Fields:

• UML class attributes are mapped to Alloy signature fields, which represent the

properties or attributes of objects in the corresponding set.

• UML attribute data types are mapped to corresponding Alloy data types such as

Int or String, which constrain the values that can be assigned to a field.

– Relationships and Cardinalities:

• UML relationships such as association, aggregation and composition are mapped

to Alloy signature fields with appropriate multiplicity, which specify the number of related

objects allowed in each direction.

• UML relationship cardinalities are expressed using Alloy set cardinalities such

as one, lone, some, and set, which specify the number of objects that can be related

to another object through a particular relationship.

– Inheritance:

• UML inheritance is mapped to Alloy’s ‘extends’ keyword, which allows a signature

to inherit the properties and relationships of another signature.

Computer Science & Information Technology (CS & IT) 133

4.2. Formal Definition of Alloy Core Concepts

In this sub-section, we provide a mathematical formal definition and description of the

semantics of the Alloy language, using first-order logic. Within the scope of this paper, we
consider the Alloy specification only as a collection of signatures, facts, and predicates. It is

worth mentioning that the Alloy language also includes other concepts, such as assertions,

functions, and modules, which contribute to its semantics. Our aim in this section is to define
the core principles and underlying characteristics of the Alloy language that are relevant in

our formalization of ecosystem restoration requirements verification in the context of formal

methods and software engineering.

Definition 1.

 An Alloy specification, denoted as spec, is defined as a triple 〈Sig, Fact, Pred〉 where:

– Sig is a set of Alloy signatures.

– Fact is a set of Alloy facts.

– Pred is a set of Alloy predicates.

Definition 2.

An Alloy signature s ∈ Sig is defined as a triple 〈Atoms, Fields, Constraints〉where:

– Atoms ⊆ ATOMS, where ATOMS is the set of all possible atoms in the universe.

• ∀ a ∈ Atoms, a belongs to exactly one signature. Each atom a can be thought of as an

element of a signature s.

– Fields consists of a relation R ⊆ Sig × Types, where:

Types is a set of types, which can be either user signature 2 or built-in signatures
3 of the Alloy language.

• Each field represents a relationship between instances of s and other signatures

(user or built-in), with varying cardinality based on the model’s definition.

– Constraints comprise a set of constraints, denoted by a set of first-order logical formu-

las, ϕ.

• Each constraint ϕ is a logical expression involving Atoms and Fields of the

signature

s.

2 User signatures are explicitly defined by the modeler within the Alloy specification to represent specific
concepts or relationships part of the problem domain being modeled.
3 Built-in signatures are predefined in the Alloy language and represent fundamental data types to use
across any Alloy model.

Definition 3.

An Alloy fact f ∈ Fact is defined as a constraint that is applied to spec, represented as a

first-order logical formula φ:

– Each fact f is a logical expression involving Atoms, Fields, and Signatures present

in the Alloy specification spec.

Definition 4.

An Alloy predicate p ∈ Pred is defined as a reusable constraint represented as a

parameterized first-order logical formula ξ:

•

134 Computer Science & Information Technology (CS & IT)

– Each predicate p has a set of parameters and is a logical expression involving Atoms,

Fields, Signatures as well as the parameters.

– Predicates can be invoked within facts, assertions, or other predicates, providing a
modular way to express constraints and properties within spec.

4.3. Metamodel Formalization

Following the general translational rules of the Sub-section 4.1 and the formal definition of

the semantics of the Alloy language using first-order logic in Sub-section 4.2, we now
present a detailed Alloy formalization of our semi-formal UML metamodel, previously

presented in Section 3. The formalized metamodel serves as the foundation for specifying

ecosystem restoration requirements. The formalization of the metamodel concepts are

systematically presented using signatures, fields, and constraints, combined with their Alloy
implementation, which constitutes the metamodel specification.

