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ABSTRACT 
 
Secure software engineering is crucial but can be time-consuming; therefore, methods that 

could expedite the identification of software weaknesses without reducing the process’ efficacy 
would benefit the software engineering industry and thus benefit modern life. This research 

focuses on finding an efficient machine learning algorithm to identify software weaknesses from 

requirement specifications. The research uses the CWE repository and PROMISE_exp dataset 

for training. Keywords extracted using latent semantic analysis help map the CWE categories to 

PROMISE_exp. Naïve Bayes, support vector machine (SVM), decision trees, neural network, 

and convolutional neural network (CNN) algorithms were tested, with SVM and neural network 

producing reliable results. The research's unique contribution lies in the mapping technique and 

algorithm selection. It serves as a valuable reference for the secure software engineering 

community seeking to expedite the development lifecycle without compromising efficacy. Future 

work involves testing more algorithms, optimizing existing ones, and improving the training 

sets’ accuracy. 
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1. INTRODUCTION 
 
Secure software engineering is essential to contemporary infrastructure. Most of the luxuries and 

efficiency of the modern world can be attributed to the safe construction and operation of 

software and code. Society, as we know it today, would fail without software. There are over 
twenty billion IoT (Internet of Things) devices (devices with the ability to transmit data over the 

Internet) as of 2019 [1]. Such a precedent requires the software that is utilized by the masses to be 

secure, and a response was needed. Thus, the Secure Development Lifecycle was born. 

 
Secure Development Lifecycle (SDL) is the process in the Software Development Lifecycle 

(SDLC) in which security artifacts are prioritized first [2]. This model is paramount in building 

safe and secure software; however, as with any precautionary measures, security is purchased at 
the price of time and labor. Such an observation is as old as software development itself – even a 

former member of tech giant Microsoft’s central security team acknowledged that “reviewing 

thousands of files can be slow and tedious” [3]. 
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One of the first steps of both the Secure Development Lifecycle and the Software Development 
Lifecycle is a software requirements specification (SRS). Put in simple terms, an SRS is an 

enumeration of functional and nonfunctional requirements by the client. Functional requirements 

typically address functional features, and nonfunctional requirements could address things such 

as appearance and ease of use. Each functional and nonfunctional requirement typically comes 
with a description and its subcategory. The PROMISE_exp repository includes a large 

preponderance of such software requirements from a myriad of verified sources [4] and will be 

used in this work. 
 

An SRS is a microcosm of the Software Development Lifecycle in terms of its tediousness — it 

requires much deliberation and negotiation between the parties involved in the creation and 
utilization of software, typically between the client and the development company or team. This 

process is called the “requirements analysis.” In the Secure Development Lifecycle, risk 

assessment occurs contemporaneously with requirements analysis to determine what potential 

hazards could occur during development. This process is not perfect, however. It is reasonable to 
assume that mistakes or information left out in the requirements elicitation process could lead to 

weaknesses in the software if they pass unnoticed. A tool to aid in discovering potential future 

weaknesses so that developers can approach building software more cautiously would save time 
and effort and lead to safer and more secure software. Thus, our goal is to supplement the SDL 

using a machine learning algorithm that will help to predetermine software weaknesses from 

requirements elicitation documents. 
 

The Common Weakness Enumeration (CWE) is a categorical system listing common software 

weaknesses and vulnerabilities developed by the software development community and 

maintained by the MITRE corporation [5]. It provides an intuitive and common language to 
categorize and succinctly describe distinct software weaknesses according to their definition and 

risk. This allows software developers to quickly identify and develop remedies for erroneous 

software. 
 

The CWE repository can be mapped (related) to the PROMISE_exp repository through text 

classification. Text classification is a form of supervised machine learning that allows for the 

categorization of text into organized groups. According to Manning et al., “this type of learning is 
called supervised learning because a supervisor (the human who defines the classes and labels 

training documents) serves as a teacher directing the learning process” [6]. The application of a 

text classification algorithm on both the CWE and PROMISE_exp repositories allows for the 
relation between the two to form, and thus opens the door for various other machine learning 

algorithms to predict software weaknesses from SRSs. 

 
In this work, we will scrutinize how to optimize the classification of software requirements and 

thus produce a practical algorithm that will allow for the accurate prediction of software 

weaknesses from requirement elicitation documents. Forming such an algorithm begins with 

what is called Latent Semantic Analysis. Latent Semantic Analysis (LSA) is a method for 
bridging the gap between the syntactic “structure” of language and the semantic “meaning” of the 

same language [7]. It is an intricate process; however, the simplest way to understand its function 

is to examine the Bag of Words model that utilized in its preprocessing. 
 

