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ABSTRACT 
 
Modern measurement tasks are confronted with inherent uncertainty. This significant uncertainty arises 

due to incomplete and imprecise knowledge about the models of measurement objects, influencing factors, 
measurement conditions, and the diverse nature of experimental data. This article provides a concise 

overview of the historical development of methodologies aimed at intellectualizing measurement processes 

in the context of uncertainty. It also discusses the classification of measurements and measurement 

systems. Furthermore, the fundamental requirements for intelligent measurement systems and technologies 

are outlined. 

 
The article delves into the conceptual aspects of intelligent measurements, which are rooted in the 
integration of metrologically certified data and knowledge. It defines intelligent measurements and 

establishes their key properties. Additionally, the article explores the main characteristics of soft 

measurements and highlights their distinctions from traditional deterministic measurements of physical 

quantities. The emergence of cognitive, systemic, and global measurements as new measurement types is 

discussed. 

 
In this paper, we offer a comprehensive examination of the methodology and technologies underpinning 

Bayesian intelligent measurements, with a foundation in the regularizing Bayesian approach. This 

approach introduces a novel concept of measurement, where the measurement problem is framed as an 
inverse problem of pattern recognition, aligning with Bayesian principles. Within this framework, 

innovative models and coupled scales with dynamic constraints are proposed. These dynamic scales 

facilitate the development of measurement technologies for enhancing the cognition and interpretation of 

measurement results by measurement systems. 

 
This novel type of scale enables the integration of numerical data (for quantifiable information) and 

linguistic information (for knowledge-based information) to enhance the quality of measurement solutions. 

A new set of metrological characteristics for intelligent measurements is introduced, encompassing 

accuracy, reliability (including error levels of the 1st and 2nd kind), dependability, risk assessment, and 
entropy characteristics. The paper provides explicit formulas for implementing the measurement process, 

complete with a metrological justification of the solutions. 

 
The article concludes by outlining the advantages and prospects of employing intelligent measurements. 

These benefits extend to solving practical problems, as well as advancing and integrating artificial 

intelligence and measurement theory technologies. 
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1. INTRODUCTION 
 
The field of measurement theory has evolved significantly due to the growing complexity of 

practical measurement problems. This evolution has been shaped by the need to intellectualize 

measurement processes and systems to address the challenges posed by contemporary 

applications. 
 

This paper examines the evolutionary aspects of intellectualizing measurements. Modern 

measurement tasks often involve complex hierarchical systems that interact dynamically with 
their external environment, leading to substantial uncertainty in the information available. These 

measurement challenges require systems that can effectively study the properties of complex 

objects (CO) and their environmental interactions (E). The goal is to synthesize various forms of 

a priori and incoming information to generate new knowledge and derive optimal solutions for 
specific measurement situations. 

 

Several factors have driven the development of smart measurement methodologies: 
1. Complex Measurement Objects: Modern measurement tasks frequently involve intricate 

hierarchical systems that exhibit property changes influenced by environmental factors. 

2. Indirect Measurements: Direct measurements of these complex objects are often 
impossible, leading to incomplete and inaccurate information about the objects and their 

surroundings. 

3. Information Uncertainty: Information uncertainty arises from diverse sources and types 

of data, ranging from big data to small samples and expert assessments. 
4. Expert Knowledge: Expert assessments and information contribute significantly to the 

overall information landscape. 

5. Subjective Interpretation: In the absence of robust interpretation technologies, subjective 
interpretation can introduce additional uncertainty. 

6. Metrological Challenges: The lack of quality assessment and metrological support for 

measurement solutions is a notable concern. 
 

The development of measurement intellectualization methods began in the 1980s and 1990s. 

Pioneering works in this field include the research of Dietmar Hofmann, Leonid Finkelstein [1], 

Dietmar Hofmann, Karaya Karaya [2], V. Ya. Rosenberg [3], V. G. Knorring [4], O. D. Duncan 
[5], Joel Michel [6], S. V. Prokopchina [7, 8], among others. These scholars introduced concepts 

such as adaptivity in measurements, cognitive ability, and the intellectualization of measurement 

methods and systems. 
 

