
David C. Wyld et al. (Eds): SEAS, NLPI, SP, BDBS, CMCA, DMML, CSITEC -2023

pp. 01-09, 2023. CS & IT - CSCP 2023 DOI: 10.5121/csit.2023.131701

USING MACHINE LEARNING TO IDENTIFY

SOFTWARE WEAKNESSES FROM SOFTWARE

REQUIREMENT SPECIFICATIONS

Mounika Vanamala, Sean Loesch and Alexander Caravella

Department of Computer Science, University of Wisconsin-Eau Claire, Eau

Claire, Wisconsin, USA

ABSTRACT

Secure software engineering is crucial but can be time-consuming; therefore, methods that

could expedite the identification of software weaknesses without reducing the process’ efficacy
would benefit the software engineering industry and thus benefit modern life. This research

focuses on finding an efficient machine learning algorithm to identify software weaknesses from

requirement specifications. The research uses the CWE repository and PROMISE_exp dataset

for training. Keywords extracted using latent semantic analysis help map the CWE categories to

PROMISE_exp. Naïve Bayes, support vector machine (SVM), decision trees, neural network,

and convolutional neural network (CNN) algorithms were tested, with SVM and neural network

producing reliable results. The research's unique contribution lies in the mapping technique and

algorithm selection. It serves as a valuable reference for the secure software engineering

community seeking to expedite the development lifecycle without compromising efficacy. Future

work involves testing more algorithms, optimizing existing ones, and improving the training

sets’ accuracy.

KEYWORDS

Machine Learning, Software Weakness, Common Weakness Enumeration, Neural Network,

Software Requirement Specification

1. INTRODUCTION

Secure software engineering is essential to contemporary infrastructure. Most of the luxuries and

efficiency of the modern world can be attributed to the safe construction and operation of

software and code. Society, as we know it today, would fail without software. There are over
twenty billion IoT (Internet of Things) devices (devices with the ability to transmit data over the

Internet) as of 2019 [1]. Such a precedent requires the software that is utilized by the masses to be

secure, and a response was needed. Thus, the Secure Development Lifecycle was born.

Secure Development Lifecycle (SDL) is the process in the Software Development Lifecycle

(SDLC) in which security artifacts are prioritized first [2]. This model is paramount in building

safe and secure software; however, as with any precautionary measures, security is purchased at
the price of time and labor. Such an observation is as old as software development itself – even a

former member of tech giant Microsoft’s central security team acknowledged that “reviewing

thousands of files can be slow and tedious” [3].

https://airccse.org/csit/V13N17.html
https://doi.org/10.5121/csit.2023.131701

2 Computer Science & Information Technology (CS & IT)

One of the first steps of both the Secure Development Lifecycle and the Software Development
Lifecycle is a software requirements specification (SRS). Put in simple terms, an SRS is an

enumeration of functional and nonfunctional requirements by the client. Functional requirements

typically address functional features, and nonfunctional requirements could address things such

as appearance and ease of use. Each functional and nonfunctional requirement typically comes
with a description and its subcategory. The PROMISE_exp repository includes a large

preponderance of such software requirements from a myriad of verified sources [4] and will be

used in this work.

An SRS is a microcosm of the Software Development Lifecycle in terms of its tediousness — it

requires much deliberation and negotiation between the parties involved in the creation and
utilization of software, typically between the client and the development company or team. This

process is called the “requirements analysis.” In the Secure Development Lifecycle, risk

assessment occurs contemporaneously with requirements analysis to determine what potential

hazards could occur during development. This process is not perfect, however. It is reasonable to
assume that mistakes or information left out in the requirements elicitation process could lead to

weaknesses in the software if they pass unnoticed. A tool to aid in discovering potential future

weaknesses so that developers can approach building software more cautiously would save time
and effort and lead to safer and more secure software. Thus, our goal is to supplement the SDL

using a machine learning algorithm that will help to predetermine software weaknesses from

requirements elicitation documents.

The Common Weakness Enumeration (CWE) is a categorical system listing common software

weaknesses and vulnerabilities developed by the software development community and

maintained by the MITRE corporation [5]. It provides an intuitive and common language to
categorize and succinctly describe distinct software weaknesses according to their definition and

risk. This allows software developers to quickly identify and develop remedies for erroneous

software.