Ecosystem is defined formally as a signature sEcosystem ∈ Sig, where:

– Fields:

• RhasSpecies ⊆ sEcosystem × sSpecies

• Rregions ⊆ sEcosystem × sRegion

• RrestorationGoal ⊆ sEcosystem × sRestorationGoal

• RsubEcosystems ⊆ sEcosystem × sEcosystem

– Constraints:

• ϕEcosystem = ∀ e ∈ sEcosystem : |Rregions(e)| ≥ 1

• ϕEcosystem = ∀ e ∈ sEcosystem : |RsubEcosystems(e)| ≥ 0

The constraints on the Ecosystem signature indicate that each Ecosystem must have at least

one associated Region and can have zero or more sub-ecosystems. The Alloy code

representation of the Ecosystem concept is shown below:

sig Ecosystem {
hasSpecies: set Species, regions: set Region,
restorationGoal: lone RestorationGoal, subEcosystems: set Ecosystem

} {
#regions >= 1
#subEcosystems >= 0
}
Listing 1.1. Alloy code for the Ecosystem concept.

In Listing 1.1, we define the Ecosystem signature with four fields: hasSpecies, regions,
restorationGoal, and subEcosystems, representing sets of Species, Region, a single Restora-

tionGoal, and a set of Ecosystem objects, respectively.

Region is defined formally as a signature sRegion ∈ Sig, where:

– Fields:

• Rlines ⊆ sRegion × sSegment

– Constraints:

• ϕRegion = ∀ r ∈ sRegion : |Rlines(r)| ≥ 3

The constraint on the Region signature states that each Region must have at least three
associated Segments. The constraint is based on the fact that a region is a two-dimensional

object that requires a closed boundary to enclose an area. To form a closed boundary, at least

Computer Science & Information Technology (CS & IT) 135

three line segments are needed that meet at three distinct points to create a closed shape, such
as a triangle. Therefore, the constraint ensures that each Region object has at least three

associated Segments to form a closed shape, which is necessary to define a region. The

Alloy code representation of the Region concept is shown below:

sig Region {
lines: set Segment
} {
#lines >= 3
}
Listing 1.2. Alloy code for the Region concept.

In Listing 1.2, we define the Region signature with one field named lines, corresponding to a

set of Segment. The cardinality constraint, as previously mentioned, ensures that each Region
has at least three associated Segments.

Segment is defined formally as a signature sSegment ∈ Sig, where:

– Fields:

• RstartX ⊆ sSegment × String

• RstartY ⊆ sSegment × String

• RendX ⊆ sSegment × String

• RendY ⊆ sSegment × String

– Constraints: None

The Segment signature does not have any constraints, as it simply represents a line segment

defined by two endpoints with x and y coordinates, simplified as a String type. The Alloy

code representation of the Segment concept is shown below:

sig Segment {
startX: one String, startY: one String, endX: one String, endY: one String
}

Listing 1.3. Alloy code for the Segment concept.

In Listing 1.3, we define the Segment signature with four fields: startX, startY, endX, and

endY, representing the x and y coordinates of the start and end points of a line segment.

Species is defined formally as an abstract signature sSpecies ∈ Sig, where:

– Fields:

• Rinhabits ⊆ sSpecies × sEcosystem

• RscientificName ⊆ sSpecies × String

– Constraints:

• ϕSpecies = ∀ sp ∈ sSpecies : |Rscientif icN ame(sp)| = 1

The constraint on the Species signature indicate that each Species must have exactly one

associated scientific name. The Alloy code representation of the Species concept is shown

below:

abstract sig Species { inhabits: set Ecosystem, scientificName: one String,
}

Listing 1.4. Alloy code for the Species concept.

In Listing 1.4, we define the abstract Species signature with two fields: inhabits and

136 Computer Science & Information Technology (CS & IT)

scientificName, representing a set of Ecosystem and a String, respectively.

Property is defined formally as a signature sP roperty ∈ Sig, where:

– Fields:

• Rorigin ⊆ sProperty × String

• RoriginT ype ⊆ sProperty × sPropertyT ype

• Rweight ⊆ sProperty × Int

• RusedInRestoration ⊆ sProperty × sRestorationGoal

The Property signature does not have any constraints, as it represents a characteristic of

the ecosystem restoration goal that is derived from a specific origin and has a certain weight.
The Alloy code representation of the Property concept is shown below:

sig Property {
origin: one String, originType: one PropertyType, weight: one Int,
usedInRestoration: set RestorationGoal
}
Listing 1.5. Alloy code for the Property concept.