The foundational work of earlier scientists [9], [10], [11], [12], [13], and others laid the 

groundwork for the development of measurement science in this direction. 

 
Measurement methods and systems of the past were characterized by certain limitations: 

 

 Rigid Structures: They had inflexible algorithmic structures and object models. 

 Lack of Metrological Support: Monitoring results lacked adequate metrological support. 

 Technogenic Basis: Methods were primarily designed for situations with limited a priori 

uncertainty, leading to an oversimplified model of CO. 

 Separation of Numeric and Non-Numeric Information: They couldn't efficiently process 
both numeric and non-numeric information. 

 Limited Self-Learning: These systems lacked self-learning and self-development 

capabilities. 
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Many of these characteristics persist in modern measurement methods and systems. 
Methodologically, the principles of measurement intellectualization were influenced by 

representative measurement theory [4], the theory of adaptive measurements [3], statistical 

measurement theory, and the measurement of non-quantitative quantities [13, 14]. 

 
In the 90s, an important role in the development of the direction of measurement 

intellectualization was played by the II IMECO Symposium, held in 1986 in Jena, dedicated to 

this direction. In the work of D. Hofmann and L. Finkelstein [1], the name of this type of 
measurement was proposed – “intelligent measurements”. 

 

A special role in shaping the trends of intellectualization of measurement systems played the 
introduction to the structure of measurement systems the processor means providing broad 

technical capabilities for measuring computational complexity of algorithms. Works [2, 9, 13, 25] 

scientists have created a theoretical basis for the emergence of a new generation of tools that 

implement new types of algorithms. During this period, methods of adaptive [3] and statistical 
measurements were developed [25]. 

 

Processor measurement systems, having significant computing capabilities, allowed to provide 
technical support (in the environment of the measuring tool) of new information technologies for 

generalizing and obtaining knowledge used in the organization and conduct of measurements, to 

implement a fundamentally new type of measurement process, at each stage of which the optimal 
measurement strategy is developed automatically or automatically and the appropriate 

interpretation of the results is made on the basis of functional and metrological processing of 

various forms of incoming and a priori information, which is the essence of measurement 

intellectualization. This led to the need to create a single measuring chain of transformations of 
the results of primary indicators (according to L. Mari [16] measurements into the final solution. 

In [7, 8], it was proposed to consider this chain as a whole measuring process, the algorithmic 

basis of which is covered by the scheme of metrological verification with the implementation of 
the principles of uniformity of measurements [7, 8]. 

 

At that time, the conceptual basis for the intellectualization of measurement was the following 

principles, given in the first works on this issue [1, 2, 17]. Among the main characteristics 
inherent in intelligent measurement technologies and systems were the following [1, 2]: 

 

1. Technologies of measurement intellectualization are characterized by adaptability to the 
conditions of measurement, correction of measurement results in case of errors of the 

measuring subject (meter), elimination of undesirable environmental influences. 

2. Involvement of computing modules in the measurement environment. Modularity of 
measurement information technologies. 

3. Measurement intellectualization is based on computerization and automation of 

preparation, planning, and performance of technical measurements. 

4. To implement the principles of measurement intellectualization, you need: a developed 
user interface, the ability to reconfigure software and hardware, their open nature and 

standardization, the availability of subsystems for metrological support of the results 

obtained and self-calibration. 
5. Intelligent systems should have explanation and learning subsystems. 

6. Intelligent measurements can be used in modeling and decision support systems. 

 
As can be seen from the listed characteristics of measurement intellectualization technologies, 

they are mainly related to information technology. The development of the methodology of 

intelligent measurements was first made in [7, 8]. 
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The modern development of the theory of measurement intellectualization goes in several 
directions. These include non-quantitative measurements [5, 6, 10, 11], systematization and 

expansion of measurement terminology [20, 21, 22, 23, 24] non-physical measurements [6, 7, 10, 

12, 28, 31, 32, 33], the use of knowledge, ideas of artificial intelligence and soft computing in 

measurement processes [26, 27, 28], the metrology of intelligent measurements [29], the use of 
the Bayesian approach to create a methodology for intelligent measurements, the creation of new 

types of intelligent measurements, including soft measurements. 

