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Abstract. Sign constraints are a handy representation of domain-specific prior knowledge that can be
incorporated to machine learning. Under the sign constraints, the signs of the weight coefficients for linear
predictors cannot be flipped from the ones specified in advance according to the prior knowledge. This
paper presents new stochastic dual coordinate ascent (SDCA) algorithms that find the minimizer of the
empirical risk under the sign constraints. Generic surrogate loss functions can be plugged into the proposed
algorithm with the strong convergence guarantee inherited from the vanilla SDCA. A technical contribution
of this work is the finding of an efficient algorithm that performs the SDCA update with a cost linear to the
number of input features which coincides with the SDCA update without the sign constraints. Eventually,
the computational cost O(nd) is achieved to attain an ϵ-accuracy solution. Pattern recognition experiments
were carried out using a classification task for microbiological water quality analysis. The experimental
results demonstrate the powerful prediction performance of the sign constraints.

Keywords: sign constraints, convex optimization, stochastic dual coordinate ascent, empirical risk mini-
mization, microbiological water quality analysis.

1 Introduction

Machine learning problems for linear prediction are often formulated as an empirical risk
minimization (ERM) problem [4]. Let x1, . . . ,xn be input vectors in Rd, let ϕ1, . . . , ϕn :
R → R be convex loss functions, and let λ be a positive regularization constant. The ERM
problem discussed in this paper is described as follows:

min P (w) wrt w ∈ Rd,

where P (w) :=
λ

2
‖w‖2 + 1

n

n∑
i=1

ϕi(〈w,xi〉).
(1)

Support vector machines (SVM) are recovered if we set the loss functions to the hinge
loss ϕi(s) = max(0, 1− yis) where yi ∈ {±1} are the class labels. Setting the loss functions
to the log loss ϕi(s) = log(1+exp(−yis)), logistic regression is obtained. With yi continuous
labels, setting the square error loss function ϕi(s) =

1
2(yi − s)2 yields the ridge regression.

Recently, Tajima et al [15] constrained the signs of the weights w to the linear SVM
algorithm, and demonstrated the effectiveness of the sign constraints in the application to
a biological sequence classification. The sign constraints are given to some of coefficients
in the weight vector w = [w1, . . . , wd]

⊤. For some pre-defined subset of indices I≥ ⊆ [d],
where [d] := {1, . . . , d}, the non-negative constraints wh ≥ 0 are given for every h ∈ I≥,
and for another pre-defined subset I≤ ⊆ ([d]\I≥), the non-positive constraints wh ≤ 0 are
given for every h ∈ I≤.

The sign constraints explicitly avoid violation of the prior knowledge for the directions
of correlations between features and class labels. Negative weight coefficients wh are un-
desired if positive correlation between the h-th features and the class label is known in
advance. Nevertheless, without the sign constraints, a portion of coefficients wh can be
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negative, which degrades the generalization performance. Similarly, positive weight coeffi-
cients are unfavorable if negative correlation to the class label is known in advance. Posing
the sign constraints prevent the coefficients from falling into such an unfavorable region.

In this paper, we extended Tajima et al’s work to a wide class of the sign-constrained
ERM problems. The proposed algorithms solve a dual problem instead of minimizing the
primal objective directly, which enables us to use a clear termination criterion which is the
difference between the primal objective and the dual objective values. When the difference
between the primal objective and the dual objective values is below a threshold, the primal
objective gap is ensured to be smaller than the threshold. Tajima et al employed the Frank-
Wolfe algorithm [6] for solving the dual problem, while in this study, the stochastic dual
coordinate ascent (SDCA) framework [14] was adopted. This change brought an attractive
advantage for the time complexity; the new algorithm is theoretically guaranteed to possess
the exponential convergence [11] when a smooth loss such as the log loss is employed,
whereas the convergence rate of Tajima et al’s algorithm is merely sub-linear.