In Listing 1.5, we define the Property signature with four fields: origin, originType, weight,

and usedInRestoration, representing a String, a single PropertyType, an integer value, and a

set of RestorationGoal, respectively.

RestorationGoal is defined formally as a signature sRestorationGoal ∈ Sig, where:

– Fields:

• Ron ⊆ sRestorationGoal × sEcosystem

• RrestorationProp ⊆ sRestorationGoal × sProperty

• RgoalT ype ⊆ sRestorationGoal × sGoalT ype

– Constraints:

• ϕRestorationGoal = ∀ rg ∈ sRestorationGoal : |Ron(rg)| = 1

• ϕRestorationGoal = ∀ rg ∈ sRestorationGoal : |RrestorationP rop(rg)| = 1

• ϕRestorationGoal = ∀ rg ∈ sRestorationGoal : |RgoalT ype(rg)| ≥ 1

The constraints on the RestorationGoal signature indicate that each instance must be

associated with exactly one Ecosystem, exactly one Property, and at least one GoalType. The

Alloy code representation of the RestorationGoal concept is shown below:
sig RestorationGoal { on: one Ecosystem,
restorationProp: one Property, goalType: some GoalType,
} {
#goalType >= 1
}

Listing 1.6. Alloy code for the RestorationGoal concept.

In Listing 1.6, we define the RestorationGoal signature with three fields: on, restora-

tionProp, and goalType, representing a single Ecosystem, a single Property, and a set of

GoalType, respectively.

PropertyType is defined formally as an abstract signature sP ropertyT ype ∈ Sig without any

fields or constraints. It serves as a base for more specific types of properties (such as

”Human” or ”Natural”) related to the ecosystem restoration process. The Alloy code

Computer Science & Information Technology (CS & IT) 137

representation of the PropertyType concept is shown in Listing 1.7.
abstract sig PropertyType {}

Listing 1.7. Alloy code for the PropertyType concept.

GoalType is defined formally as an abstract signature sGoalT ype ∈ Sig, without any fields or

constraints. It serves as a base for more specific types of goals related to the ecosystem
restoration process. In Listing 1.8, we define the abstract GoalType signature.
abstract sig GoalType {}

Listing 1.8. Alloy code for the GoalType concept.

4.4. Formalization of CRESTO

In the previous sub-section, we presented the detailed Alloy formalization of our semi-

formal UML metamodel, established through the application of the translational rules
outlined in sub-section 4.1 and the formal definition of the semantics of the Alloy language

using first-order logic in sub-section 4.2.

Building on this foundation, in this sub-section, we apply the concepts and constructs
derived from the formalized metamodel to the CRESTO running example. Our objective

is to illustrate how our formalized metamodel can be used in the context of a real-world

ecosystem restoration project, highlighting the process of specifying requirements using a
formal approach.

// Ecosystem instances
one sig GCA extends Ecosystem {}
one sig ModuloII, ControlZone extends Ecosystem {}

fact {
GCA.subEcosystems = ModuloII + ControlZone

}

// Region instances

one sig ModuloRegion, ControlRegion extends Region {}

// Segment instances
one sig S1, S2, S3, S4, S5, S6, S7, S8 extends Segment {}

fact {
ModuloRegion.lines = S1 + S2 + S3 + S4 ControlRegion.lines = S5 + S6 + S7 + S8

}

// Species instances
one sig Hyparrhenia, Byrsonima extends Species {}

fact {
Hyparrhenia.inhabits = ModuloII Byrsonima.inhabits = ModuloII Hyparrhenia.scientificName = "Hyparrhenia rufa"

Byrsonima.scientificName = "Byrsonima crassifolia"
}

// Property instances

one sig OrangeWaste extends Property {}
fact {
OrangeWaste.origin = "Juice Factory" OrangeWaste.originType = Human OrangeWaste.weight = 1
OrangeWaste.usedInRestoration = ForestRestoration
}