 

2. THE EVOLUTION OF INTELLIGENT MEASUREMENTS 
 

The direction of measurement intellectualization, founded in the early 1990s [7, 8], enabled the 

formulation of fundamental principles for this evolving field. Building upon the earlier concepts, 

the following additions were introduced [7, 8]: 
 

Integration of Knowledge: Measurement intellectualization hinges on the incorporation and 

integration of comprehensive knowledge about the measurement object and the external 
environmental factors. Central to this process is the cognitive function of measurements, 

employing object models that draw from a wide spectrum of a priori information and data 

accumulated during the measurement procedure. 
 

Metrological Justification: The realm of intelligent measurement demands meticulous 

metrological justification at every stage and decision, including those formulated as knowledge-

based outcomes. 
 

Development in Uncertainty: The methodology of intelligent measurement must facilitate the 

development of evolving models and measurement technologies that can operate effectively in 
the presence of uncertainty. 

 

The methodology of measurement intellectualization, underpinned by a variation of the classical 
Bayesian approach termed the "regularizing Bayesian approach" (RBA), amalgamates the 

strengths of three fundamental approaches: the systemic approach, the measurement approach, 

and the Bayesian approach. Measurements grounded in RBA are recognized as Bayesian 

intelligent measurements (BIM). This direction emerged as an evolution of measurement theory 
methods to address measurements conducted under conditions of uncertainty. 

 

In this framework, intelligent measurements are defined as the measurement of complex object 
properties in the face of significant information uncertainty, relying on both metrologically sound 

data and knowledge concerning the object, external environmental influences, and the conditions 

of the measurement experiment. 

 
In 1997, the author of this article introduced the concept of "Soft" measurements, founded on 

RBA and L. Zadeh's fuzzy set theory [31, 32, 33]. 

 
During the early 21st century, new categories of intelligent measurements surfaced, including 

cognitive measurements [28], systemic and polysystem measurements [30], and global intelligent 

measurements [39]. 
 

Svetlana V. Prokopchina's work further developed the principles of intelligent measurements in 

the direction of leveraging additional metrologically certified knowledge, significantly enhancing 

the reliability of solutions obtained under uncertain circumstances. 
 



Computer Science & Information Technology (CS & IT)                                   41 

 

Below, we present the core principles of the measurement intellectualization concept based on 
knowledge, initially as a generalized problem statement for broad applicability, followed by a 

more detailed specification of these principles within the regularizing Bayesian approach [7, 8, 

26, 27, 28, 29, 30]. 

 
In a broad sense, the term "measurement" encompasses the evaluation of properties of real or 

virtual systems, spanning diverse domains, including social, economic, technical, psychometric, 

and global measurements. 
 

In a narrower sense, "measurement" can be understood in two ways. Firstly, it refers to the 

measurement process, encompassing models, methods, and the means to execute measurements. 
Secondly, it can denote the measurement result, as understood in its secondary interpretation. 

To substantiate the methodological aspects of measurement intellectualization, it's essential to 

define the measurement situation in which it operates. A measurement situation involves the 

purpose and conditions of the measurements and is characterized by the object under 
examination. 

 

In the realm of intelligent measurements, objects of measurement often encompass properties and 
states of complex multidimensional systems, which correspond to model representations, 

including sets of functions, property distribution laws, vectors and fields, virtual images, and 

descriptions that delineate the properties of measurement objects and their interactions with the 
surrounding environment. 

 

The purpose of measurement in intelligent measurements can include: 

Property Evaluation and Prediction: Assessing and forecasting properties and characteristics of 
the measurement object. 

