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ABSTRACT 

Gesture recognition is a pivotal technology in the realm of intelligent education, and 

millimeter-wave (mmWave) signals possess advantages such as high resolution and strong 

penetration capability. This paper introduces a highly accurate and robust gesture recognition 

method using mmWave radar. The method involves capturing the raw signals of hand 

movements with the mmWave radar module and preprocessing the received radar signals, 

including Fourier transformation, distance compression, Doppler processing, and noise 

reduction through moving target indication (MTI). The preprocessed signals are then fed into 

the Convolutional Neural Network-Time Domain Convolutional Network (CNN-TCN) model to 

extract spatio-temporal features, with recognition performance evaluated through classification. 

Experimental results demonstrate that this method achieves an accuracy rate of 98.2% in 

domain-specific recognition and maintains a consistently high recognition rate across different 

neural networks, showcasing exceptional recognition performance and robustness. 
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1. INTRODUCTION 

With the continuous advancement of the Internet of Things in Artificial Intelligence (AIOT), 
human-machine interaction has become increasingly crucial. Gesture interaction, due to its 

natural and efficient characteristics, has emerged as a hot research topic. It has found widespread 

applications across various domains, including autonomous driving[1]-2] and smart home 
devices[3]-4]. Users can engage in touchless interaction with digital devices through gestures, 

thereby enhancing the user experience. 
 

There are various sensors capable of achieving touchless gesture interaction with digital devices, 

including cameras [5],WiFi [6], and millimeter-wave radar[7]-9]. Although camera-based gesture 
recognition offers excellent recognition performance, practical application scenarios still pose 

significant challenges due to lighting conditions and privacy concerns. WiFi-based gesture 
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recognition methods, constrained by their wavelength, struggle to recognize fine-grained gestures, 
limiting their practical usability. In contrast, millimeter-wave gesture interaction technology 

offers advantages such as high precision, strong robustness, privacy protection, and low power 

consumption. 
 

To harness these advantages, extensive research has been conducted on gesture recognition 

using millimeter-wave radar, often combining traditional machine learning techniques with deep 

learning approaches. For instance, Zhang et al.[10] utilized Support Vector Machines (SVM) to 

classify micro-Doppler information, achieving an impressive accuracy of 88.56% in classifying 
four gestures at a distance of 0.3m. However, their method involved a complex manual feature 

extraction process, resulting in limited recognition accuracy. Dekker et al.[11] attempted to use 

3D-CNN to classify three gestures, and the results indicated a recognition rate of 91%. However, 
3D-CNN has limitations in terms of data resolution sensitivity and data requirements. Another 

study by Ref et al. [12] introduced a customized multi-branch Convolutional Neural Network 

(CNN) to automatically extract motion features from continuous gestures, achieving an accuracy 
of 95% in gesture classification. Nevertheless, the use of a single convolutional kernel in their 

approach limited its ability to fully capture and integrate temporal and spatial information of 

gestures. To overcome these limitations, Chen et al. [13]employed a CNN-Long Short-Term 

Memory (LSTM) architecture to capture both temporal and spatial information, effectively 
enhancing gesture recognition. However, CNN-LSTM models often require significant memory 

usage, possess high computational complexity, and are highly dependent on environmental 

factors. 
 

In order to tackle these challenges and improve recognition accuracy and robustness, this paper 

introduces a gesture recognition method based on neural networks. We employ millimeter-wave 

radar to capture the raw signals of gesture movements and, subsequently, through preprocessing 
and neural network techniques, we can capture both temporal and spatial variations while 

reducing noise interference. This leads to increased accuracy and robustness in gesture 

recognition. Experimental results confirm the effectiveness of our proposed method, 

demonstrating its potential across various gesture recognition applications. 
 

2. FMCW RADAR PRINCIPLE 

2.1. Signal Model 

 

The experiment utilizes the IWR1642, a commercially available low-cost MIMO radar module 

manufactured by Texas Instruments. This radar system is equipped with 2 transmitting antennas 

and 4 receiving antennas arranged horizontally. To achieve an equivalent configuration of an 
8-antenna Uniform Linear Array (ULA), the radar employs Time Division Multiplexing (TDM) 

mode. 
 