138 Computer Science & Information Technology (CS & IT)

// RestorationGoal instances
one sig ForestRestoration extends RestorationGoal {}
fact {
ForestRestoration.on = ModuloII ForestRestoration.restorationProp = OrangeWaste
ForestRestoration.goalType = Biodiversity + CarbonSequestration + SoilImprovement
}

// PropertyType instances
one sig Human extends PropertyType {}

// GoalType instances
one sig Biodiversity, CarbonSequestration, SoilImprovement extends GoalType {}

Listing 1.9. Alloy instances for the CRESTO running example.

We now present a detailed explanation of the Alloy instance for the CRESTO running

example, as shown in Listing 1.9.

– Ecosystem instances: We define GCA, ModuloII, and ControlZone as instances of the
Ecosystem. The fact specifies that GCA has two sub-ecosystems: ModuloII and Con-

trolZone.

– Region instances: We define ModuloRegion and ControlRegion as instances of the

Region.

– Segment instances: We define eight instances of the Segment: S1, S2, S3, S4, S5,

S6, S7, and S8. The fact associates the segments with the regions; ModuloRegion contains

segments S1 to S4, while ControlRegion contains segments S5 to S8.

– Species instances: We define Hyparrhenia and Byrsonima as instances of the Species.

The fact specifies that both species inhabit the ModuloII ecosystem and sets their scientific

names.

– Property instances: We define OrangeWaste as an instance of the Property. The fact
sets the origin, originType, weight, and restoration usage of OrangeWaste.

– RestorationGoal instances: We define ForestRestoration as an instance of the Restora-

tionGoal. The fact associates ForestRestoration with the ModuloII ecosystem, Or-
angeWaste property, and sets the goal types: Biodiversity, CarbonSequestration, and

SoilImprovement.

– PropertyType instances: We define Human as an instance of PropertyType. This rep-

resents the origin type of the OrangeWaste property, indicating that it originates from human
activities.

– GoalType instances: We define Biodiversity, CarbonSequestration, and SoilImprove-

ment as instances of GoalType. These instances represent the types of restoration goals
in CRESTO.

This presentation shows how the various instances relate to each other, providing a compre-

hensive representation of the ecosystem restoration requirements with respect to CRESTO.

Computer Science & Information Technology (CS & IT) 139

4.5. Verification of Safety and Liveness Properties

Building upon the previous sections, where we formally defined the core concepts of Al- loy

and presented the formalization of our UML metamodel, we now focus on verifying safety
and liveness properties in our Alloy specification model for natural ecosystem re-

quirements. Safety properties ensure that undesirable situations do not occur throughout the

system’s operation, whereas liveness properties guarantee that the system progresses towards
desired outcomes, such to a restoration goal in this context. By verifying these properties, we

aim to identify potential issues or inconsistencies in our specification model, thereby

enhancing its reliability and robustness.

Thereby, we utilize the Alloy Analyzer to assess the validity of our model, presented in sub-

section 4.4, against a short list of safety and liveness properties, as a proof of concept of our

approach. The subsequent subsections outline the derivation of these properties, the
associated Alloy assertions, and the analysis of the verification results obtained using the

Alloy Analyzer.

4.6. SAFETY PROPERTIES

 Species required for a restoration goal are already present within the ecosystem be-

ing restored. This safety property is important for ecosystem restoration verification for
several reasons. First, ensuring that the species required for a restoration goal are

present within the ecosystem being restored helps maintain the consistency of the

restoration process. This consistency is vital for successful restoration projects, as it
ensures that the targeted ecosystem has the necessary species to meet the de- sired restoration

objectives. Second, if the required species are not present within the ecosystem, the

restoration process may face various challenges. For example, the ab- sence of some species
could result in a slower ecosystem restoration, as presented in CRESTO. Lastly, by verifying

the presence of the required species in the target ecosys- tem, stakeholders can better allocate

resources for the restoration process, allowing the prioritization of other essential aspects of

the restoration project. In Figure 3, we show the Alloy Analyzer output presenting a
counterexample for the safety property check. Such counterexample allows stakeholders

using our approach to detect inconsistencies, iteratively refine their model, and enhance their

restoration process’s accuracy and robustness.