Measurement Control: Determining the state of the measurement object via measuring 

instruments. 
 

Generating Conclusions and Management Recommendations: Producing inferences, managerial 

decisions, and recommendations to enhance the quality of measurement outcomes. 

 
The measurement conditions are dictated by a set of factors: 

 

A Priori Knowledge: The extent and precision of a priori knowledge about the measurement 
object and the external factors impacting its operation. 

 

Metrological and Technical-Economic Requirements: The requirements associated with 
metrological validity and compliance, as well as the technical and economic aspects of the 

measurement task. 

 

Assumptions and Restrictions: The system of assumptions and limitations, both conceptual and 
technical, govern the feasibility and accuracy of imposed constraints within specific measurement 

tasks. 

 
The variety of measurement conditions can be categorized based on the degree of certainty, 

completeness of a priori information, metrological validity, feasibility of imposed restrictions, 

and the level of precision in specific measurement tasks. 
 

In [7], a classification of information situations in which measurements are conducted is 

provided. 
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1. Information Situation Type 1: A priori information about the measurement object and 
environmental factors is sufficient for achieving the measurement goal. 

2. Information Situation Type 2: Limited a priori uncertainty exists about the models, which 

can be progressively resolved in an iterative process using available a priori information 

and collected experimental data. 
3. Information Situation Type 3: Substantial a priori uncertainty prevails regarding the 

properties of the measurement object, the impact of environmental factors, or their 

mutual influence. Such conditions necessitate constant involvement, aggregation, 
acquisition, and utilization of additional knowledge about the measurement object and 

environmental factors throughout the measurement process. In such contexts, the entire 

measurement problem can only be addressed by intellectualizing the measurement 
process. 

 

Principles of intelligent measurement implementation: 

 
The implementation of intelligent measurements is guided by several fundamental principles: 

1. Uncertainty Embrace: Intelligent measurements operate in contexts marked by 

significant uncertainty. Therefore, the methodology and principles for constructing 
measurement processes are designed to address this inherent information situation. 

Comprehensive classifications of measurement situations and types are presented in [7, 8, 

30], offering detailed descriptions and equations for various measurement types. 
2. New Measurement Paradigm: Intelligent measurements introduce a fresh measurement 

paradigm. In scenarios of considerable uncertainty, the objective of measuring diverse 

types of information is framed as the task of deriving a measurement solution through the 

recognition of hypotheses from various forms of imprecise and incomplete information. 
The principles for constructing measurement processes resemble those used in image 

recognition methods. 

3. Regularization of Measurement Space: Solving problems under uncertainty, as per 
Tikhonov, is inherently flawed, yielding unstable solutions due to the non-satisfaction of 

the three Hadamard conditions. To counteract this instability, the measurement task 

under uncertainty necessitates the regularization of the measurement result space. 

4. Introduction of Measurement Scale: As demonstrated in [37, 7, 8], introducing a 
measurement scale regularizes the solution space, allowing for stable measurement 

outcomes in uncertain scenarios. Such solutions are conditionally stable, quasi-stable, 

stable within a specific compact range of measurement solutions comprising the 
measurement scale range, and specific models and measurement conditions. For 

intelligent measurements, hypotheses concerning the "true" value of the measured 

attribute can be envisioned as reference points on the measurement scale. 
5. Diverse Measurement Solutions: Alongside numerical values, reference points on the 

measurement scale can encompass various forms of property representations, including 

linguistic expressions, graphics, video, audio data, analytical expressions, transforming 

the measurement result into a comprehensive measurement solution. This approach 
distinguishes intelligent measurements from classical instrument measurements, often 

termed indicator measurements [16]. Comprehensive measurement solutions result from 

the convolution of indicator measurements with additional data and knowledge, 
enhancing solution reliability. 