To summarize, a vectorization technique should be used to represent keywords numerically so 

they may be processed. The vectorization technique used for our LSA construction was the Bag 
of Words (BoW) model. The BoW is one of the most popular methods for object categorization 

representation and involves selecting key objects (e.g., words) from a larger parent object (e.g., a 

line in a text file) in a manner that allows the larger object to be sufficiently represented by the 

abstracted key objects [8]. As mentioned previously, Latent Semantic Analysis can be applied to 
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text files. Thus, applying an LSA algorithm to the descriptions of weaknesses in the CWE 
repository and the lines in the PROMISE_exp dataset allows them to be mapped to one another 

with a high degree of accuracy. Once that is completed, the IDs of each CWE weakness (or each 

“CWE ID”) can be further abstracted to be the encapsulating categories under which each CWE 

ID falls. From there, each CWE category can be mapped to each line in the PROMISE_exp 
dataset and the resulting file can be used as a training set for machine learning algorithms. Such 

machine learning algorithms (described in “Methodology”) would use the training set to 

accurately predict and identify categories of software weaknesses from software requirement 
specifications. 

 

2. LITERATURE REVIEW 
 

Based on our research in identifying proper machine learning techniques which are effective in 
determining correlations between the Common Vulnerable Exposures repository (CVE) and 

software requirements we branched our work based on the articles “Recommending Attack 

Patterns for Software Requirements Document,” “Analyzing CVE Database using Unsupervised 
Topic Modelling,” and “Topic Modeling and Classification of CVE Databases.” 

 

Prior to this research, large databases which held information about a variety of attack patterns 
were developed to help software developers identify weaknesses within their code. As explained 

in “Recommending Attack Patterns for Software Requirements Document” a database known as 

CAPEC was developed from CVE data to provide more assistance to software developers while 

they were creating the software requirements for their programs [9]. To achieve this goal, the 
authors used the LDA algorithm for topic modeling to test how accurate their ideas of topic 

modeling were in identifying keywords between CAPEC and SRS documents. While going 

through this process they also used a metric process called Cosine Similarity which bases its math 
on how similar documents are while not taking their sizes into account and then creates two 

vectors based on each document and projects it onto a multi-dimensional space [10]. However, 

this methodology is stated to be heavily dependent on the text describing the system due to it 
looking for specific keywords. Once the algorithm was run for topic modeling it was found to be 

a success in identifying relationships between CAPEC attacks as well as patterns from SRS 

documents. 

 
Along with helping to develop CAPEC, the CVE repository was also further studied to analyze 

vulnerabilities reported in it based on the article “Analyzing CVE Database using Unsupervised 

Topic Modelling” [11]. From the document, it focuses on using topic modeling and the LDA 
algorithm to discover topics within the CVE database and mapped them to the OWASP top 10 

risks. To map these topics using LDA they went through multiple phases being broken down into 

data preprocessing, text cleaning, bigram, and trigram modeling, building the topic model, 

visualizing the topics and associated keywords, and finally mapping topics to the OWASP-Top 
10. Once this process was completed, they were able to identify growing trends in cyber-attacks 

based on taking data from 5-year intervals starting from 1999 and going to 2019. Once these 

groupings were compared it was found that there was a large similarity between the OWASP top-
10 recommendations, and the growing vulnerabilities reported from CVE. Based on the 

document's results, they found it successful due to the striking similarities between the OWASP 

top-10 and the growing reports on the CVE database. 
 

In a follow up to the article about analyzing the CVE database there was another used which 

referred to “Topic Modeling and Classification of CVE Databases” [12]. From this research, by 

implementing a LDA machine learning algorithm they further identified correlating topics 
between information from the CVE database to the OWASP Top-10. By using statistical analysis 

to determine the results of both lists, they identified remarkably similar values in standard 
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deviation and coefficient of variance based on when they originally manually mapped the results 
compared to when the used automated mapping for this project. From the results, it proved that it 

was possible to replicate data that was previously manually mapped to being automatically 

mapped by machine learning. By using this technique of automatic mapping, they are hoping to 

develop a framework to automate the process of mapping the vulnerability reports and set a 
security standard based on its results. 

 

Going along with this prior research, connections between CVE and CAPEC were also conducted 
to link both databases automatically using Artificial Intelligence. By using this technique, they 

could link information from the database together and better understand what topics correlated to 

what attacks. Algorithms such as SBERT, TF-IDF, and USE linked these databases based on 
CAPEC APEC ids and CVE ids. This topic in the research coincides closely with what we plan to 

do with ours due to wanting to link software requirement ids with CVE ids which connect 

security information based on the topic of the software requirement. 