The CWE repository can be mapped (related) to the PROMISE_exp repository through text

classification. Text classification is a form of supervised machine learning that allows for the

categorization of text into organized groups. According to Manning et al., “this type of learning is
called supervised learning because a supervisor (the human who defines the classes and labels

training documents) serves as a teacher directing the learning process” [6]. The application of a

text classification algorithm on both the CWE and PROMISE_exp repositories allows for the
relation between the two to form, and thus opens the door for various other machine learning

algorithms to predict software weaknesses from SRSs.

In this work, we will scrutinize how to optimize the classification of software requirements and

thus produce a practical algorithm that will allow for the accurate prediction of software

weaknesses from requirement elicitation documents. Forming such an algorithm begins with

what is called Latent Semantic Analysis. Latent Semantic Analysis (LSA) is a method for
bridging the gap between the syntactic “structure” of language and the semantic “meaning” of the

same language [7]. It is an intricate process; however, the simplest way to understand its function

is to examine the Bag of Words model that utilized in its preprocessing.

To summarize, a vectorization technique should be used to represent keywords numerically so

they may be processed. The vectorization technique used for our LSA construction was the Bag
of Words (BoW) model. The BoW is one of the most popular methods for object categorization

representation and involves selecting key objects (e.g., words) from a larger parent object (e.g., a

line in a text file) in a manner that allows the larger object to be sufficiently represented by the

abstracted key objects [8]. As mentioned previously, Latent Semantic Analysis can be applied to

Computer Science & Information Technology (CS & IT) 3

text files. Thus, applying an LSA algorithm to the descriptions of weaknesses in the CWE
repository and the lines in the PROMISE_exp dataset allows them to be mapped to one another

with a high degree of accuracy. Once that is completed, the IDs of each CWE weakness (or each

“CWE ID”) can be further abstracted to be the encapsulating categories under which each CWE

ID falls. From there, each CWE category can be mapped to each line in the PROMISE_exp
dataset and the resulting file can be used as a training set for machine learning algorithms. Such

machine learning algorithms (described in “Methodology”) would use the training set to

accurately predict and identify categories of software weaknesses from software requirement
specifications.

2. LITERATURE REVIEW

Based on our research in identifying proper machine learning techniques which are effective in
determining correlations between the Common Vulnerable Exposures repository (CVE) and

software requirements we branched our work based on the articles “Recommending Attack

Patterns for Software Requirements Document,” “Analyzing CVE Database using Unsupervised
Topic Modelling,” and “Topic Modeling and Classification of CVE Databases.”

Prior to this research, large databases which held information about a variety of attack patterns
were developed to help software developers identify weaknesses within their code. As explained

in “Recommending Attack Patterns for Software Requirements Document” a database known as

CAPEC was developed from CVE data to provide more assistance to software developers while

they were creating the software requirements for their programs [9]. To achieve this goal, the
authors used the LDA algorithm for topic modeling to test how accurate their ideas of topic

modeling were in identifying keywords between CAPEC and SRS documents. While going

through this process they also used a metric process called Cosine Similarity which bases its math
on how similar documents are while not taking their sizes into account and then creates two

vectors based on each document and projects it onto a multi-dimensional space [10]. However,

this methodology is stated to be heavily dependent on the text describing the system due to it
looking for specific keywords. Once the algorithm was run for topic modeling it was found to be

a success in identifying relationships between CAPEC attacks as well as patterns from SRS

documents.

Along with helping to develop CAPEC, the CVE repository was also further studied to analyze

vulnerabilities reported in it based on the article “Analyzing CVE Database using Unsupervised

Topic Modelling” [11]. From the document, it focuses on using topic modeling and the LDA
algorithm to discover topics within the CVE database and mapped them to the OWASP top 10

risks. To map these topics using LDA they went through multiple phases being broken down into

data preprocessing, text cleaning, bigram, and trigram modeling, building the topic model,

visualizing the topics and associated keywords, and finally mapping topics to the OWASP-Top
10. Once this process was completed, they were able to identify growing trends in cyber-attacks

based on taking data from 5-year intervals starting from 1999 and going to 2019. Once these

groupings were compared it was found that there was a large similarity between the OWASP top-
10 recommendations, and the growing vulnerabilities reported from CVE. Based on the

document's results, they found it successful due to the striking similarities between the OWASP

top-10 and the growing reports on the CVE database.