6. Probabilistic Nature: In scenarios of uncertainty, the probability of a measurement 

solution typically deviates from unity due to the reduced reliability of source information. 
Additionally, alternative measurement solutions may exist, each with corresponding 

probabilities (possibilities) of correctness. It's impractical to deem one decision as the 

sole correct choice; thus, considering a range of alternatives with associated probabilities 

(possibilities) of their validity is advisable. 
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7. Logical Inference Mechanisms: Technologies for acquiring measurement solutions 
should rely on logical inference mechanisms, necessitating the application of 

optimization principles grounded in chosen optimization criteria. 

8. Expanded Metrological Indicators: Shifting the measurement paradigm calls for 

augmenting existing measurement quality indicators. As detailed in [26, 27], such 
indicators should encompass measures of solution reliability, representing their 

probabilities or possibilities; error levels of the 1st and 2nd kind collectively reflecting 

measurement reliability; conditional accuracy within the ranges of scales used in the 
measurement process; risk associated with each alternative solution; indicators of entropy 

levels involved in the measurement; and the volume of information received. Utilizing 

these complex metrological characteristics is essential for justifying intelligent 
measurements. Comprehensive explanations for selecting these indicators and functional 

transformations of metrological characteristics are provided in [7, 8, 29]. These works 

also propose principles and technologies for metrological research and support of 

intelligent measurements and methodologies and technologies for Metrology and 
synthesis processes of intelligent measurement, optimizing technology and means of 

implementation. 

9. Cognition Facilitation: A key attribute of intelligent measurements is their capacity to 
facilitate the cognitive process. This is achieved through the development of models with 

dynamic constraints that represent measurement objects and the external environment 

within intelligent measurements. [7, 8] propose models with dynamic constraints that 
adapt and modify their structure as new information arrives, allowing continuous 

immersion in the information realms of the measured object and its surroundings. Such 

models align with scales featuring dynamic constraints capable of reconfiguring their 

structure in response to evolving object and environment models. The methodology and 
principles for creating such scales are expounded in [7, 8, 34]. 

 

In accordance with the classification introduced in [35], considering the stages of their 
evolutionary development, we categorize measurement types as follows: 

 

1. "Hard" Deterministic Measurements: This category includes traditional measurements 

characterized by deterministic principles and direct measurement of physical parameters. 
These measurements assume the availability of an object of measurement where the 

physical parameter is directly measurable. Key attributes of "hard" deterministic 

measurements include: 
 Object of measurement: Directly measurable physical parameter. 

 Object model: Physical parameter. 

 Measurement principle: Algebraic comparison (e.g., simple arithmetic 
operations) of two numerical values. 

 Type of measuring scale: Relationship scale. 

 Type of scale reference points: Digital values. 

 Distance metric: Euclidean metric. 
 Equation of direct ("hard") classical measurements. 

 

2. "Flexible" Measurements: This category encompasses adaptive and probabilistic 
measurements that involve processing of measurement results. "Flexible" measurements 

exhibit adaptability and probabilistic characteristics in their approach to measurement. 

This category can be further subdivided into: 
 Adaptive Measurements: Measurements that adapt to evolving measurement 

conditions and information. 
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 Probabilistic Measurements with Processing of Measurement Results: 
Measurements that incorporate probabilistic principles and engage in data 

processing. 

 

3. "Soft" Measurements (Intelligent Measurements): In this classification, "soft" 
measurements are understood in a broad sense, referring to measurements that are 

approximate, fuzzy, and conducted under conditions of uncertainty. These measurements 

are often based on L. Zadeh's soft logic, incorporating the theories of fuzzy sets and 
linguistic variables. This broader interpretation of "soft" measurements is used, aligning 

with the first aspect of the term. "Soft" measurements can be considered as a subset of 

intelligent measurements. 
 

Considering measurement systems, we propose the following classification: 

1. "Rigid" Measuring Systems: These systems consist of classical measuring devices and 

devices that adhere to traditional measurement principles. 
2. "Smart" or "Flexible" Information and Measurement Systems: This category 

includes measurement systems that exhibit adaptability, data processing, self-monitoring, 

self-calibration, automated reorganization, and automated development of structure and 
functions. 