 
Another research which also focused on a model to quantify software with analysis alerts and 

software metrics worked by Siavvas et al [13]. From the research, the authors worked on using 

systems like CWE along with a multifaceted model to evaluate security. Based on tests they ran 
on java applications they were able to classify levels of security as well as a list for developers to 

work on. Thanks to this information, it saved time and mitigated some process time needed to 

work with the code. Much like with this work, we are hoping to create a list of what the specific 
security problems are instead of the levels of security cyberattacks could affect. 

 

Based on our research being conducted with CWE we decided to research machine learning 

techniques and found an article describing the study of four machine learning techniques for 
classification written by Amr E. Mohamed [14]. Based on the work he did, his focus was on 

finding the key ideas of each technique and including their advantages and disadvantages in 

working with them. From the study, he chose to work with support vector machines (SVM), 
artificial neural networks, decision trees, and K-nearest-neighbors. Starting with SVM, he found 

that some of its major advantages were its high scaling functions as well as the model complexity 

and errors being easy to control. Although one disadvantage they found was its difficulty in 

interpreting information based on how it is read, a result that has been observed in other research 
[15]. With neural networks, he found that their ability to learn made them immensely powerful 

and flexible to use and has been useful in solving classification, clustering, and regression 

problems. Some weaknesses though included that the successes depended on the quantity of the 
data and that there is a lack of clear guidelines due to it being based on trial and error. With 

decision trees, he found that they can easily provide information that can be very comprehensible 

for readers however, they can easily overfit the data and are not as useful for tasks involving 
regression. Finally, with K-nearest-neighbors, he found that the speed of the algorithm is 

amazingly fast and easy to implement. However as other research corroborates, it is sensitive to 

irrelevant features and can be computationally expensive [16]. The information in the paper was 

particularly useful in our research due to providing information on what algorithms would be best 
when running these machine learning processes after we used topic modeling on our code. 

 

The research focused on vectorization of natural language processing written by Krzeszewska et 
al [17] was studied to understand and provide linguistic context when processing natural 

language to classification in machine learning. By using a continuous Bag of Words and skip-

gram, they obtained classification and keywords based on the topic discussed in the text 
document they used. used. From here, they were able to take the information and create a 

summary statistic based on categories they wanted to separate these topics into by using KNN 

and Naïve-Bayes to classify the information. Once they compiled the data, they found it was 

considered reliable. They found that even with a large dataset there was no negative impact on 
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the vectorization methods used to find these conclusive results. Based on this information, they 
found that there was a good relationship between the vectorization methods and the classification 

performance. While we conducted our own research, we used techniques from the article to find 

our results by matching IDs between CWE and our dataset of software requirements with help 

from the Bag of Words vectorization model. 
 

3. METHODOLOGY 
 

In this phase of our research, our goal was to test different machine learning models to identify 
which algorithms would most accurately predict which software requirement would be 

appropriately mapped to the correct cybersecurity vulnerability based on the CWE database. 

While conducting this research, we created machine learning models using Naïve Bayes, support 

vector machine (SVM), decision trees, a neural network, and a convolutional neural network 
(CNN). 

 

To form the algorithm, we first had to create the training set that said algorithms would use. To 
do this, we began by performing Latent Semantic Analysis (LSA) to form the algorithm. In LSA, 

we bridge the gap between the syntactic structure and semantic meaning of language. To simplify 

the understanding of LSA, let's consider the preprocessing step that involved the Bag of Words 
model. 

 

To summarize, we utilized a vectorization technique to represent keywords numerically for 

processing. The vectorization technique employed for constructing our LSA was the Bag of 
Words (BoW) model. The BoW model is commonly used for object categorization 

representation, where key objects (e.g., words) are selected from a larger parent object (e.g., a 

line in a text file) to effectively represent the larger object. 
 

Having mentioned the applicability of Latent Semantic Analysis to text files, we applied the LSA 

algorithm to the descriptions of weaknesses in the CWE repository and the lines in the 
PROMISE_exp dataset. This process allowed for a highly accurate mapping between them. 

Subsequently, the CWE weaknesses were further abstracted into CWE categories, each 

represented by a CWE ID. These CWE categories were then mapped to each line in the 

PROMISE_exp dataset. The resulting file served as a training set for machine learning algorithms 
described in the "Methodology" section. Once we had a complete CSV file which included the 

software requirement, the CWE vulnerability description, and the CWE vulnerability ID we were 

then ready to use the machine learning algorithms to find how accurate our results were. These 
algorithms utilized the training set to predict and identify software weakness categories from 

software requirement specifications. When testing and training the algorithms we used three 

different sets. The first was an 80-20 training/test split, then we used a 70-30 split, and then we 

used a 60-40 split. 
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Figure 1. Flowchart of methodology. 

