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ABSTRACT 
 
Single-cell RNA sequencing (scRNA-seq) determines RNA expression at single-cell resolution. It 

provides a powerful tool for studying immunity, regulation, and other life activities of cells. 

However, due to the limitations of the sequencing technique, the scRNA-seq data are 

represented with sparsity, which contains missing gene values, i.e., zero values, called dropout. 

Therefore, it is necessary to impute missing values before analyzing scRNA-seq data. However, 

existing imputation computation methods often only focus on the identification of technical 

zeros or imputing all zeros based on cell similarity. This study proposes a new method (SFAG) 
to reconstruct the gene expression relationship matrix by using graph regularization technology 

to preserve the high-dimensional manifold information of the data, and to mine the relationship 

between genes and cells in the data, and then uses a method of averaging the clustering results 

to fill in the identified technical zeros. Experimental results show that SFAG can help improve 

downstream analysis and reconstruct cell trajectory. 
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1. INTRODUCTION 
 

Single-cell RNA sequencing (scRNA-seq) technology is a developing technology for amplifying 

and sequencing the whole transcriptome at a single cell level, revealing the heterogeneity of 
individual cells in a seemingly uniform cell population or tissue. It enables in-depth exploration 

of the characteristics and fate of cells[1,2]. For example, scRNA-seq can discover new 

subpopulations and expound the differentiation pathways of cells, revealing the relationship 
between intratumor transcriptome heterogeneity and predicted results[3,4]. However, scRNA-seq 

is susceptible to technical noise compared with bulk RNA-seq. This is called the “dropout” 

problem. A high dropout ratio may disrupt latent biological signals and affect downstream 

analyses such as low-latitude expression and clustering[5-7]. Therefore, it is necessary to design 
appropriate imputation methods for scRNA-seq data. 
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Recently, researchers have proposed many methods to impute the dropout events of scRNA-seq 

data from different perspectives[8]. These methods usually rely on similar cells or genes 

containing valuable information to predict gene expression. For example, MAGIC constructed 

the Markov transition matrix through cell similarity and estimated gene expression through the 
rich structure provided by biology. However, MAGIC disturbs gene distribution, resulting in 

over-smoothing the data [9]. scImpute used a mixed model to predict the probability of gene miss 

and used information from similar cells to estimate gene expression with a high miss ratio[10]. 
However, it imputed dropout events according to the clustering result, so they need to know the 

true value of the class in advance. SAVER used the relationship between genes to recover gene 

expression, which first performed a linear regression on the genes and then used the values 
calculated by the posterior distribution to impute. However, it costs much more time to calculate 

many parameters[11]. CMF-Impute used non-negative matrix factorization to impute the dropout 

events and integrated the similarity matrix of cells and genes into the objective function, thus 

CMF-Impute combined cell and gene information[12]. Identifying technical zeros is essential for 
imputing scRNA-seq data. It is equally important to use information from similar cells to fill in 

the technical zeros identified. Existing methods rarely take both into account. 

 
In this study, we developed an imputation method (SFAG) for scRNA-seq data that 

simultaneously considers technical zeros and cell similarity.The method first integrates the 

similarity of cell and gene gene expression relationships as graph regularisation terms into a non-
negative matrix decomposition, which is solved iteratively to discriminate between zero values in 

the data[13]; then, similar cells are identified by clustering and the expression values of similar 

cells are averaged to perform interpolation[14]. 

 
The experiments are conducted on two real datasets, and the results are compared with other 

eight state-of-the-art methods, including DrImpute[14], MAGIC[9], CNMF[12], ALRA[15], 

scRMD[16], G2S3[17], VIPER[18], SAVER[11]. For the real datasets, we used tSNE + K-means 
to cluster and calculated the evaluation index to evaluate the performance of each method[19]. 

 

2. MATERIALS AND METHODS 
 

2.1. Overview: SFAG 
 

This study proposes a novel method SFAG for imputing scRNA-seq data. As is shown in Figure 
1, which includes Graph regularized non-negative matrix factorization, average clustering results 

to impute the data, and updating imputation results. 
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Figure 1.  Overall model architecture of SFAG  

 

 
Step 1: Technical zero value identification. 

 

For the graph regularised non-negative matrix factorization objective function, this paper 
references the setting in GNMFLMI. The classical non-negative matrix factorization fails to 

discover the intrinsic geometric discriminant structure of the data space in Euclidean space. The 

classical non-negative matrix factorization is improved here. 

 
Step 2: Average clustering results to impute the data. 

 

Similar cells were first identified on the basis of clustering and imputation was performed by 
averaging the expression values of similar cells. To achieve robust estimates, multiple 

imputations are made using different cell clustering results and then multiple estimates are 

averaged to achieve the final imputation. 
 

Step 3: Update imputation results. 

 

The fill result obtained by the data smoothing fill algorithm is compared with the identified 
technology zero value and the fill result obtained in step 2 is updated to the location of the 

technology zero value. 

 

2.2. Dataset 
 

Two datasets from human(Darmanis[20]), and mouse(Deng[21]), were acquired to test the 
performance of SFAG. 

 

3. MATERIALS AND METHODS 
 

3.1. SFAG Improved the Performance of Clustering Method 
 

Cluster analysis is one of the essential downstream analyses of scRNA-seq data. To show that 
SFAG can improve the clustering performance, We use ARI and NMI to measure the accuracy of 

cell clustering. We cluster the data imputed by the nine methods and the raw data, and the results 

are shown in Figure 2. As we can see from the plots, SFAG performs best on Darmanis, and is 
similar to the best performing approach on Deng. 
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Figure 2.  Comparison of ARI and NMI with different similarity measures  

 

To more intuitively illustrate that SFAG can improve cluster analysis, we conducted a visual 
analysis on two datasets: Darmanis and Deng. We compare with eight methods and use UMAP to 

visualize the embeddwd representation in two-dimensional (2D), as shown in Figure 3. We can 

see from the plot that different types of cells can be well separated through the imputation of 

SFAG. 

 
 

Figure 3.  The umap visualization of cells from scRNA-seq datasets  

 

3.2. Lineage Reconstruction for Cell Trajectory 
 

It is important and significant to study the cellular dynamic processes, which can be modeled 
computationally using pseudotime analysis. However, the performance of trajectory inference 

methods will be deteriorated due to dropout events. We evaluate the performance of different 

imputation methods by comparing the trajectory inference derived from different methods. and 
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use KRCS and POS to measure the effect of trajectory analysis and the results are shown in Table 
1. As we can see from the table, SFAG performs best on Darmanis. 

 
Table 1.  Heading and text fonts. 

 
 Raw SFAG G2S3 MAGIC VIPER scRMD ALRA SAVER CNMF 

KRSC 0.388 0.639 0.576 0.387 0.287 0.499 0.477 0.271 0.301 

POS 0.503 0.869 0.767 0.507 0.377 0.705 0.649 0.337 0.449 

 

4. CONCLUSIONS 
 

In this study, we propose a new imputation method by combining graph regularized non-negative 

matrix factorization and data smoothing. We have carried out many experiments and found that it 
can detect false zeros more accurately than other methods and improve the clustering accuracy of 

ture data and reconstruct cell trajectory. However, SFAG still has some limitations. It is imputed 

without considering that the data may come from multiple batches. It may be the direction of our 

future research work. 
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