This paper is organized as follows. Related work is discussed in the next section. In Sec-
tion 3, the learning problem with the sign constraints is formulated and its dual problem
is described. After the general SDCA framework is introduced in Section 4, the imple-
mentations of SDCA iterations for the sign constrained learning problem are presented
in Section 5. The experimental results for runtime comparison and the application to mi-
crobiological water quality analysis are reported in Section 6, followed by the last section
concluding this paper.

2 Related work

The sign constraints have been used widely in regression and classification. Readers familiar
with machine learning may recognize the sign constrained regression as one of components
important to the non-negative matrix factorization [10]. For classification, Tajima et al [15]
developed the sign-constrained support vector machines, and Fernandes et al [15] studied
other loss functions. For the square error loss function, computational stable and fast opti-
mization algorithms are available [9,8,2]. For the hinge loss function, Tajima et al developed
a Frank-Wolfe optimization algorithm [6]. Meanwhile, without sign constraints, there are
many stable optimization algorithms for generic empirical risk minimization [12,13,7,16,3].
However, to the best of our knowledge, algorithms for optimizing with generic loss functions
under sign constraints have not been studied well so far.

3 Primal and dual problem

The goal of this work is develop an optimization algorithm for the following ERM problem:

min P (w) wrt w ∈ S ⊆ Rd. (2)

Therein, the set S, of which a firm expression shall be given below, is the feasible region
narrower than Rd due to the sign constraints. To express S, we use σ ∈ {1, 0}d where its
h-th entry is given by σh = 1 for h ∈ I≥ and σh = 0 for h ∈ I0 := [d] \ I≥, where we have
here assumed that all the non-positive constraints are in advance transformed to be the
non-negative constraints by negating features xh,i for h ∈ I≤, where xh,i is the h-th entry
in xi ∈ Rd. Then, the primal feasible region can be expressed as

S := {w ∈ Rd | ∀h ∈ [d], σhwh ≥ 0}. (3)
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The optimization algorithm is based on SDCA framework that maximizes the Fenchel
dual of the primal objective function. The Fenchel dual [1], say D : Rn → R̄, where
R̄ := R ∪ {±∞}, is expressed as

D(α) := − 1

2λn2

∥∥∥∥∥π
(

n∑
i=1

αixi

)∥∥∥∥∥
2

− 1

n

n∑
i=1

ϕ∗
i (−αi), (4)

where α := [α1, . . . , αn]
⊤ ∈ Rn is a dual variable vector, ϕ∗

i : R → R̄ is the convex
conjugate of ϕi, and π(v) := v −max(0,−σ � v). The loss function ϕi is assumed to be
1/γ-smooth. For example, the log loss is 0.25-smooth. The quadratic hinge loss defined as

ϕi(s) :=
1

2
(max{0, 1− yis})2 (5)

and the smoothed hinge loss defined as

ϕi(s) :=

{
1−2yis

2 for s < 0,
1
2(max{0, 1− yis})2 if s ≥ 0

(6)

are both 1-smooth. The convex conjugates of (1/γ)-smooth convex functions are a γ-
strongly convex function [5]. That is, ∀η ∈ [0, 1],

ηϕ∗
i (−u) + (1− η)ϕ∗

i (−α) ≥ ϕ∗
i (−ηu− (1− η)α) +

γ

2
(u− α)2(1− η)η. (7)

The SDCA framework uses the above inequality rearranged as

ϕ∗
i (−α)− ϕ∗

i (−α− η(u− α)) ≥ (ϕ∗
i (−α)− ϕ∗

i (−u))η +
γ

2
(u− α)2(1− η)η. (8)

Once the maximizer of D(α), denoted by α⋆ := [α⋆
1, . . . , α

⋆
n]

⊤, is found, the optimal
solution to the primal problem (2) can be recovered by

w⋆ =
1

λn
π

[
n∑

i=1

α⋆
ixi

]
. (9)

4 SDCA framework

SDCA updates only one randomly selected entry in the dual variable vector α at every
iteration. Let i be the index of the selected entry in α. Denote by ∆α the difference of the
randomly selected entry from the previous value: α(t)

i := α
(t−1)
i +∆α. Let

w̄(t) :=
1

λn

n∑
i′=1

α
(t)
i′ xi′ . and w(t) := π

[
w̄(t)

