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ABSTRACT 
 

The field of eXplainable Artificial Intelligence faces challenges due to the absence of a widely 

accepted taxonomy that facilitates the quantitative evaluation of explainability in Machine 

Learning algorithms. 

 

In this paper, we propose a novel taxonomy that addresses the current gap in the literature by 

providing a clear and unambiguous understanding of the key concepts and relationships in XAI. 

Our approach is rooted in a systematic analysis of existing definitions and frameworks, with a 

focus on transparency, interpretability, completeness, complexity and understandability as 
essential dimensions of explainability. This comprehensive taxonomy aims to establish a shared 

vocabulary for future research. 

 

To demonstrate the utility of our proposed taxonomy, we examine a case study of a 

Recommender System designed to curate and recommend the most suitable online resources 

from MERLOT. By employing the SHAP package, we quantify and enhance the explainability of 

the RS within the context of our newly developed taxonomy. 
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1. INTRODUCTION 
 

The growing prominence of Artificial Intelligence in various domains, including education, has 
led to an increased focus on building reliable and human-centered applications. In parallel, the 

challenge of explainability in Machine Learning algorithms remains an open problem. Despite a 

burgeoning body of research in the XAI field, proposed solutions often lack clarity, sufficiency, 

or efficiency, with results frequently based on user tests related to multiple and often correlated 
concepts such as trust, transferability, and informativeness [1]. Moreover, the current scientific 

literature does not provide a consensus on the distinction between explainable and interpretable 

systems, with only a limited number of papers addressing this issue. 
 

Gilpin, Leilani H. et al. [2] attempt to address this problem by focusing on the concepts of 

interpretability and completeness as essential components of explainability: 
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– Interpretability refers to a system’s ability to describe its inner workings in a manner 
intelligible to humans; 

– Completeness entails accurately describing a system’s operations. 

 
For instance, an explanation is deemed complete if users can understand it well enough to predict 

the behavior of the system described. A naive solution might involve presenting the entire set of 

operations performed by the system; however, users could become overwhelmed by the 
complexity of the inner mechanism, losing interpretability. 

 

Consequently, Gilpin et al. [2] view explainability as a trade-off between interpretability and 
completeness. 

 

Nevertheless, Herman [3] cautions that adopting such an anthropocentric taxonomy may be 

hazardous, as human evaluation can harbor biases that turn any persuasive system into an 
explainable one, regardless of the truth-value of the explanations provided. 

 

Despite these challenges, explainability necessitates a human-in-the-loop process, as the human 
user is the ultimate recipient of explanations. In this paper, we propose a taxonomic classification 

of explainability-related concepts that minimizes, yet preserves, the essential involvement of the 

human user. This approach enables the construction of a pipeline for implementing this 
framework in AI applications, such as intelligent information systems and soft computing 

techniques. We then demonstrate the practical application of this pipeline in a case study of a 

Recommender System, which takes resources and relative ratings datasets from MERLOT, user 

metadata preferences, and produces binary classification outputs of the items (recommended/not 
recommended). This example underscores the relevance and potential impact of our proposed 

taxonomy on the development and understanding of AI systems across various domains. 

 

2. RESEARCH METHODOLOGY 
 

2.1. A New Taxonomy Proposal 
 
We now propose a new XAI taxonomy to tackle the issue presented above, and we begin by 

unraveling the notions of interpretability and explainability into more specific definitions of 

transparency, interpretability, explanation, completeness, complexity, understandability, and 

explainability. 
 

This is necessary to provide a formal mathematical framework and use it to create quantitative 

measures. 
 

Transparency is the cornerstone of explainability: it tells us how much opaque is a model and, 

from that, it is possible to decide how to explain it. Lipton [4] highlights three key aspects of 
transparency: simulatability, decomposability, and algorithmic transparency. Informally, 

transparency is the opposite of opacity or black-box-ness, indicating an understanding of the 

mechanism by which the model works. 