3. "Soft" Measuring Systems (Intelligent Measuring Systems): This category 

encompasses intelligent measuring systems that integrate data and knowledge, generate 
knowledge, and possess the capability for self-development of structure and functions. 

These systems can autonomously expand their applied orientation based on generated 

knowledge and forecast scenarios of measuring and applied situations. This aligns with 

the broad interpretation of "soft" measurements as approximate and uncertain 
measurements. 

 

Now, let's delve into the key distinctions between the conceptual foundations of classical and 
intelligent measurements. 

 

Conceptual Foundations of Classical Measurements: 
 Object of measurement: Directly measurable physical parameter. 
 Object model: Represents the physical parameter. 

 Measurement principle: Comparison scheme involving algebraic comparison of 

numerical values. 
 Type of measuring scale: Relationship scale. 

 Type of scale reference points: Digital values. 

 Distance metric: Euclidean metric. 
 Equation of direct ("hard") classical measurements: [Insert equation here]. 

 

This classification and distinction provide a framework for understanding the evolution of 

measurement methodologies and systems, from traditional deterministic measurements to more 
adaptive and intelligent measurement approaches. 

 

 
 

where represents  reference point of the scale with the carrier ;  stands for the 

measurement transformation;  denotes the set of data arrays. 

 
Measurement Object: These measurements pertain to properties of complex objects that aren't 

directly measurable. 
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Model Object: A model object, whether complex or virtual, serves as an analogous representation 
of the property being measured. 

 

Measurement Principle: Intellectual measurements rely on information technology to execute the 

measurement process. This technology is grounded in solving the inverse problem of pattern 
recognition, utilizing scale reference points. 

 

Reference Point Types: Intellectual measurements utilize various reference point types, including 
digital values, linguistic variables, expert assessments, as well as graphic and video data. 

 

Measuring Scale Type: Intellectual measurements employ a coupled scale with dynamic 
constraints. Detailed methodological aspects of this scale can be found in [7, 28, 29, 36]. 

 

The equation governing smart measurements is as follows:     

 

 
 

where * is the convolution symbol;  – the measured property;  – measurement solution in 

the form of rapper conjugate scale  with dynamic constraints (smart scale); – a set 

of metrological characteristics, including indicators of accuracy, reliability, accuracy of the 

solution;  is the criterion for the selection of measurement solutions (for example, the criterion 

of minimum average risk solutions);  – forming technology solutions;  – functional 

transformations of the primary data;  – a set of information flows ;  – information 

about the factors affecting the external environment; – conditions for the implementation of 

the measurement experiment;  – conditions for obtaining information about the influencing 

factors of the external environment. 
 

This category of measurement encompasses Bayesian intelligent measurements (BIM) based on a 

regularizing approach. 

 
Let's briefly examine the concepts implemented in the RBA and BIM and revisit the principles 

articulated above. 

 
The problem of determining the conditions and properties of complex objects based on the RBP 

involves continuous exploration of the characteristics and attributes of these objects through the 

amalgamation of past experiences and newly acquired information. This is seen from the 

perspective of the measurement approach, which is fundamentally rooted in metrological 
reasoning and decision-making. The new knowledge acquired during this measurement process is 

integrated with historical archives and serves as a priori information for future experiments. 

Furthermore, the more extensive and diverse the incoming information is, which is subsequently 
generalized based on measurement theory and metrology principles, the more comprehensive and 

reliable the results obtained. 

 
This ideological foundation of RBA, derived from the classical Bayesian approach and its 

inductive (generalizing) logic, forms the basis for the integration and convolution of information. 

In the conclusions drawn from the inductive logic of the Bayesian approach, solutions with a 

certain degree of uncertainty can be obtained, expressed through a quantitative measure of the a 
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posteriori Bayesian probability (reliability) of the solution P(N). This value is calculated using 
the modified Bayes formula in the RBA. 

 

The principles of the classical Bayesian approach serve as the postulates of the RBA: 

 The properties of the task objects, their characteristics, and parameters are considered 
undefined. 