]
. (10)

Once ∆α is determined in each iteration, this vector w̄(t) can be updated with O(d) costs
as

w̄(t) = w̄(t−1) +
∆α

λn
xi. (11)

For the simplicity of notation, we here shall drop the superscript (t− 1), to denote

w := w(t−1), v0 := w̄(t−1), and α := α(t−1). (12)
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Algorithm 1: SDCA algorithm for maximizing D(α).
1 begin
2 Choose α(0) s.t. α(0) ∈ dom(−D);
3 for t := 1 to T do
4 Pick i randomly from {1, . . . , n};
5 ηt ∈ argmax

η∈[0,1]

J1
t (η);

6 α(t) := α(t−1) − (∇ϕ(
⟨
w(t−1),xi

⟩
) + α

(t−1)
i )ηtei;

7 Compute w̄(t) and w(t);
8 end
9 end

It is ideal to choose the maximizer of the function:

J0
t (∆α) := D(α+∆αei)−D(α)

=
λ

2
‖π [v0]‖2 −

λ

2

∥∥∥∥π [v0 + ∆α

λn
xi

]∥∥∥∥2 + 1

n
(ϕ∗

i (−α)− ϕ∗
i (−α−∆α)) .

(13)

Since ∆α is still in the argument of ϕ∗
i , finding the optimal ∆α is complicated in general.

To obtain a closed-form update rule, the range of ∆α is restricted such that

η := − ∆α

αi +∇ϕ(〈w,xi〉)
∈ [0, 1] (14)

if αi +∇ϕ(〈w,xi〉) 6= 0; otherwise ∆α := 0. Hereinafter, we discuss only the non-trivial
case of u := −∇ϕ(〈w,xi〉) 6= αi, where αi is the i-th entry in α(t−1). Then, ∆α = qη where
q := u−αi. Let vq := q

λnxi. By applying the inequality (8), J0
t (qη) is bounded from below

as

J0
t (qη) =

λ

2
‖π [v0]‖2 −

λ

2
‖π [v0 + ηvq]‖2 +

1

n
(ϕ∗(−αi)− ϕ∗(−αi − qη))

≥ λ

2
‖π [v0]‖2 −

λ

2
‖π [v0 + ηvq]‖2 + aoffsη

2 + boffsη =: J1
t (η)

(15)

where

aoffs := −q2γ

2n
, and boffs :=

ϕ∗(−α)− ϕ∗(−u) + 0.5q2γ

n
. (16)

The lower bound J1
t is more amenable than J0

t because the variable to be optimized is not
in the argument list of an arbitrary loss function. The exponential convergence of SDCA is
still guaranteed even if J1

t is maximized instead of J0
t [14]. The SDCA for learning under

sign constraints is summarized in Algorithm 1. In the next section, how to implement
Line 5 in Algorithm 1 shall be discussed.

5 Implementations for SDCA iteration

In this section, an algorithm for finding the maximizer of J1
t (η) is presented. A key ingre-

dient found in this study is the fact that J1
t is a piecewise concave quadratic function. This

finding enabled us to develop efficient algorithms for the update rule. Below, an explicit
form of the piecewise quadratic function shall be presented (Subsection 5.1), followed by
descriptions of two algorithms to find the maximizer of J1

t (η) (Subsections 5.2 and 5.3).