 
Simulatability In the strictest sense, a model can be considered transparent if a person can 

contemplate the entire model at once. This definition suggests that an interpretable model is a 

simple model, allowing humans to grasp its decision-making process more easily. 
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Decomposability A second notion of transparency is decomposability, which means that each part 
of the model - each input, parameter, and calculation - admits an intuitive explanation. This 

aspect of transparency allows users to understand the model’s components and how they 

contribute to the overall decision-making process. 

 
Algorithmic Transparency A final notion of transparency might apply at the level of the learning 

algorithm itself. Algorithmic transparency refers to the understandability of the algorithm used to 

train the model, allowing users to comprehend the rationale behind the model’s development and 
behavior. 

 

In our taxonomy, we define transparency in the following way: 
 

Definition 1 (Transparency). A system is transparent if its inner mechanism is accessible. By 

inner mechanism, we mean: 

 

– The definition of the algorithm that makes the system work; 

– The reconstruction, given an output of the system, of all operations executed by the 
algorithm itself. 

 

A system with maximum transparency is called a white-box. A system with zero transparency is 
called a black-box. 

 

This definition encompasses the aspects of simulatability, decomposability, and algorithmic 

transparency discussed by Lipton [4]. 
 

Before the work of Gilpin et al. [2], Doshi-Velez, F. and Kim, B. [5] emphasize the need for a 

rigorous science of interpretability in machine learning and propose a taxonomy of 
interpretability methods. They defined interpretability as the ability to explain or to present in 

understandable terms to a human. 

 

But, as the authors themselves stated, a formal definition of explanation remained elusive. 
Furthermore, they run in a cyclic definition where interpretability, an ingredient of explainability, 

needs the definition of explanation to work. 

 
In this paper, we follow the pathway shown by Gilpin et al. [2] to get the following definition: 

Definition 2 (Interpretability). A system is interpretable if it is possible to identify a statistical or 

functional relation R between inputs and outputs. 

 
The relation can be represented as a mathematical function, a transformation, a rule, or a set of 

rules in the IF-THEN form. 

 
By definition, a white-box system has maximum interpretability, and a black-box has zero 

interpretability. 

It is possible for black-box systems to be approximated by white-box systems. In that case, the 

interpretability I(R ), which can be thought of as a real value in the interval [0,1], should depend 

on these two features: 

 

– The approximation method (global or local); 

– The fidelity measure, which is how well the white-box system approximates the black-

box. 
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The definition of explanation given by the Cambridge Dictionary of English Language is ”the 
details or reasons that someone gives to make something clear or easy to understand”. Adapting 

this definition to our purpose 

 

Definition 3 (Explanation). An explanation X is a reason or justification given for one or more 
outputs of a system. 

 

The explanation can be given in any preferred form (textual, graphical, etc.), but it must be 
intelligible. 

 

Definition 4 (Completeness). The completeness C(X) of an explanation X measures its adherence 

to the interpretation R . 
 

For instance, if a given classifier provides the classification rules as explanations, we have 

maximum completeness. Miller [6] highlights the importance of completeness in explanations, 
stating that a complete explanation should provide all the necessary information to understand a 

model’s decision-making process. 

 

To define understandability later, we introduce the concept of Complexity. 
 

Definition 5 (Complexity). The complexity ω(X) of an explanation X measures the effort required 

to understand it. 
 

For instance, considering IF-THEN classification rules as explanations, we propose a measure for 

their complexity. It should satisfy these requirements: 
 

1. The effort to understand a classification rule increases with the number of IF-THEN clauses;  

2. Rules with more than one IF-THEN clause on the same feature are more complex; 

3. A rule with only one IF-THEN clause has the lowest complexity (0). 
 

We propose the following formula for the complexity of the i-th rule Ri: 

 

 
 

where: 
 

– ||Ri|| is the length of the i-th rule Ri (number of IF-THEN clauses concatenated with an 

AND); – K is the set of features used in the model; 

– Si is the subset of features on which IF-THEN clauses of the rule Ri are executed. 