In the FMCW radar system, demodulation techniques [14]are commonly utilized. The received 
echo signal is mixed with the transmitted signal and then passed through a low-pass filter to 

extract the intermediate frequency (IF) signal. The IF signal model for a single scattering point 

can be represented as a sawtooth wave emitted by the FMCW radar [15]. The received and 
transmitted signals are fed into a mixer and subsequently filtered by a low-pass filter to obtain the 

IF signal. After undergoing I/Q sampling, the IF signal is converted into a discrete sequence of 

samples. The processing flowchart for the Frequency Modulated Continuous Wave (FMCW) 

radar is depicted in Figure 1. 
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Fig．1：The FMCW radar processing flowchart 

 

The radar transmit signal and echo signal are both characterized by a sawtooth waveform, and 
their interrelation is illustrated in Figure 2. Specifically, the transmit signal and echo signal for a 

single transmit cycle can be described as follows: 
 

 2( ) cos 2  TX TX cS t A f t kt  (1) 

    2
( ) cos 2    RX RX c d dS t A f t t k t t  (2) 

 

The parameter 𝑘 = B/𝑇𝑐denotes the frequency modulation slope, where Tc represents the signal 

period, B stands for the signal bandwidth, fc represents the carrier frequency, 𝐴𝑇𝑋 corresponds 

to the amplitude of the transmit signal, and 𝐴𝑅𝑋 represents the amplitude of the echo signal. The 

echo signal undergoes mixing with a mixer and subsequent filtering through a low-pass filter to 
obtain an intermediate frequency signal. 
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As the value of td is extremely small, it can be safely neglected in practical measurement 

scenarios. Consequently, the frequency of the intermediate frequency signal can be approximated 
using the following expression: 
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Fig．2. FMCW radar signal frequency versus time 
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2.2. Gesture Signal Pre-Processing 

 

This paper presents a radar signal preprocessing workflow designed for the efficient analysis and 

handling of received radar signals. This procedure involves conducting Fourier transformation, 

Doppler processing, noise reduction, and other techniques to transform the raw radar signals into 
clean Range-Frequency-Doppler Maps (RFDM). This preprocessing process facilitates 

subsequent feature extraction and classification. 
 

2.2.1. Fourier Transform 

 

The radar's raw received signal is a time-domain signal, making it difficult to observe the signal's 

spectrum information. Fast Fourier Transform (FFT) is a rapid algorithm that converts 
time-domain signals into frequency-domain signals and efficiently calculates the Discrete Fourier 

Transform (DFT). In radar signal processing, the received echo signal is transformed from the 

time domain to the frequency domain. Fourier transform decomposes the signal into a series of 
composite forms of sine and cosine functions, allowing us to obtain the signal components at 

different frequencies and acquire spectrum information about the signal. By analyzing the 

spectrum distribution of the signal, we can extract better distance and velocity information of the 
target. Therefore, the conversion of the signal from the time domain to the frequency domain is a 

crucial step in radar signal processing, enabling us to better understand the signal characteristics 

and identify the target. The formula for Fast Fourier Transform is as follows: 
1
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Where x(n) is the time-domain signal, X(k) is the frequency-domain signal, and the value at the 
discrete frequency point k is obtained by the discrete Fourier transform of the time-domain signal 

x(n). 

2.2.2. Doppler processing 

 

In radar signal processing, after range compression, the subsequent step involves acquiring the 

velocity information of the target. When a target is in motion, its echo signal undergoes a Doppler 
frequency shift. Therefore, the purpose of Doppler processing is to analyze this frequency shift 

and estimate the target's velocity. 
 

Doppler processing is typically implemented using an FFT-based method known as Fast 
Time-Frequency Analysis (FTFA). In the FTFA approach, the range-compressed signal is initially 

transformed from the time domain to the frequency domain using a fast Fourier transform. 

Subsequently, the Doppler transform is applied to the frequency-domain signal of each range bin, 
enabling the extraction of the target's velocity information. 