4                                                Computer Science & Information Technology (CS & IT)



5.1 Piecewise quadratic form

Denote by vh,0 and vh,q the h-th entries of v0 and vq, respectively. Let I0 := {h ∈
[d] |σh = 0}. Define θ := [θ1, . . . , θdt , θdt+1]

⊤ such that 0 = θ1 < · · · < θdt+1 = 1 where
θ1, . . . , θdt , θdt+1 are the elements of a set Θ ⊂ R such as Card[Θ] = dt + 1 defined as

Θ := {0, 1} ∪
{
θ ∈ (0, 1)

∣∣ ∃h ∈ I≥ s.t. vh,0 = −θvh,q 6= 0
}
. (17)

The element θk for k ∈ {2, . . . , dt} is the position at which for some h ∈ I≥ the affine
function η 7→ vh,0 + ηvh,q crosses the horizontal axis. Figure 1 shows a numerical example
of the affine functions where d = 3, I≥ = {1, 2, 3}, v0 = [0.5, 0.75,−0.5]⊤, and vq =

[0.5,−1, 1]⊤. From the definition of Θ, we have dt = 3, θ1 = 0, θ2 = 0.5, θ3 = 0.75, and
θ4 = 1. It is observed that the affine function η 7→ v3,0 + ηv3,q crosses the horizontal axis
at η = θ2, and the affine function η 7→ v2,0 + ηv2,q crosses the horizontal axis at η = θ3.

Let us define index sets, for k ∈ [dt],

Hk := I0 ∪
{
h ∈ I≥

∣∣ 2vh,0 + (θk + θk+1)vh,q > 0
}
. (18)

In the case of the example depicted in Figure 1, the index sets are H1 = {1, 2}, H2 =
{1, 2, 3}, and H3 = {1, 3}, from the definition (18). For h ∈ Hk ∩ I≥, the affine functions
η 7→ vh,0 + ηvh,q are over the horizontal axis. Namely, it holds that

∀η ∈ (θk, θk+1), ∀h ∈ Hk, vh,0 + ηvh,q > 0, (19)

which leads to ∀η ∈ (θk, θk+1),

[π(v0 + ηvq)]h =

{
vh,0 + ηvh,q for h ∈ Hk,

0 for h 6∈ Hk

(20)

where [π(v0+ηvq)]h is the h-th entry in the d-dimensional vector π(v0+ηvq). The vector
θ and the sets Hk for k ∈ [dt] result in a piecewise quadratic expression for the function
J1
t :

∀η ∈ [θk, θk+1], J1
t (η) = akη

2 + bkη (21)

where ak and bk are given by

ak = aoffs −
λ

2

∑
h∈Hk

v2h,q, and bk = boffs − λ
∑
h∈Hk

vh,qvh,0. (22)

5.2 O(d2) implementation

Due to the concavity and the differentiability of J1
t , one of the maximizers of J1

t (η), denoted
by η⋆, can be found as follows.

– If ∇J1
t (0) = b1 ≤ 0, then η⋆ = 0;

– if ∇J1
t (1) = 2adt+1 + bdt+1 ≥ 0, then η⋆ = 1;

– otherwise, there exists k⋆ ∈ [dt] such that the interval [θk⋆ , θk⋆+1] contains a maximizer
η⋆ = −0.5bk⋆/ak⋆ .

The interval index k⋆ in the third case (i.e. 2adt+1 + bdt+1 < 0 < b1) can be found by
checking every interval, because it holds that ∇J1

t (θk⋆) ≥ 0 ≥ ∇J1
t (θk⋆+1) due to the

differentiability of J1
t . Combining this discussion and the aforementioned observations,

each iteration of SDCA can be implemented as follows.
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Fig. 1. Example of affine functions η 7→ vh,0 + ηvh,q.

1. Pick i ∈ [n] at random; O(1).
2. Compute v0 and vq; O(d).
3. Determine Θ; O(d).
4. Sort the elements in Θ; O(d log d).
5. Compute Hk for k ∈ [dt]; O(d2).
6. Compute coefficients (ak, bk) for k ∈ [dt]; O(d2).
7. Find the maximizer η⋆; O(d).
8. ∆α = qη⋆; O(1).
9. Compute w̄(t) by (11); O(d).