 

This linear function of the number of IF-THEN clauses satisfies the requirements. For a set of 
rules, the total complexity could be the sum or the average of individual complexities. 

 

R. Guidotti et al. [7] repeatedly emphasize how important it is to have understandable explanation 
in order to obtain interpretable algorithms. To address the definition of Understandability, we 

refer to the work of Arrieta, A. B. et al. [8]: it denotes the characteristic of a model to make a 

human understand its function – how the model works – without any need for explaining its 
internal structure or the algorithmic means by which the model processes data internally. 

We synthesize and insert this definition in our framework by stating the following: 
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Definition 6 (Understandability). UnderstandabilityU of an explanation X represents the user’s 
capacity to reproduce the system’s behavior as described by the explanation itself. 

 

This definition introduces subjectivity, as different users might have varying levels of 

understanding. 
 

The understandability depends on two factors: 

 

– Complexity of the explanation ω(X) 

– Tolerable complexity ωb for the user 
 

We desire a function that meets the following conditions: 

– Has domain [0,+∞) and range (0,1] 

– U(ω = ωb;ωb) ≃ 0.9 

– U(0;ωb) = 1 

– limω→∞U(ω;ωb) = 0 
 

Additionally, we desire a ”sigmoidal” behaviour, with: 
 

 
 

We propose two candidate functions. 

 

Gaussian decline 

 

 
 

SHT (Squared Hyperbolic Tangent) decline 

 

 
 

Both functions satisfy the desired properties listed above, and their difference lies in how 

aggressive the decline is (how negative the derivative is for intermediate values of  
 

 

Lipton [4] discusses the trade-off between complexity and understandability in machine learning 
models, arguing that the ideal explanation should balance these aspects. By incorporating these 

two factors, our definitions of completeness, complexity, and understandability aim to provide a 

more comprehensive framework for evaluating the quality of explanations in the context of 
machine learning. 

 

Additionally, Arrieta, A. B. et al. [8] state that explainability is associated with the notion of 

explanation as an interface between humans and a decision maker that is, at the same time, both 
an accurate proxy of the decision maker and comprehensible to humans. Putting everything 

together, we get to the following definition: 

Definition 7 (Explainability). 
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A system is explainable if it is capable of providing explanations of its inner mechanism which 
are both complete and understandable. 

 

Operationally, the Explainability E(R ,X) of a system is here intended as the product of its 

Interpretability I(R ), the CompletenessC(X) and the UnderstandabilityU(X) of the explanations: 

 

 
 

2.2. How to improve the Explainability of a Machine Learning model 
 

If an explanation is not considered sufficient by the user, there is only one way to improve it: 

providing additional explanations. 

 
We should have a measure of the Total Explainability for a given number of explanations Xi with 

Explainability Ei. 

 
Total Explainability of Two Explanations First, we begin by defining the desired properties of the 

Total Explainability Tot(E1,E2) of two explanations: 

 
1. Tot(E1,E2) = Tot(E2,E1) (Symmetry) 

2. max(E1,E2) ≤ Tot(E1,E2) ≤ 1 ∀E1,E2 ∈ [0,1] 

3. Tot(E1,0) = E1 ∀E1 ∈ [0,1] 

4. Let be E1,E2,E3 ∈ [0,1] such that E1 ≤ E2 ≤ E3, then Tot(E1,E2) ≤ Tot(E2,E3) (Monotony) 
 

For the symmetry axiom, 

 

Tot(E1,E2) = Tot(E2,E3) if and only if E1 = E3. 
 

We propose the candidate solution: 

 
 Tot(E1,E2) = max(E1,E2)+[1−max(E1,E2)]min(E1,E2) (5) 

 

It is trivial to demonstrate that properties 1, 2, and 3 are satisfied. Here, we attach the proof for 
property 4. 

 

Theorem 1. Equation 5 satisfies Property 4. 