 

The objective of Doppler processing is to correct the echo signal on the frequency axis, 

effectively compensating for the Doppler frequency shift caused by the target's motion. This 
correction is achieved by multiplying the signal by a phase factor calculated based on the target's 

velocity. By employing this approach, the raw echo signal is recovered, facilitating subsequent 

target identification and tracking tasks. 
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2.2.3. MTI processing 

 

In radar detection, the echo signals from clutter objects often exhibit stronger amplitudes 

compared to the target echo signals, leading to interference in target detection. To mitigate this 

interference and enhance radar sensitivity in target detection, the Moving Target Indication (MTI) 

signal processing technique is employed. 
 

The MTI technique utilizes differencing operations to compare the echo data from multiple time 

instances. By subtracting the echo signals received at different time intervals, the MTI technique 
effectively suppresses the signals originating from stationary objects and mitigates the impact of 

clutter echo signals. As a result, the sensitivity of the radar system in detecting targets is 

improved. 
 

Mathematically, the MTI processing can be represented by the following equation: 

4( , , ) ( , , ) 4 ( , 1, ) 6 ( , 2, ) 4 ( , 3, ) ( , 4, )        S k l m S k l m S k l m S k l m S k l m S k l m (6) 
where S(k, l, m) denotes the amplitude of the kth distance unit, the lth time unit, and the mth 

pulse-echo signal; S4(k, l, m) denotes the amplitude obtained after performing fourth-order MTI 
processing. 

2.3. Neural Network Model 

 

To effectively identify motion gestures, this study proposes a CNN-TCN-based spatiotemporal 

modeling approach for the modeling and classification of spatiotemporal data. The model divides 
the input RFDM into two parts: spatial features and temporal features. Specifically, the model 

consists of two components:  
 

1. Frame Model: The CNN component extracts spatial features from each frame of the 
RFDM. 

2. Sequence Model: The TCN component extracts temporal features from the RFDM's time 

series data. 
 

The outputs of the frame model and sequence model are passed through fully connected layers 

and then merged for the final classification. This integration allows the CNN-TCN model to 

consider both spatial and temporal features simultaneously, resulting in improved classification 

accuracy. The network architecture of this model is depicted in Figure 3.  
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Fig．3：CNN-TCN neural network architecture 

 

In particular, the framework model consists of three convolutional layers, a batch normalization 

layer, and two improved linear unit layers (LeakyReLU). These components are designed to 
extract spatial features from consecutive RFDM frames. The convolutional layers use kernels of 

different sizes to capture features at various scales. Subsequently, max-pooling layers are used to 
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downsample the feature maps, reducing training time and improving the model's ability to 
generalize. Finally, one-dimensional CNNs are used to reduce the number of channels to 1/12 of 

the original, significantly reducing the model's complexity. 
 

For consecutive frames, a TCN (Temporal Convolutional Network) framework is used to extract 
temporal features from the RFDM sequence. The proposed TCN differs from traditional 

structures as it adopts a streamlined design with flexible residual connections, as shown on the 

left side of Figure 4. Each TCN consists of three temporal blocks, as illustrated on the right side 

of Figure 4. These blocks include dilated convolution, causal convolution, LeakyReLU activation, 
and Dropout. Dilated convolution pads the input data, aligning the convolutional kernel with 

boundary pixels, while causal convolution exclusively uses past data to ensure that the output 

depends solely on the current and past inputs. This architecture effectively captures long-term 
dependencies within the sequence and allows for easy adjustment of the network's depth and 

width to accommodate different datasets and tasks. LeakyReLU activation mitigates the "neuron 

death" problem associated with traditional ReLU, improving model generalization and stability. 
Dropout reduces excessive interdependence among neurons, enhancing model generalization and 

reducing the risk of overfitting. In summary, this TCN structure effectively extracts temporal 

features from RFDM sequences while maintaining a low network complexity and training 

burden. 
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Fig. 4: The TCN network model diagram 

3. IMPLEMENTION 

3.1. Dataset 

 