assert speciesInRestorationGoal {

all g: RestorationGoal | g.on.hasSpecies = (g.restorationProp. usedInRestoration.on.hasSpecies)
}
check speciesInRestorationGoal

 The restoration process should operate on an ecosystem. This safety property empha-
sizes the importance of ensuring that the restoration goal operates specifically on an

ecosystem, rather than on an unrelated or irrelevant entity. This is essential to guar- antee

that the formal verification and restoration requirements are applied to the ap- propriate
context. In Figure 2, the Alloy Analyzer did not find counterexamples of the property. This

validity result suggests that our formalization effectively ensures that the restoration

process is applied to the appropriate context, specifically targeting ecosystems and

contributing to their restoration goal.

assert RestorationShallOccurOnEcosystem {
all rp: RestorationGoal | rp.on in Ecosystem
}

check RestorationShallOccurOnEcosystem

140 Computer Science & Information Technology (CS & IT)

 Liveness Properties

1. Eventually, every species should have a habitat. This liveness property highlights the

important goal of ecosystem restoration efforts: providing suitable habitats for every species.

Ensuring that each species has a habitat is essential to support biodiversity and maintain
the overall health of the ecosystem. By emphasizing this property, the formal verification

process can help guide restoration efforts towards achieving this critical objective,

contributing to the long-term success of ecosystem recovery. In our verification, depicted in
Figure 2, we were able to confirm the validity of the property.

assert EverySpeciesHasHabitat {
all s: Species | some e: Ecosystem | s.inhabits = e}check Every Species Has Habitat

2. Eventually, every ecosystem has a restoration goal associated with it. This liveness
property is essential to create a more resilient and sustainable global environment, as it

encourages the development and implementation of restoration plans for all ecosystems,

regardless of their current state. In contrast to the previous liveness property, our model
execution with the Alloy Analyzer identified a counterexample. The presence of such

counterexample indicates that our formalization approach can effectively allow the detection

of important cases that are essential to uncover during verification phases.

assert EveryEcosystemHasRestorationProcess {
all e: Ecosystem | some rp: RestorationGoal | rp.on = e
}
check EveryEcosystemHasRestorationProcess

5. ASSESSMENT

The following assessment provides a summary of the research method used, as well as a

factual overview of the strengths and weaknesses of our approach and highlights key

contributions in the context of software engineering and formal methods.

Our research method, which is based on a case study, allows us to explore the spe- cific

context of ecosystem restoration requirements and obtain valuable insights into our

Computer Science & Information Technology (CS & IT) 141

Fig. 2. Alloy Analyzer output for the ”RestorationShallOccurOnEcosystem” safety property and

”Ev- erySpeciesHasHabitat” liveness property. The output reveals that no counterexamples are

found for both properties, indicating that the assertion may be valid within our formal model.

formalization approach. By analyzing a single, simple case in detail, we can uncover the
nuances and intricacies involved in the verification of ecosystem restoration requirements.

This detailed understanding of the case, combined with our formalization in Alloy, enables us

to develop a more general and abstract solution that can be applied to a wider range of
cases in the domain of ecosystem restoration requirements. The use of a case study research

method allows us to establish a solid foundation in real-world contexts and ef- fectively

address the practical challenges faced by stakeholders in the field of ecosystem restoration
requirements. However, its weakness is related to the lack of generalizability. By focusing

on a single case study, we may not be able to thoroughly evaluate the appli- cability and

effectiveness of our approach across a broader range of case studies differing from the initial

one. Although case studies can provide valuable insights into specific in- stances, it may be
difficult to generalize our approach to other cases, potentially limiting the overall robustness

and validity of our approach.