In a follow up to the article about analyzing the CVE database there was another used which

referred to “Topic Modeling and Classification of CVE Databases” [12]. From this research, by

implementing a LDA machine learning algorithm they further identified correlating topics
between information from the CVE database to the OWASP Top-10. By using statistical analysis

to determine the results of both lists, they identified remarkably similar values in standard

4 Computer Science & Information Technology (CS & IT)

deviation and coefficient of variance based on when they originally manually mapped the results
compared to when the used automated mapping for this project. From the results, it proved that it

was possible to replicate data that was previously manually mapped to being automatically

mapped by machine learning. By using this technique of automatic mapping, they are hoping to

develop a framework to automate the process of mapping the vulnerability reports and set a
security standard based on its results.

Going along with this prior research, connections between CVE and CAPEC were also conducted
to link both databases automatically using Artificial Intelligence. By using this technique, they

could link information from the database together and better understand what topics correlated to

what attacks. Algorithms such as SBERT, TF-IDF, and USE linked these databases based on
CAPEC APEC ids and CVE ids. This topic in the research coincides closely with what we plan to

do with ours due to wanting to link software requirement ids with CVE ids which connect

security information based on the topic of the software requirement.

Another research which also focused on a model to quantify software with analysis alerts and

software metrics worked by Siavvas et al [13]. From the research, the authors worked on using

systems like CWE along with a multifaceted model to evaluate security. Based on tests they ran
on java applications they were able to classify levels of security as well as a list for developers to

work on. Thanks to this information, it saved time and mitigated some process time needed to

work with the code. Much like with this work, we are hoping to create a list of what the specific
security problems are instead of the levels of security cyberattacks could affect.

Based on our research being conducted with CWE we decided to research machine learning

techniques and found an article describing the study of four machine learning techniques for
classification written by Amr E. Mohamed [14]. Based on the work he did, his focus was on

finding the key ideas of each technique and including their advantages and disadvantages in

working with them. From the study, he chose to work with support vector machines (SVM),
artificial neural networks, decision trees, and K-nearest-neighbors. Starting with SVM, he found

that some of its major advantages were its high scaling functions as well as the model complexity

and errors being easy to control. Although one disadvantage they found was its difficulty in

interpreting information based on how it is read, a result that has been observed in other research
[15]. With neural networks, he found that their ability to learn made them immensely powerful

and flexible to use and has been useful in solving classification, clustering, and regression

problems. Some weaknesses though included that the successes depended on the quantity of the
data and that there is a lack of clear guidelines due to it being based on trial and error. With

decision trees, he found that they can easily provide information that can be very comprehensible

for readers however, they can easily overfit the data and are not as useful for tasks involving
regression. Finally, with K-nearest-neighbors, he found that the speed of the algorithm is

amazingly fast and easy to implement. However as other research corroborates, it is sensitive to

irrelevant features and can be computationally expensive [16]. The information in the paper was

particularly useful in our research due to providing information on what algorithms would be best
when running these machine learning processes after we used topic modeling on our code.

The research focused on vectorization of natural language processing written by Krzeszewska et
al [17] was studied to understand and provide linguistic context when processing natural

language to classification in machine learning. By using a continuous Bag of Words and skip-

gram, they obtained classification and keywords based on the topic discussed in the text
document they used. used. From here, they were able to take the information and create a

summary statistic based on categories they wanted to separate these topics into by using KNN

and Naïve-Bayes to classify the information. Once they compiled the data, they found it was

considered reliable. They found that even with a large dataset there was no negative impact on

Computer Science & Information Technology (CS & IT) 5

the vectorization methods used to find these conclusive results. Based on this information, they
found that there was a good relationship between the vectorization methods and the classification

performance. While we conducted our own research, we used techniques from the article to find

our results by matching IDs between CWE and our dataset of software requirements with help

from the Bag of Words vectorization model.

3. METHODOLOGY

In this phase of our research, our goal was to test different machine learning models to identify
which algorithms would most accurately predict which software requirement would be

appropriately mapped to the correct cybersecurity vulnerability based on the CWE database.

While conducting this research, we created machine learning models using Naïve Bayes, support

vector machine (SVM), decision trees, a neural network, and a convolutional neural network
(CNN).