Gesture recognition plays a crucial role in intelligent large-screen control, realizing contactless, 
natural, and intuitive interaction. However, gesture recognition encounters numerous challenges 

in various environments and positions, including lighting variations, background interference, 

and multi-path reflections. To tackle these challenges, we propose a deep learning-based gesture 
recognition network that leverages multi-dimensional features to enhance recognition accuracy 

and robustness. To demonstrate the performance and advantages of our proposed network, we 

meticulously design and curate a gesture dataset comprising seven distinct gestures performed in 

three different environments and five positions, as illustrated in the accompanying figure. 
Notably, our dataset exhibits distinctive characteristics when compared to existing gesture 

datasets: 

 
 

Figure 5: Data set gesture diagram 
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We have collected a total of 33,600 data samples for our dataset. A detailed description of the 
dataset is provided in Table 1. 

 
Tab. 1: Detailed description of the dataset 

 

Environment Data representation Data volume 

Classroom 20Users×5Locations×(7Gestures×30Instances) 21000Samples 

Office 10Users×3Locations×(7Gestures×30Instances) 6300Samples 

Conference hall 10Users×3Locations×(7Gestures×30Instances) 6300Samples 

4.2. Experimental equipment configuration 

 

To collect gesture data, we utilized the IWR1642 radar system from Texas Instruments. This 
radar system is a millimeter-wave-based short-range solution that enables high-resolution gesture 

detection and recognition. It consists of two transmit antennas and four receive antennas, forming 

a two-dimensional array that provides spatial and Doppler information. Operating within the 
frequency range of 76-81 GHz, the radar system offers high bandwidth and sensitivity. 

 

The radar system was positioned in front of the intelligent large-screen display, parallel to the 
microphone array, and connected to a computer running the gesture recognition network. To 

optimize data collection based on the experimental environment and gesture characteristics, we 

configured the radar acquisition board with specific parameters, as outlined in Table 2 below: 

 
Table 2: IWR1642 acquisition board experimental parameters 

 

Parameter Value Parameter Value 

Numberof range samples 112 Pulse Repetition Interval 32.920us 

Number of chirps 128 Frame time 100.000ms 

Sampling frequency 6.250MHz Max range 104.095m 

Carrier frequency 77.144GHz Max Dopple ±29.512m/s 

Bandwidth 161.280MHz Doppler resolution 0.461m/s 

4.3. Neural Network Implementation 

 

The experiment implemented the CNN-TCN gesture recognition neural network framework 

using the TensorFlow 2.0 framework and CPU: Intel I7-9750H. The network had an input feature 

map size of 32×414×1. The neural network consisted of a frame model and a sequence model. 

The frame model had three convolutional layers, where the number of kernels increased 

progressively (from 16 in the first layer to 64 in the last layer), but the convolution kernel size 

was fixed at 3×5. The output of the last Conv2D layer was flattened into a 1D vector and then fed 

into the sequence model. The sequence model had two enhanced TCNs and three fully connected 

layers to obtain gesture probabilities. The network was trained using the Adam optimizer, with a 

learning rate of 0.0005, a batch size of 128, and a training epoch of 100. 
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5. EVALUATION 

In this section, we first evaluate the accuracy of our neural network model in recognizing 
different gestures through data sets. We then evaluated the robustness of our model under 

different environments and factors, including new environments and new locations. Finally, we 

compared our model with other neural network methods to assess its performance. 

5.1. Recognition Results 

 

In this study, we employed the Leave-One-Out Cross-Validation (LOOCV) method to evaluate 
the performance of our neural network in gesture recognition tasks. We divided the dataset into 

training and testing sets by selecting one individual's samples as the test set while using the 

remaining samples as the training set. This process was repeated for each individual in the same 
environment and location, allowing us to train and test the model comprehensively. 

 

The results of the LOOCV were compiled into a confusion matrix, as illustrated in the Figure 6. 
The average recognition rate achieved was an impressive 98.4%. These findings demonstrate the 

high accuracy of our neural network in recognizing all the gestures studied. This success can be 

attributed to the similarity in features between the training and testing data. 