This implementation enables each iteration to run within O(d2) computational cost. The
most heavy steps in this implementation are the step computing index sets Hk (i.e. Step
5) and the step computing coefficients ak, bk (i.e. Step 6), both of which pays O(d2) cost.
These time complexities are derived as follows. Observe that the number of pieces of the
piecewise quadratic function is bounded as dt ≤ Card(I≥) + 2 ≤ d + 2 = O(d). For
k ∈ [dt], each Hk is computed with O(d) time since Hk ⊆ [d]. Hence, it is proved that the
time complexity of Step 5 is O(d2). Since Card(Hk) = O(d), computation of 2dt(= O(d))
coefficients, a1, b1, . . . , adt , bdt , using (22) consumes O(d2) cost in total.

Meanwhile, we found another algorithm that cut down the time complexity to a linear
cost if ignoring the logarithmic term. The linear-time algorithm shall be presented below.

5.3 O(d log d) implementation

Here, another algorithm that exactly maximizes J1
t (η) with respect to η ∈ [0, 1] is pre-

sented. The theoretical time complexity of the algorithm given in Subsection 5.2 is O(d2),
whereas the time complexity of the algorithm presented below is reduced to O(d log d).
Defining Hk,in := Hk \ Hk−1 and Hk,out := Hk−1 \ Hk allows us to recursively express the
coefficients of the piecewise quadratic functions as ∀k ≥ 2,

ak := ak−1 −
λ

2

∑
h∈Hk,out

v2h,q +
λ

2

∑
h∈Hk,in

v2h,q,

bk := bk−1 − λ
∑

h∈Hk,out

vh,qvh,0 + λ
∑

h∈Hk,in

vh,qvh,0.
(23)
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To use (23) to compute ak and bk, the sets Hk,in and Hk,out as well as H1 are required
beforehand. The set H1 can be obtained within O(d) by checking whether one of the
following three conditions is satisfied: (i) h ∈ I0; (ii) vh,0 > 0; (iii) vh,0 = 0 and vh,q > 0.
Namely, if h ∈ [d] satisfies one of the three above conditions, then h ∈ H1; otherwise h 6∈ H1.
We now discuss how to compute Hk,in and Hk,out. To this end, we first compute θ̃◦h := −vh,0

vh,q

for all h ∈ I≥. The (dt−1) end points θ2, . . . , θdt are then obtained by sorting the values of
θ̃◦h, eliminating the values outside the open interval (0, 1), and excluding duplicate values.
During the process for computing θ, the sets Hk,in and Hk,out for k ∈ {2, . . . , dt} can be
computed simultaneously as

Hk,in =
{
h ∈ I≥

∣∣∣ θk = θ̃◦h, vh,q > 0
}
, and

Hk,out =
{
h ∈ I≥

∣∣∣ θk = θ̃◦h, vh,q < 0
}
.

(24)

From these discussions, the O(d2) implementation given in Subsection 5.2 can be modified
as follows.

1. Pick i ∈ [n] at random; O(1).
2. Compute v0 and vq; O(d).
3. Compute H1; O(d).
4. Compute θ̃◦h for h ∈ I≥; O(d).
5. Compute (Hk,in,Hk,out) and θk for k ∈ [dt]; O(d log d).
6. Compute coefficients (ak, bk) for k ∈ [dt]; O(d).
7. Find the maximizer η⋆; O(d).
8. ∆α = qη⋆; O(1).
9. Compute w̄(t) by (11); O(d).

Step 5 takes O(d log d) cost for sorting θ̃◦h because the number of values to be sorted is
Card(I≥) = O(d). The computational cost for Line 6 is O(d) since the relationship

dt⋃
k=2

Hk,in ⊆ I+ ⊆ [d] and
dt⋃
k=2

Hk,out ⊆ I+ ⊆ [d] (25)

leads to the fact that an upper bound of the number of the total terms in (23) for all
k ∈ {2, . . . , dt} is 4d. Thus, it can be shown that each iteration of SDCA can be done
within O(d log d) computation.