 The results of observations and experiments are regarded as non-random events, giving 

rise to multiple hypotheses about their underlying causes. 
 A priori information is combined with incoming information through integral 

convolution of information flows to yield the post-priori distribution of hypotheses. 

 Decisions are made based on an optimization rule aimed at minimizing decision-related 
risks or maximizing utility and safety. 

 

These principles, further developed by Bayesian scientists, led to the concept of subjective 

(fiducial) probability. This concept, in turn, allowed for the inclusion of linguistic variables (from 
L. Zadeh's theory of fuzzy sets and linguistic variables) in the measurement process. It also 

facilitated the incorporation of knowledge presented in linguistic form and the use of both 

numerical probability measures and membership functions for linguistic measurement decisions 
as confidence indicators. 

 

The methodology of RBA relies on the notion of a dynamic compact solution space – a compact 
space with changing boundaries. This allows for the creation of models with dynamic constraints 

(MDC) for objects. For measurement processes, this means that the model of the measurement 

object and its external environment adapts to new situations autonomously as new information is 

received. This adaptation applies to both knowledge production and its utilization. Detailed 
theoretical foundations for constructing such compacts are discussed in [7, 8, 26, 27], among 

others. 

 
Measurement is implemented as a decision-making process using coupled numerical and 

linguistic scales, such as scales with dynamic constraints. A representation of this scale type is 

depicted in Figure 1. 

 
To obtain stable solutions (satisfying Hadamard conditions), the solution compact is discretized 

and represented as a two-dimensional metric space encompassing object property gradations and 

their associated probabilities, as illustrated in the upper part of the scale in Figure 1. In the realm 
of linguistic solutions, a metric space of possibilities or subjective probabilities accompanies the 

measurement result, represented in the lower part of the scale in Figure 1. 

 
When measurement results are presented linguistically, computationally lightweight, 

semantically rich scales (nominal and ordinal) are employed. 

 

Models with dynamic constraints are employed as models for the measurement object and its 
environment. BIM results are typically multi-alternative and can be interpreted as "fuzzy" 

measurements. 

 
Bayesian intelligent measurement (BIM) is characterized by measurements grounded in 

probabilistic logic and the regularizing Bayesian approach as the primary rule for deriving 

measurement results. 
 

Soft measurements (SM) refer to expanded measurements where measurement outcomes are 

based on parametric logic [31, 32, 33]. 
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System measurements entail the measurement of emergent properties of complex objects, 
inherent in such objects as a comprehensive system of interconnected attributes [7]. 

 

Cognitive measurements (CM) are used when the subject of measurement is involved in any 

measuring system, including an intelligent measuring system, as a source or recipient of 
information. Such measurements are conducted to enhance the cognitive aspect of the 

measurement process [28]. 

 
In conditions of significant uncertainty, the model of a complex object and its environment must 

adapt to the received information and changing requirements, constraints, target functions, and 

task criteria. 
 

 In a conceptual form, this can be defined as a change in the degree of “immersion” of the model 

system  in the object system  and formally represented as a homomorphic map: 

where  is the dynamic object  with the properties of 

, the relations , varying depending on time t and  is the system of dynamic 

object model  with the properties of  and the relations , 

and constraints, assumptions, requirements,  of the problem statement, also changing in 

time. For natural and man-made objects that actively interact with the natural environment, this 

immersion is endless due to the fundamental impossibility of obtaining comprehensive 

information about them. 
 

The quality of knowledge can be expert assessments and conclusions, theoretical knowledge and 

analytical dependencies, applied or system information technologies, models and methods. For 

each type of such information, its own scales with dynamic constraints are built. In fact, the 
MDC, when translated into the metric space of hierarchical scales, is a hypercube of interrelated 

factors, which makes it possible to flexibly adapt it to changing flows of incoming information 

and situations. An example of a model of the MDC type is illustrated in Figure 1. 
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Figure 1. A model of a measuring system in the form of an MDC for air control based on BIM 

technologies (left part). A scale with dynamic constraints for the convolution of numerical and linguistic 

information according to the formula (4) for estimating the concentration of pollutants in the air. (right 

part). 