 
Overall, these results affirm the effectiveness of our proposed neural network model in extracting 

relevant motion features for robust gesture recognition. 

 

 
 

Fig.6: Confusion Matrix for LOOCV Testing 

 

5.2. Location Adaptability Evaluation 

 

We conducted experiments using data samples from different locations within the gesture dataset 

to validate the stability of our neural network model in recognizing gestures across various 
locations. The training set consisted of data from the (0.75, 0°) location, while the remaining 

locations were used for testing. 
 

The results shown in Figure 7 indicate that the accuracy of gesture recognition was primarily 
affected by the spatial relationship between the hand and the radar sensor. When the sensor was 

too close to the hand, multipath effects led to a slight decrease in accuracy. Similarly, increasing 

the distance between the hand and the sensor resulted in a slight drop in accuracy due to 

improved signal-to-noise ratio. Additionally, the angle between the gesture and the radar sensor 
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affected factors such as the main lobe range, received signal energy, and Doppler frequency. 
 

Despite these factors, our model achieved consistently high accuracy across different locations, 

with an average recognition rate of 97.2%. This demonstrates the robustness of our model and its 

ability to adapt to variations in location that may impact gesture recognition. 
 

 
 

Fig.7: Accuracy of new location test. 

 

5.3. Environmental Adaptability Evaluation 

 

To validate the robustness of our neural network model in different environments, we considered 

variations in room sizes, placement of office equipment, and overall layout, which can result in 

different multipath effects. We collected gesture datasets from three different environments: a 

classroom dataset for training and separate datasets from a conference room and a lobby for 
testing. 

 

The experimental results, as shown in the Figure 8, confirmed that different multipath effects 
indeed influenced the recognition performance of the neural network. However, despite these 

variations, the model exhibited high recognition accuracy in both environments. The recognition 

rate in the conference room was 97.0%, while in the lobby, it reached 98.5%. These high 
accuracy rates indicate the strong robustness of the model. 

 

 
Fig.8: Accuracy of new environment test. 
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5.4. Neural Network Performance Comparison 

 

To further validate the effectiveness of the proposed network, we compared it with four other 

deep learning networks commonly used for action recognition: CNN, 3D-CNN, CNN-LSTM, 

and CNN-GRU. We evaluated their performance on our collected gesture dataset, and the results 
are summarized in Table 3. 

Table 3: Recognition rate of different neural network model systems 

 

Serial number Neural network model 
Recognition accuracy（%） 

1 

2 

3 

4 

5 

CNN 

3D-CNN 

CNN-LSTM 

CNN-GRU 

CNN-TCN 

80.6 

87.7 

93.3 

90.8 

98.4 

 
The CNN-TCN network outperformed the other networks in terms of recognition rates for each 
action category, demonstrating its superior ability to extract both spatial and temporal features. 

While CNN could only capture spatial features, 3D-CNN suffered from a large parameter count 

and limited flexibility in handling the temporal dimension. CNN-LSTM and CNN-GRU 
networks, although incorporating recurrent layers for temporal feature extraction, had higher 

computational complexity and limited modeling capabilities for long-term dependencies. 
 

In contrast, the CNN-TCN network employed multi-scale spatio-temporal convolutional layers 
and fusion layers, allowing it to adaptively extract features at different scales and stages. It also 

dynamically fused information from multiple branches, resulting in superior performance across 

different action recognition tasks. 

6. CONCLUSION 

In this study, we utilized a millimeter-wave radar module to capture raw signals of hand gestures. 
By combining preprocessing techniques and convolutional neural network models, we 

successfully extracted spatio-temporal features and developed a contactless gesture recognition 

method based on millimeter-wave radar.The experimental results demonstrated that our method 
achieved high accuracy and robustness, overcoming the limitations of traditional gesture 

recognition techniques. It provides strong support for the advancement of smart education. 

However, there are still some limitations that need to be addressed. These include the high cost of 
radar signal acquisition equipment, limited scale and diversity of the dataset, and the need to 

improve the generalization ability of the classification model. 
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