In the context of ecosystem restoration, the application of Alloy and UML offers signif- icant

benefits, including clarity in defining requirements, rigorous verification capabilities and

early error detection. However, these languages also present weaknesses such as com- plexity

and scalability, particularly for Alloy. Alloy, as any formal language can be complex and
may require a significant learning curve, posing a barrier for stakeholders who are not

familiar with these languages. Scalability is crucial for any formal verification approach,

as it determines the method’s ability to handle larger, more complex models and require-
ments. While Alloy enables automatic analysis and provides an adaptable solution for

various complexities of ecosystem requirements verification, it faces challenges when deal-

ing with larger, more complex models. The Alloy Analyzer’s finite model finder explores
a vast solution space within a finite bound, based on the small scope hypothesis. This

hypothesis asserts that most errors in a model can be detected within a small instance, al-

142 Computer Science & Information Technology (CS & IT)

Fig. 3. Alloy Analyzer output presenting a counterexample for the ”speciesInRestorationGoal”

safety property check. The counterexample demonstrates that species may not be present in an

ecosystem with a restoration goal associated with it, which invalidates the defined safety property

in our formal model lowing for efficient verification of complex requirements. The Alloy Analyzer

leverages this principle, however, its performance may degrade as the complexity of the model
increases [15], which is a limitation to consider.

Nevertheless, our approach demonstrates its effectiveness by identifying inconsisten- cies

and errors in the early stages of the software development lifecycle. By providing a
formalized metamodel in Alloy, our method enables stakeholders to precisely capture the

intended requirements of an ecosystem as well as restoration goals. This level of preci- sion

reduces ambiguities and enhances the clarity of communication among stakeholders,
contributing to a higher level of confidence in the validity of ecosystem requirements.

Our work contributes to integrate formal methods into software engineering by offer - ing a

robust and efficient approach for formalizing and verifying ecosystem restoration re-
quirements using Alloy. This enhances the quality and reliability of software systems while

advancing formal methods and software engineering in this domain, laying the groundwork

for future research and innovation.

6. RELATED WORK

The application of modeling languages and formal methods has become increasingly im-

portant across various domains. In this related work section, we provide an overview of
existing research utilizing UML and formal methods, highlighting the unique contributions

of our approach in addressing the challenges of ecosystem restoration.

UML has been praised as the ”de facto standard” of software engineering [16]. Despite this,

its application extends beyond software engineering and into fields such as environ- mental

modeling and sustainable ecosystem management [17]. For instance in [18], Khaiter et al.
conceptualized a UML metamodel for an environmental software modeling frame- work,

Computer Science & Information Technology (CS & IT) 143

which serves as a tool for addressing sustainability tasks. Their work outlines the
framework’s multi-layered architecture and its primary software components, using UML

diagrams to depict the internal functional logic of each component. Compared to those

studies, our approach applies a semi-formal UML metamodel specifically for ecosystem

restoration requirements and formalizes it with formal methods such as Alloy. Hence, our
approach leverages the strengths of both approaches to create more robust and reliable

models, particularly in the context of software engineering.

The use of formal methods remains relatively limited in the ecosystem domain, likely due to

the complex, dynamic, and often non-linear nature of ecological systems that pose challenges

for applying formal techniques. Nevertheless, there are a handful of studies where formal
methods have been successfully employed within the ecosystem domain.

For instance, in [19], Thomas et al. discuss the application of model-checking within

ecosystems, automatically assessing the dynamics of ecological systems by verifying whether a
state-transition graph satisfies a dynamical property expressed as a temporal logic for - mula.

This article offers an inventory of existing ecological state-transition graphs and a clear

presentation of the model-checking methodology, using ecosystem vegetation models as
examples. Additionally, in [20], Konigsberg et al. present a formal methodology for

modeling and verifying predator-prey interactions in an ecosystem using first-order logic and

qualitative methods to verify satisfiability and address performance concerns. Finally, in
[21], Largouët et al. propose a qualitative modeling approach based on timed automata

formalism, coupled with model-checking techniques, to evaluates ecosystem property dy-

namics and temporal evolution in response to various management options.

In contrast to the cited papers, our work sets itself apart by adopting a comprehensive
approach to ecosystem restoration and by formalizing the restoration requirements using the

Alloy language. Our key contribution lies in proposing a rigorous approach for spec- ifying

and verifying ecosystem restoration requirements, encompassing a wider ecological context
and addressing various aspects of the restoration process.