 

Proof. Let be E1,E2,E3 ∈ [0,1] such that E1 ≤ E2 ≤ E3 and we define a variable 

 

 S = Tot(E2,E3)−Tot(E1,E2). If Property 4 is satisfied, S ≥ 0. 
 

S = max(E2,E3)+[1−max(E2,E3)]min(E2,E3)−max(E1,E2)+[1−max(E1,E2)]min(E1,E2) = 

 

= E3+(1−E3)E2−E2−(1−E2)E1 = 
= E3−E2E3−E1+E1E2 = 

= (E1−E3)(E2−1) 

 

But E2 ∈ [0,1] and E1 ≤ E3, hence 

 
S = (E1−E3)(E2−1) ≥ 0 
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Recursive Definition of Total Explainability for k Explanations Once we defined the Total 

Explainability of two explanations, we can write a recursive definition for a set of k explanations: 

the idea behind this is that, for any k, the Total Explainability can be computed on Ek and the set 

of E{k−1} explanations. 

 

 
 

2.3. Choice of Explainability-Augmentation Method and Related Metrics 
 

After evaluating the pros and cons of the most promising methods found in the literature, such as 
SHAP, LIME, and counterfactuals, we have chosen to adopt the SHAP approach. This decision is 

based on its ease of implementation, computational efficiency, and the provision of intuitive 

graphical explanations. 
 

Shapley values, a concept borrowed from Game Theory, are designed to represent rewards 

assigned to players in a coalition based on their marginal contribution to the total coalition payoff 

[9]. In this context, the game represents our machine learning model’s classification task, the 
players are the features used, and the total coalition payoff is the classification value. The Shapley 

value of a feature is defined as follows: 

 

 
 

Here, val is a characteristic function that expresses the utility for any subset S of the p features of 

the model. For a given instance x, the value is calculated as: 
Z 

 
 

This represents the prediction for feature values in S, marginalized over features not in S. 

 
The innovation of SHAP (SHapley Additive exPlanations) [10] lies in its use of Shapley values to 

build an explanation model g that is additive with respect to the features of the original model: 

 
 
The steps of the SHAP method are as follows: 

 

1. Sample coalition vectors z′ (binary vectors indicating the presence/absence of a feature) 

 
2. Convert vectors z′ to the original feature space and obtain predictions from the original 

model; for features with a zero-value in the coalition vector, the conversion to the feature 

space is performed by substituting a random value from the data 
 

3. Compute the weight of each coalition vector using the SHAP kernel 
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4. Fit model g and return the coefficient values (which are, in fact, the Shapley values) 
To conduct an offline evaluation, we require a quantitative explainability measure based on 

Shapley values. A list of mask-based and resample-based metrics is proposed by Lundberg et al 

[11]. 

 
Mask-based metrics Mask-based metrics allow observation of the model’s output changes when 

features are masked with their mean value. For instance, the Keep-positive (mask) metric retains 

features with the most positive Shapley values, masking the others (features with negative 
Shapley values are always masked) for each instance and for an increasing fraction of features. 

Plotting the fraction of features kept versus the model output produces a curve that measures how 

well the local explanation method has identified features that increase the model’s output for this 
prediction. Higher valued curves represent better explanations (an example is shown here in 

Figure 1). 

 

 
 

Figure 1: Illustrative example of the Keep-positive metric [12]. 
 

Resample-based metrics The Keep Positive (resample) metric is similar to the Keep Positive 

(mask) metric, but instead of replacing hidden features with their mean value, it replaces them 
with values from a random training sample. If the input features are independent, this estimates 

the expectation of the model output conditioned on the observed features. The mask-based metric 

can also be viewed as approximating the conditional expectation of the model’s output, but only 
if the model is linear. The resample-based metric does not make the assumption of model 

linearity. 

 

Keep-absolute (resample) In our classification task, we are interested in both positive and 
negative Shapley-valued features, so we need a single metric that captures the quality of the 

explanations provided considering the overall feature importance. 