6 Experiments

6.1 Pattern recognition performance

We conducted experiments to demonstrate the effects of the sign constraints on the pattern
recognition performance. For a pattern recognition task, we selected the microbiological
water quality analysis. We used three water quality datasets named NY top, NY bottom,
and Indian provided by kaggle.com. The three datasets contain 534, 523, and 896 examples,
respectively. Each example has a target variate representing the fecal coliform (FC) and
five other feature variates. The positive and negative class variates, respectively, were
given to FC over and below the median, to pose a binary classification problem. Three
loss functions, the smoothed hinge, the quadratic hinge, the logistic hinge, were examined.
For each loss function, the conventional learning and the sign-constrained learning were
performed. Then, six linear predictors were obtained in total. Accuracy (i.e. the sum of true
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(a) NY Top (b) NY Bottom

(c)

Fig. 2. Prediction performances on three datasets. (a) NY Top; (b) NY Bottom; (c) Indian.

positives and true negatives over the size of testing dataset) was used for the performance
criterion. The number of training examples, n, was varied from 5 to 100. The n examples
were picked at random from each dataset in the stratified manner. The n examples were
fed to the six learning methods to get six predictors. The remaining (ntot − n) examples
were used for testing. This procedure was repeated 200 times.

The averages of the 200 accuracies obtained for the three water quality datasets were
plotted against the size of the training dataset, say n, in Figure 2 For all the three datasets
and all the three loss functions, the sign constraints improved the prediction performance.
In particular, the improvement was more significant when training examples were fewer.
Sign constraints represent a sort of the domain-specific prior knowledge, and explicitly
prevent the learning from violating the prior knowledge. Without sign constraints, when
the sample size is small, the signs of weights in linear predictors may often be flipped from
the true signs of correlations between the features and the class label. The improvement
of the generalization performance must be the effect of the sign constraints that avoided
the inversion of the weight signs.

6.2 Runtime

The two algorithms, presented in Subsections 5.2 and 5.3, were implemented with Cython
3.0.0a11 and run on a Linux machine equipped with Core i7-12700K and two 16GB DDR4
SDRAM. Feature vectors were generated with uniform distribution U(−1, 1) and normal-
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Fig. 3. Runtime for one epoch.

ized. Binary class labels were generated at random with equal probabilities. The size of
training examples was fixed to n = 500. The number of features was varied from d = 103

to 105.
Figure 3 shows the runtimes consumed in one epoch. In conflict with the theoretical

analysis, the two algorithm seemed to be a same time complexity, and the O(d2) algo-
rithm always ran faster than the O(d log d) algorithm. To analyze why the inconsistency
between the theory and the actual runtime happened, the numbers of pieces in the piece-
wise quadratic functions J1

t (η), say dt, were counted, where we set dt = 0 after convergence
(P (w(α(t))) −D(α(t)) < 10−6). It was observed that the average numbers of pieces were
around 1% of the number of features at the first epoch, and were less than 2.5 after the first
epoch. It suggested that the actual number of pieces was much smaller than the number of
features. Nevertheless, in our theoretical analysis, we used dt = O(d) which comes from a
loose bound dt ≤ Card(I≥) ≤ d, resulting in the theoretical time complexity O(d2) for the
implementation presented in Subsection 5.2. The difference of the upper bound from the
actual number of pieces yielded the inconsistency between the theoretical runtime bound
and the actual runtime.

7 Conclusions

In this paper, new algorithms for ERM under the sign constraints were presented. Tajima
et al developed the Frank-Wolfe optimization algorithm for learning SVM under sign con-
straints. The algorithm developed in this study extends the class of ERM problems so
that an arbitrary smooth and convex loss function can be employed. The optimization
algorithm is based on the SDCA framework, which inherits a favorable property that
guarantees the exponential convergence which is superior to the convergence rate of the
Frank-Wolfe algorithm. The effects of the sign constraints on the pattern recognition were
demonstrated with simulation experiments on microbiological water quality analysis using
real-world data. Actual runtimes of the two SDCA algorithms developed in this study were
compared, which suggested that the simpler O(d2) algorithm runs fast enough compared
to the O(d log d) algorithm. Although pathogenic water quality analysis was illustrated
as an application of the sign constraints in this paper, we believe the existence of a wide
range of other applications in which the sign constraints work effectively. Exploring the
other applications is left to future work.
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