To form the algorithm, we first had to create the training set that said algorithms would use. To
do this, we began by performing Latent Semantic Analysis (LSA) to form the algorithm. In LSA,

we bridge the gap between the syntactic structure and semantic meaning of language. To simplify

the understanding of LSA, let's consider the preprocessing step that involved the Bag of Words
model.

To summarize, we utilized a vectorization technique to represent keywords numerically for

processing. The vectorization technique employed for constructing our LSA was the Bag of
Words (BoW) model. The BoW model is commonly used for object categorization

representation, where key objects (e.g., words) are selected from a larger parent object (e.g., a

line in a text file) to effectively represent the larger object.

Having mentioned the applicability of Latent Semantic Analysis to text files, we applied the LSA

algorithm to the descriptions of weaknesses in the CWE repository and the lines in the
PROMISE_exp dataset. This process allowed for a highly accurate mapping between them.

Subsequently, the CWE weaknesses were further abstracted into CWE categories, each

represented by a CWE ID. These CWE categories were then mapped to each line in the

PROMISE_exp dataset. The resulting file served as a training set for machine learning algorithms
described in the "Methodology" section. Once we had a complete CSV file which included the

software requirement, the CWE vulnerability description, and the CWE vulnerability ID we were

then ready to use the machine learning algorithms to find how accurate our results were. These
algorithms utilized the training set to predict and identify software weakness categories from

software requirement specifications. When testing and training the algorithms we used three

different sets. The first was an 80-20 training/test split, then we used a 70-30 split, and then we

used a 60-40 split.

6 Computer Science & Information Technology (CS & IT)

Figure 1. Flowchart of methodology.

4. RESULTS AND DISCUSSION

In this section, we will review the findings from the testing of each algorithm and provide

reasoning regarding why the ones that did not work did not. As mentioned previously, the

algorithms that were tested in total were: Naïve Bayes, SVM, decision trees, neural network, and
convolutional neural network (CNN). Among these algorithms, the ones that provided reliable

results were the SVM and the neural network.

The SVM algorithm yielded an average accuracy of ≈0.642. To be precise, for the 80-20, 70-30,
and 60-40 training/test splits, accuracies of ≈0.648, ≈0.643, and ≈0.636 were obtained,

respectively. This moderate but not exceptionally high accuracy rate makes the SVM algorithm a

clear candidate for use – however, additional modifications would be needed to make it viable to
compete with the neural network [18]. Over dozens of repetitions, the neural network never

yielded an accuracy below 0.86, with most runs ending with an accuracy higher than 0.90 and

achieving a high of ≈0.992. The neural network had a batch size of 32 samples and went through

10 epochs before reaching its final accuracy for any run. This means the neural network is
currently the optimal algorithm to use.

Although the success of the results garnered from the algorithms that did work was significant, it
is important to make note of the machine learning algorithms that did not work with the

CWE/PROMISE_exp mapped training dataset. The algorithms that did not work were Naïve

Bayes and decision trees. The convolutional neural network (CNN) hasn’t been developed
enough to be able to conclude anything regarding its reliability currently.

Naïve Bayes can be split into three variants: Gaussian Naïve Bayes, Multinomial Naïve Bayes,

and Bernoulli Naïve Bayes. Only the Gaussian Naïve Bayes and Multinomial Naïve Bayes were
used since the Bernoulli variant deals with data with binary features (i.e., each feature can only

take on two values) [19], [20]. The attempt to use the Multinomial variant resulted in an error due

to the dataset not being able to assume the correct format for the variant to function properly.
Multinomial Naïve Bayes expects data in the form of counts, where each feature represents the

frequency of occurrence of a particular term or word in a document or sample [21]. The type of

data collection used for creating the training set could not include allocating data in this way,
rendering the Multinomial variant unusable as well. As for the Gaussian variant, results showed a

Computer Science & Information Technology (CS & IT) 7

low average accuracy (≈0.12) over the results from 80-20, 70-30, and 60-40 data splits. This was
most likely because the Gaussian variant works best with normally distributed data [22]. The

features of the training dataset were not at all normally distributed, which was the culprit for its

bad results. Thus, since the Gaussian and Multinomial variants were thrown out and the Bernoulli

variant was not applicable, Naïve Bayes was thrown out in its entirety.

The way the dataset was structured was the reason the decision trees algorithm was discarded as

well. Decision Trees rely on identifying patterns and relationships in the data to make accurate
predictions [23]. Since the value of the target variable in every row was unique, there were no

repeating patterns within the dataset for the algorithm to discern, yielding a low accuracy (≈0.10).