 
The Keep Absolute metric measures the explanation method’s ability to find the features most 

important for the model’s accuracy. It operates similarly to the Keep Positive metric, but keeps 

the most important features according to the absolute value of the associated Shapley values. 

Since removing features based on their absolute effect on the model does not specifically push the 
model’s output higher or lower, we measure not the change in the model’s output, but rather the 

change in the model’s accuracy. Good explanations will enable the model to achieve high 

accuracy with only a few important features. 
 

As a proxy for Explainability, we can rely on the Area Under Curve (AUC) of the curve plotted. 

This allows us to quantitatively assess the quality of our explanations and make improvements 
where necessary. 
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3. IMPLEMENTATION EXAMPLE ON IRIS DATASET WITH SVM MODEL 
 
To easily show the results of our approach, we first implement it on a toy dataset and, after that, 

we show the result on our RS. 

 

Using the sklearn Python library, we train a Support Vector Machine (SVM) Classifier on the Iris 
Dataset. 

 

We then extract classification rules with the SVM+Prototype algorithm [13]. 
 

 
 

Figure 2: Ellipsoids for equation rules and Hyper-rectangles for interval rules (Illustrative example of the 

SVM+Prototype Algorithm). 

 

The algorithm works as follows: 

 
1. Train an SVM classifier on the dataset. 

 

2. Identify the support vectors, which are the critical data points that define the decision 
boundarybetween classes. 

 

3. For each support vector, find its closest prototype (representative) from the same class. 

Aprototype can be a centroid or medoid of the class, or another representative point. 
 

4. Define hyper-rectangles or ellipsoids around each support vector and its associated 

prototype.These geometric shapes are used to form the rules. The decision boundary of the 
SVM is approximated by the union of these shapes. 

 

5. Extract the rules from the geometric shapes (see Figure 2). For hyper-rectangles, the 
rulesare formed as conjunctions of intervals for each feature, while for ellipsoids, the rules 

are represented as quadratic equations. 

 

Let us consider an example of rule extraction on the Iris dataset using the SVM+Prototype 
algorithm. The Iris dataset has four features: Sepal Length, Sepal Width, Petal Length, and Petal 

Width. We will focus on extracting rules for distinguishing between the Iris Setosa and Iris 

Versicolor classes. 
 

Assume that we have trained an SVM on the Iris dataset and identified the support vectors. 

Suppose we find the following support vector and its closest prototype for Iris Setosa: 

 

– Support Vector: (5.1, 3.5, 1.4, 0.2) 

– Prototype: (5.0, 3.4, 1.5, 0.3) 
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Next, we define a hyper-rectangle around the support vector and its prototype: 
 

– Sepal Length: [5.0, 5.1] 

– Sepal Width: [3.4, 3.5] 

– Petal Length: [1.4, 1.5] 

– Petal Width: [0.2, 0.3] 
 

The extracted rule from this hyper-rectangle is: IF 5.0 ≤ Sepal Length ≤ 5.1 AND 3.4 ≤ Sepal 

Width ≤ 3.5 AND 1.4 ≤ Petal Length ≤ 1.5 AND 0.2 ≤ Petal Width ≤ 0.3 THEN Iris Setosa 
 

The same process is applied to other support vectors and their prototypes, generating multiple 

rules for each class. 

 
The average complexity of the generated rules are calculated with Eq.1 and its value is ω = 3. 

 

To get the Explainability of this model, we should first notice that a SVM is a white-box model 
(therefore, maximally interpretable) and, if we provide the generated rules as explanations, it 

yields total completeness. All of this means that Eq.4 is simplified as 

 
 E(X) =U(X) (10) 

 

 
 

Figure 3: Model Explainability as a function of ωb. 

 

Because in this paper we do not estimate the parameter ωb, we show how the SVM Explainability 

changes as a function of the same parameter. 
 

It is possible to see (as desired when we defined the properties of the Understandability measure), 

that E(X) ≃ 0.9 when ω = ωb. 
 

Now we improve this result adding explanations with SHAP (Kernel Explainer). 