 

4. RESULTS AND DISCUSSION 
 
In this section, we will review the findings from the testing of each algorithm and provide 

reasoning regarding why the ones that did not work did not. As mentioned previously, the 

algorithms that were tested in total were: Naïve Bayes, SVM, decision trees, neural network, and 
convolutional neural network (CNN). Among these algorithms, the ones that provided reliable 

results were the SVM and the neural network. 

 

The SVM algorithm yielded an average accuracy of ≈0.642. To be precise, for the 80-20, 70-30, 
and 60-40 training/test splits, accuracies of ≈0.648, ≈0.643, and ≈0.636 were obtained, 

respectively. This moderate but not exceptionally high accuracy rate makes the SVM algorithm a 

clear candidate for use – however, additional modifications would be needed to make it viable to 
compete with the neural network [18]. Over dozens of repetitions, the neural network never 

yielded an accuracy below 0.86, with most runs ending with an accuracy higher than 0.90 and 

achieving a high of ≈0.992. The neural network had a batch size of 32 samples and went through 

10 epochs before reaching its final accuracy for any run. This means the neural network is 
currently the optimal algorithm to use. 

 

Although the success of the results garnered from the algorithms that did work was significant, it 
is important to make note of the machine learning algorithms that did not work with the 

CWE/PROMISE_exp mapped training dataset. The algorithms that did not work were Naïve 

Bayes and decision trees. The convolutional neural network (CNN) hasn’t been developed 
enough to be able to conclude anything regarding its reliability currently. 

 

Naïve Bayes can be split into three variants: Gaussian Naïve Bayes, Multinomial Naïve Bayes, 

and Bernoulli Naïve Bayes. Only the Gaussian Naïve Bayes and Multinomial Naïve Bayes were 
used since the Bernoulli variant deals with data with binary features (i.e., each feature can only 

take on two values) [19], [20]. The attempt to use the Multinomial variant resulted in an error due 

to the dataset not being able to assume the correct format for the variant to function properly. 
Multinomial Naïve Bayes expects data in the form of counts, where each feature represents the 

frequency of occurrence of a particular term or word in a document or sample [21]. The type of 

data collection used for creating the training set could not include allocating data in this way, 
rendering the Multinomial variant unusable as well. As for the Gaussian variant, results showed a 
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low average accuracy (≈0.12) over the results from 80-20, 70-30, and 60-40 data splits. This was 
most likely because the Gaussian variant works best with normally distributed data [22]. The 

features of the training dataset were not at all normally distributed, which was the culprit for its 

bad results. Thus, since the Gaussian and Multinomial variants were thrown out and the Bernoulli 

variant was not applicable, Naïve Bayes was thrown out in its entirety. 
 

The way the dataset was structured was the reason the decision trees algorithm was discarded as 

well. Decision Trees rely on identifying patterns and relationships in the data to make accurate 
predictions [23]. Since the value of the target variable in every row was unique, there were no 

repeating patterns within the dataset for the algorithm to discern, yielding a low accuracy (≈0.10). 

 

5. CONCLUSION AND FUTURE WORK 
 
In this work, we used the results from applying Latent Semantic Analysis to the content stored in 

the Common Weakness Enumeration and the PROMISE_exp repositories to map the best fitting 

CWE weakness category to each line of the PROMISE_exp repository. The result of this 
mapping became the dataset that would be used in our experiments. This training set was created 

to allow us to build an algorithm that could predict the potential development of software 

weaknesses. Upon its completion, this algorithm could be fed software requirements 
specifications and accurately predict which weaknesses could occur in the future so that secure 

software developers could expedite creating software in a secure manner which the same level of 

efficacy. 

 
We conducted an experiment to compare the performance (accuracy/precision) of various 

supervised machine learning algorithms to arrive at the most optimal algorithm for the task. We 

found that a neural network with 10 epochs and a batch size of 32 showed the best results in 
precision, troughing at no less than an accuracy value of 0.86 and peaking at 0.992, while 

remaining above 0.9 on average. 

 
Secure Software Engineering is an onerous process. Identification of potential software 

weaknesses from requirements elicitations using an accurate machine learning algorithm would 

save developers a significant amount of labor and time in finding weaknesses in their code, and 

thus allow software of the same quality as before the existence of such an algorithm to be 
produced at an expedited rate. We hope this study will help developers who want to optimize the 

secure development of software and to produce high-quality work at a faster rate. The training 

dataset developed could also serve as a reference for other studies, allowing other researchers to 
draw their own unique and useful conclusions regarding the optimal algorithm for use. 

 

For future work, we intend to optimize currently working algorithms to provide new results with 

higher accuracy rates, test new algorithms in the search to find the optimal algorithm to use for 
this task and correct the training set used in the algorithms for error and optimize it. 
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