5. CONCLUSION AND FUTURE WORK

In this work, we used the results from applying Latent Semantic Analysis to the content stored in

the Common Weakness Enumeration and the PROMISE_exp repositories to map the best fitting

CWE weakness category to each line of the PROMISE_exp repository. The result of this
mapping became the dataset that would be used in our experiments. This training set was created

to allow us to build an algorithm that could predict the potential development of software

weaknesses. Upon its completion, this algorithm could be fed software requirements
specifications and accurately predict which weaknesses could occur in the future so that secure

software developers could expedite creating software in a secure manner which the same level of

efficacy.

We conducted an experiment to compare the performance (accuracy/precision) of various

supervised machine learning algorithms to arrive at the most optimal algorithm for the task. We

found that a neural network with 10 epochs and a batch size of 32 showed the best results in
precision, troughing at no less than an accuracy value of 0.86 and peaking at 0.992, while

remaining above 0.9 on average.

Secure Software Engineering is an onerous process. Identification of potential software

weaknesses from requirements elicitations using an accurate machine learning algorithm would

save developers a significant amount of labor and time in finding weaknesses in their code, and

thus allow software of the same quality as before the existence of such an algorithm to be
produced at an expedited rate. We hope this study will help developers who want to optimize the

secure development of software and to produce high-quality work at a faster rate. The training

dataset developed could also serve as a reference for other studies, allowing other researchers to
draw their own unique and useful conclusions regarding the optimal algorithm for use.

For future work, we intend to optimize currently working algorithms to provide new results with

higher accuracy rates, test new algorithms in the search to find the optimal algorithm to use for
this task and correct the training set used in the algorithms for error and optimize it.

8 Computer Science & Information Technology (CS & IT)

REFERENCES

[1] SCMO, "Logistics Facts," Available: https://www.scmo.net/logistics-facts.

[2] Maayan, G. D., "How You Should Approach the Secure Development Lifecycle,"

DATAVERSITY. Available: https://www.dataversity.net/how-you-should-approach-the-secure-

development-lifecycle/.

[3] Howard, M., "Building more secure software with improved development processes," IEEE

Security & Privacy, vol. 2, no. 6, pp. 63-65, 2004. Available: https://doi.org/10.1109/MSP.2004.95.

[4] Dias Canedo, E. and Cordeiro Mendes, B., "Software requirements classification using machine
learning algorithms," Entropy, vol. 22, no. 9, p. 1057, 2020. Available:

https://doi.org/10.3390/e22091057.

[5] MITRE Corporation, "Common Weakness Enumeration," CWE. Available: https://cwe.mitre.org/.

[6] C. D. Manning, P. Raghavan, and H. Schütze, "Introduction to Information Retrieval," Cambridge,

England: Cambridge University Press, 2008.

[7] T. K. Landauer, P. W. Foltz, and D. Laham, "Introduction to latent semantic analysis," Discourse

Processes, vol. 25, pp. 259-284, 1998.

[8] Y. Zhang, R. Jin, and Z. H. Zhou, "Understanding bag-of-words model: A statistical framework,"

International Journal of Machine Learning and Cybernetics, vol. 1, pp. 43-52, 2010. [Online].

Available: https://doi.org/10.1007/s13042-010-0001-0.

[9] M. Vanamala, X. Yuan, W. Smith, and J. Bennett, "Interactive Visualization Dashboard for

Common Attack Pattern Enumeration Classification," Proceedings of ICSEA 2022: The Seventeenth
International Conference on Software Engineering Advances, 2022, pp. 69-74.

[10] M. Vanamala, J. Gilmore, X. Yuan and K. Roy, "Recommending Attack Patterns for Software

Requirements Document," 2020 International Conference on Computational Science and

Computational Intelligence (CSCI), Las Vegas, NV, USA, 2020, pp. 1813-1818, doi:

10.1109/CSCI51800.2020.00334.

[11] V. Mounika, X. Yuan and K. Bandaru, "Analyzing CVE Database Using Unsupervised Topic

Modelling," 2019 International Conference on Computational Science and Computational

Intelligence (CSCI), Las Vegas, NV, USA, 2019, pp. 72-77, doi: 10.1109/CSCI49370.2019.00019.