 

 
 

Figure 4: Importance plot of Iris features. 
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In Figure 4 the user can already get some valuable insights: 
 

– Petal Length is the most important feature; 

– Sepal Width is the least important feature; 

– The contributions of Sepal Width, Sepal Length and Petal Width to the classification of 

the Iris setosa are close to zero. 
 

Proceeding with the quantitative evaluation of the Explainability with the new results from 

SHAP, we compute and show the Keep Absolute (resample) metric. 

 

 
 

Figure 5: Keep absolute (resample) metric on SVM model for Iris dataset. 

 
The quantitative evaluation confirms what was already shown in the Importance Plot: even 

unmasking only the two most important features (Petal Width and Petal Length) we get an 

accuracy of 95%. 

 
The AUC of the above curve is equal to 0.69. 

Now it is possible to compute and show the Total Explainability of the SVM using the methods 

illustrated in section 3. 
 

 
 

Figure 6: Total Explainability of the SVM model as a function of ωb. 

 
The difference between Figure 5 and Figure 6 is that the curve in the latter plot starts from a total 

Explainability equal to the AUC of the Keep absolute metric curve: the Explainability has been 

greatly increased, even for low values of the bearable complexity ωb. 
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4. IMPLEMENTATION ON MERLOT DATASET WITH RECOMMENDER SYSTEM 
 
After a brief illustration of the potential of our augmentation methods on a toy dataset, we 

proceed with the evaluation and augmentation of the Explainability of the Recommender System 

with a detailed description of every step. 

 

4.1. Data 
 
Before discussing the implementation details, let us briefly introduce the MERLOT dataset. 

The MERLOT dataset is a collection of educational resources and user ratings, widely used in the 

context of Recommender Systems for online learning. It contains metadata about various courses 

and user-generated reviews and ratings, making it a valuable source of information for building 
personalized recommendations in the educational domain. 

 

We work with two MERLOT datasets: resources (Table 2) and ratings (Table 1). 
 

The first dataframe contains all metadata regarding the courses, while the second contains all 

reviews and ratings submitted by users (in both tables, only useful features are shown). The 

resource column in this last dataframe corresponds to the id column in the first one. 
 

Then, to create the starting point of the dataset on which our RS is trained, we merge the datasets 

by right-join on resource = id. 
 

We then simulate a user with the following preferences: 

 

 
 

Table 1: First rows of MERLOT ratings dataframe 

 
Id  rating  resource 

0 4 0 

1 3 0 

2 5 0 

3 3 1 

4 5 1 

 
Table 2: First rows of MERLOT resources dataframe. 
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4.2. Feature Correlation 
 

Before proceeding to the explanation through KernelSHAP, we must check for feature 

correlation: this could lead to unreliable computations of Shapley values. 
 

Since we are working with both numerical and text data, we compute the correlation matrix using 

Pearson correlation for numerical features and Cramer’s V for categorical features. 
 

Pearson correlation measures the linear relationship between two continuous variables, while 

Cramer’s V measures the strength of association between two categorical variables. 

 
In Figure 7 we can notice a correlation cluster corresponding to the discipline levels, with 

significantly high value (V = 0.96 for discipline levels 0 and 1). 

 
To mitigate this problem, we aggregate disciplines levels and, to get the Shapley values, we will 

only consider the resultant feature disciplines. 

 
 

Figure 7: Correlation matrix of training set. 
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Figure 8: Correlation matrix of the background dataset. 

 

There are still a few notable correlations, but the highest value does not go beyond 0.67. 

The idea behind grouping and ungrouping discipline levels is to manage the feature correlation by 
aggregating them into a single feature. By doing so, we can compute Shapley values for the 

aggregated feature disciplines (which are called Owen values). This approach helps in mitigating 

the high correlation between discipline levels, which could lead to unreliable Shapley value 

computations. 
 

4.3. Predict Function and Encoding 
 

Kernel Explainer needs basically two things: the model and a background dataset for integrating 

out features. 