7. PERSPECTIVES

This paper provides a foundation for further exploration in formal verification of ecosystem
requirements within software engineering. Several directions for future work can build upon and

refine the current work.

It is important to address the generalizability limitation of our research method. Hence, future

work could involve conducting additional case studies or employing complementary research

methods to further assess and validate the applicability of our approach to ecosys- tem
restoration requirements verification in software engineering. Additionally, expanding the

metamodel to allow the formalization and specification of more concepts related to

ecosystems is important for improving the overall scope and effectiveness of our method.

Moreover, we are working on the application of the Alloy specification language for the
formalization of a conceptual framework that delineates the concepts of dependability and

resilience [22], which can be applied in the context of natural ecosystem restoration. This

initiative aims at establishing a rigorous foundation for modeling the fundamental
characteristics that contribute to the robustness and adaptability of ecological systems.

Consequently, this will facilitate the development of more efficacious strategies for the

restoration of deteriorated ecosystems and the assurance of their long-term sustainability. The

motivation for this aspect of our research is to leverage formal verification with Alloy in
order to connect the theoretical comprehension and practical execution of ecological

restoration efforts, thus providing a more rigorous and reliable basis for decision-making.

144 Computer Science & Information Technology (CS & IT)

This approach aims at empowering decision-makers to make well-informed decisions that
promote ecosystem health and resilience, ensuring that restoration efforts are grounded in a

robust and dependable framework.

8. CONCLUSION

In this paper, we introduced a formal approach for modeling and verifying the require- ments

of ecosystems restoration goals using UML and Alloy. By enhancing the rigor and reliability

of requirements engineering and verification in the domain of natural ecosys- tems
restoration, our approach offers valuable insights for researchers, practitioners, and

policymakers alike. Furthermore, the verified ecosystem requirements model could serve as a

foundation for AI-based and remote sensing applications in ecosystem restoration data
management. Ultimately, this work contributes significantly to the field of formal software

engineering applied to ecosystems restoration, helping to ensure the development of reliable

ecosystem specifications that meet specified restoration goals.

REFERENCES

[1] G. D. Gann, T. McDonald, B. Walder, J. Aronson, C. R. Nelson, J. Jonson, J. G. Hallett, C.

Eisenberg,M. R. Guariguata, J. Liu, F. Hua, C. Echeverr´ıa, E. Gonzales, N. Shaw, K. Decleer, and K.

W. Dixon, “International principles and standards for the practice of ecological restoration. Second

edition,” Restoration Ecology, vol. 27, Sept. 2019.

[2] United Nations Environment Programme (UNEP), “Becoming #GenerationRestoration: Ecosystem

restoration for people, nature and climate,” online., UNEP, 2021.

[3] Sommerville, Software Engineering. Pearson, tenth edition ed., 2016.

[4] S. Kent, “Model driven engineering.,” in International Conference on Integrated Formal Methods.,

Springer Berlin Heidelberg, 2002.

[5] J. Bezivin, “In search of a basic principle for model-driven engineering,” UPGRADE - European

Journal for the Informatics Professional, vol. 5, pp. 21–24, Apr. 2004.
[6] T. Sousa, “Modeling and predicting the resilience of ecosystems.” master thesis, University of Lux-

embourg, 2022.

[7] T. Sousa, B. Ries, and N. Guelfi, “Ecosystem resilience analysis using MDE & AI.” TR-LASSY-23-

01, LASSY Technical Report, University of Luxembourg, 2023.

[8] T. L. H. Treuer, J. J. Choi, D. H. Janzen, W. Hallwachs, D. Per´ez-Aviles, A. P. Dobson, J. S. Powers,

L. C. Shanks, L. K. Werden, and D. S. Wilcove, “Low-cost agricultural waste accelerates tropical

forest regeneration: Regenerating tropical forest with orange waste,” Restoration Ecology, vol. 26,

pp. 275–283, Mar. 2018.