[12] M. Vanamala, X. Yuan and K. Roy, "Topic Modeling And Classification Of Common

Vulnerabilities And Exposures Database," 2020 International Conference on Artificial Intelligence,

Big Data, Computing and Data Communication Systems (icABCD), Durban, South Africa, 2020,
pp. 1-5, doi: 10.1109/icABCD49160.2020.9183814.

[13] Siavvas, Miltiadis & Kehagias, Dionysios & Tzovaras, Dimitrios & Gelenbe, Erol. (2021). A

hierarchical model for quantifying software security based on static analysis alerts and software

metrics. Software Quality Journal. 29. 10.1007/s11219-021-09555-0.

[14] A. Mohamed, "Comparative Study of Four Supervised Machine Learning Techniques for

Classification," International Journal of Applied Science and Technology, vol. 7, no. 2, pp. 5-18,

June 2017.

[15] W. Z. Tee, R. Dave, N. Seliya and M. Vanamala, "Human Activity Recognition models using

Limited Consumer Device Sensors and Machine Learning," 2022 Asia Conference on Algorithms,

Computing and Machine Learning (CACML), Hangzhou, China, 2022, pp. 456-461, doi:

10.1109/CACML55074.2022.00083.

[16] J. Mallet, L. Pryor, R. Dave, N. Seliya, M. Vanamala, and E. Sowells-Boone, "Hold On and Swipe:
A Touch-Movement Based Continuous Authentication Schema based on Machine Learning," 2022

Asia Conference on Algorithms, Computing and Machine Learning (CACML), Hangzhou, China,

2022 pp. 442-447, doi: 10.1109/CACML55074.2022.00081.

[17] U. Krzeszewska, A. Poniszewska-Marańda, and J. Ochelska-Mierzejewska, “Systematic

Comparison of Vectorization Methods in Classification Context,” Applied Sciences, vol. 12, no. 10,

p. 5119, May 2022, doi: 10.3390/app12105119.

[18] B. Pelto, M. Vanamala, and R. Dave, "Your Identity is Your Behavior—Continuous User

Authentication based on Machine Learning and Touch Dynamics," 2023. Available:

https://doi.org/10.48550/arXiv.2305.09482.

[19] S. Xu, "Bayesian Naïve Bayes classifiers to text classification," Journal of Information Science, vol.

44, no. 1, pp. 48-59, 2018. Available: https://doi.org/10.1177/0165551516677946.

https://www.scmo.net/logistics-facts
https://www.dataversity.net/how-you-should-approach-the-secure-development-lifecycle/
https://www.dataversity.net/how-you-should-approach-the-secure-development-lifecycle/
https://doi.org/10.1109/MSP.2004.95
https://doi.org/10.3390/e22091057
https://cwe.mitre.org/
https://doi.org/10.1007/s13042-010-0001-0
https://doi.org/10.48550/arXiv.2305.09482
https://doi.org/10.1177/0165551516677946

Computer Science & Information Technology (CS & IT) 9

[20] N. Siddiqui, R. Dave, M. Vanamala, and N. Seliya, "Machine and Deep Learning Applications to

Mouse Dynamics for Continuous User Authentication," Machine Learning and Knowledge

Extraction, vol. 4, no. 2, pp. 502-518, 2022. Available: https://doi.org/10.3390/make4020023.

[21] J. D. Rennie, L. Shih, J. Teevan, and D. R. Karger, "Tackling the poor assumptions of naive Bayes

text classifiers," in Proceedings of the 20th International Conference on Machine Learning (ICML-
03), 2003, pp. 616-623.

[22] L. Pryor, J. Mallet, R. Dave, N. Seliya, M. Vanamala, and E. Sowells-Boone, "Evaluation of a User

Authentication Schema Using Behavioral Biometrics and Machine Learning," Computer and

Information Science, vol. 15, no. 3, pp. 1, Aug. 2022. Available:

https://doi.org/10.48550/arXiv.2205.08371.

[23] S. B. Kotsiantis, "Decision trees: A recent overview," Artificial Intelligence Review, vol. 39, pp.

261-283, 2013. Available: https://doi.org/10.1007/s10462-011-9272-4.

© 2023 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

https://doi.org/10.3390/make4020023
https://doi.org/10.48550/arXiv.2205.08371
https://doi.org/10.1007/s10462-011-9272-4