 
For the first one, we could easily use a predict function already implemented in the RS algorithm. 

As background dataset, we use a sample of the training dataset: using the entire training set could 

result in a really slow computation of Shapley values. 
 

In order to have an average prediction which does not depend on the sample, we use stratified 

sampling to maintain the proportion of positive and negative classifications. 
 

Going back to the feature correlation problem, we would like to compute Shapley values for 

partitions of the coalition and, in particular, we would like to aggregate the discipline levels. The 

SHAP package includes a PartitionExplainer which computes Owen values, but it is still in 
development and, therefore, not useful for our research. 

 

To address this issue, we decide to use a workaround with the KernelExplainer by providing it 
with datasets in which discipline levels are grouped. This allows us to compute Shapley values 

for the aggregated disciplines feature while mitigating the high correlation between discipline 

levels. 
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Then, we modify the predict function so that it ungroups the discipline levels to use all features 
required by our model. 

 

 
 

The SHAP package is most compatible with scikit-learn models and, for the same reason, it 

requires One-Hot Encoding to work with categorical data. 

 
In this case, this type of encoding is not useful, since our model works with categorical features 

without any type of encoding required. 

 
To overcome this problem, we create a factorized version of both the training set and the dataset 

of items to explain: this way, we do not have to create a dummy variable for every value of every 

nonnumeric feature, but we maintain the same number of features and we assign an integer for 

every value in the non-numeric features. When we encode the training set, we save the ”encoding 
rules” to use the same on other datasets. The following pseudocodes illustrates how the 

implemented encoding and decoding work. 
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After that, we can define the new_predict function. 

 

 
 
We proceed by computing the Shapley values of 100 items from the resource dataset, showing the 

Feature Importance Plot and evaluating the Explainability with the Keep Absolute (resample) 

metric. 
 

5. RESULTS 
 

First, we show the importance of our model’s features: 

 
 

Figure 9: Feature Importance computed using Shapley values. 

 
As can be seen in Figure 9 (and as expected), disciplines is by far the most important feature. 

What makes SHAP’s Feature Importance Plot more desirable than classic permutation-based 

methods is that the importance does not depend on the goodness of the model, but on the 

magnitude of feature attributions (weighted average of the absolute value of the Shapley values). 
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Figure 10: Keep absolute (resample) metric. 

 

The result curve in Figure 10 demonstrates that, with just the first two most important features 

unmasked, the accuracy reaches 0.90. As the Feature Importance Plot in Figure 9 highlights that 
disciplines, type, and difficulty are the features with the highest mean of absolute Shapley values, 

this implies that over 90% of items are accurately recommended or not recommended based on 

preferences for only these features. 
 

The area under the curve (AUC) for the plotted curve is 0.81, which we denote as ξ. 

 

5.1. Total Explainability of Our Recommender System 
 

We calculate the complexity of our model and we obtain an average complexity ωm = 4.06. And 
finally, given the value of ξ, we can plot how Total Explainability Tot(U,ξ) evolves as a function 

of ωb, considering for U both Eq. 2 and 3. 

 

 
Figure 11: Total Explainability as a function of ωb. 

 

The pipeline presented made the RS explainable with an explainability value that, depending on 
ωb, is in the range [0.81,1). 

 

6. CONCLUSIONS 
 

In this paper, we presented a new quantitative approach to explainable AI (XAI) by evaluating 
and augmenting the explainability of a Recommender System (RS) in the E-Learning field. We 

introduced a formal taxonomy to establish a framework for our case study. It is important to note 

that explainability is not the same as interpretability, which means that even white-box models 
can benefit from XAI research. 
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Future research should delve deeper into the applicability of XAI techniques to white-box models 
and their potential benefits. 

 

There are several potential avenues for future work, including: 

– Conducting studies in Human-Computer Interaction (HCI) to better understand how users 

manage complexity and, consequently, develop improved understandability functions. 

– Considering user saturation by setting limits on the number of explanations provided, as 
this could enhance the overall explainability of the system. 
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