[9] D. Jackson, “Alloy: A lightweight object modelling notation,” ACM Transactions on Software Engi-

neering and Methodology, vol. 11, pp. 256–290, Apr. 2002.

[10] J. M. Spivey, “The Z notation - a reference manual,” in Prentice Hall International Series in Computer
Science, 1992.

[11] S. Cook, C. Bock, P. Rivett, T. Rutt, E. Seidewitz, B. Selic, and D. Tolbert, “Unified modeling

language (UML) version 2.5.1,” standard, Object Management Group (OMG), Dec. 2017.

[12] E. Torlak and D. Jackson, “Kodkod: A Relational Model Finder,” in Tools and Algorithms for the

Construction and Analysis of Systems (O. Grumberg and M. Huth, eds.), Lecture Notes in Computer

Science, (Berlin, Heidelberg), pp. 632–647, Springer, 2007.

[13] D. S. Scott, “Logic and Programming Languages,” Communications of the ACM, vol. 20, pp. 634–

641, Sept. 1977.

[14] G. D. Plotkin, “A Structural Approach to Operational Semantics,” p. 134.

[15] D. Jackson, Software Abstractions: Logic, Language and Analysis. Cambridge, Mass: MIT Press,

2006.

[16] M. Petre, “UML in practice,” in 2013 35th International Conference on Software Engineering (ICSE),
(San Francisco, CA, USA), pp. 722–731, IEEE, May 2013.

Computer Science & Information Technology (CS & IT) 145

[17] J. F. Courtney, S. Richardson, and D. Paradice, “Decision support systems for ecosystems

management: A Singerian approach to urban infrastructure decision making,” Handbook of

Sustainable Development Planning, pp. 303–321, Sept. 2013.

[18] P. A. Khaiter and M. G. Erechtchoukova, “Conceptualizing an Environmental Software Modeling

Framework for Sustainable Management Using UML,” JOURNAL OF ENVIRONMENTAL
INFOR- MATICS, vol. 34, pp. 123–138, Oct. 2018.

[19] C. Thomas, M. Cosme, C. Gaucherel, and F. Pommereau, “Model-checking ecological state-transition

graphs,” PLOS Computational Biology, vol. 18, p. e1009657, June 2022.

[20] Z. R. Konigsberg, “Modelling and verification analysis of a two species ecosystem via a first order

logic approach,” International Journal of Pure and Applied Mathematics, pp. 583–592, Jan. 2017.

[21] C. Largou¨et, M.-O. Cordier, Y.-M. Bozec, Y. Zhao, and G. Fontenelle, “Use of timed

automata and model-checking to explore scenarios on ecosystem models,” Environmental Modelling

& Software, vol. 30, pp. 123–138, Apr. 2012.

[22] N. Guelfi, “A formal framework for dependability and resilience from a software engineering

perspec- tive,” Central European Journal of Computer Science, vol. 1, no. 3, pp. 294–328, 2011.

AUTHORS

Tiago Sousa is pursuing his PhD in Computer Science at the University of Luxembourg. His

research interests include Software Engineering & Artificial Intelligence related to the domain of

resilient ecosystems and remote sensing.

Dr. Benôıt Ries is a permanent research scientist in the Software engineering and Arti- ficial

intelligence Group on Ecosystem management (SAGE) in the Department of Com- puter Science of

the University of Luxembourg. His current research interests focus in model-driven software

engineering for AI-based systems, in particular focusing on the re- quirements and design phases
applied to the domain of resilient natural ecosystems.

Dr. Nicolas Guelfi is full professor at University of Luxembourg, since 1999. He is head of the SAGE

group in the Department of Computer Science of the University of Luxembourg.

© 2023 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

	Tiago Sousa, Benoˆıt Ries, and Nicolas Guelfi
	Department of Computer Science, University of Luxembourg,
	Esch-sur-Alzette, Luxembourg
	1. Introduction
	2. Cresto Running Example
	3. Requirements Specification of Ecosystems
	4. Formal Verification of Ecosystem Requirements
	5. Assessment
	6. Related work
	7. Perspectives
	8. Conclusion
	References
	Authors