 

Figure 1 also shows a view of the conjugate scale with dynamic constraints for the 
implementation of the BIM. With this approach, each solution is obtained on the corresponding 

scale of measurements with a certain degree of probability (reliability, possibility) of the solution. 

For numerical data the accuracy is determined as the frequency probability, and high-quality 
information frequentism is replaced by subjective decisions, “fiducial” probability, which, in 

contrast to the frequency, does not require long samples, stable experimental conditions and other 

requirements and limitations of the postulates of the theory of probability and mathematical 
statistics. The measurement results are formed based on the principles of pattern recognition, 

where the images are the reference points of the scale. In the RBA, the Bayesian decision rule is 

chosen as the decision rule. 

 
For convolution, we use a modified Bayesian convolution formula (3), obtained for the first time 

in [7], which allows us to use the Bayesian formula and the Bayesian approach in general under 

conditions of uncertainty. Proofs of non-bias, consistency, sufficiency and efficiency are given in 
the author's works [7, 8]. 

 

 
 

where  is the prior p robability of the measurement result (hypothesis)  

under the conditions of measurement  at time ;  – the probability of the 

measurement result from the newly received information at time t under the measurement 

conditions ;  is the number of scale reference points. 

 
According to this modified formula (3), a probabilistic convolution of the values of the indicators 

is performed, the scheme of which is shown in Figure 2. 
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Figure. 2. An illustration of the principles of Bayesian convolution for two indicators. 
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Scale reference points – scale reference points-are considered as random variables, in accordance 
with the principles of the Bayesian approach. When forming a measurement solution, several 

reference points of the scale may be possible, which form a number of alternative measurement 

results. 

 
Linguistic variables can be used to measure qualitative indicators. Weak scales are used as scales: 

nominal scales and order scales, which do not have computational capabilities, but have a strong 

semantic content that allows you to interpret the solutions in accordance with the goals of the 
measurement problem. In soft measurement, parametric logics can be implemented (the logic of 

Zadeh, Lukasevich, etc.). 

 
The BIM scale can change its properties and structure (carrier, reference points, the composition 

of acceptable ratios, etc.) according to the change in the structure of the MDC. Therefore, it is 

called a scale with dynamic constraints (SDC). 

 
Scale type SDC to measure the properties of one-dimensional figure is a two-dimensional scale 

one of the axes which are deposited indicator value in a numeric or linguistic forms, on the other 

the degree of certainty (certainty, possibility) of the result. 
 

When adding the number of controlled indicators in the multidimensional parameter space, a 

multidimensional scale is constructed, which, when moving to a new, higher level of the 
hierarchy, collapses into an integral indicator, for which a new two-dimensional scale is formed. 

 

In the BIM process, three types of convolution are implemented: convolution of a priori 

numerical or linguistic and current information, convolution of a posteriori numerical and 
linguistic information, and convolution of a posteriori information about two or more factors. 

 

1. Probabilistic convolution of numerical a priori and incoming information in the form of 

benchmarks of the corresponding numerical a priori  and the current scale  is realized 

by the formula: 

 

 
 

where  is the number of scale reference points. 

 
2. Probabilistic convolution of linguistic a priori and incoming information in the form of 

reference points of the corresponding linguistic a priori  and the current scale  by the 

formula: 
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3. Probabilistic convolution of estimates (benchmarks) of numerical  and linguistic  

a posteriori scales according to the formula: 

 

 
 

4. Probabilistic convolution (integration) of a posteriori estimates (benchmarks) of linguistic 

scales of various indicators, for example, indicators  and  by the formula: 

 

 
 

Convolution of two factors according to the formula (7) shown in figure 3. 

 
A posteriori linguistic evaluation of the first factor (upper scale) is represented by a list of 6 

components and has the form:  = {“normal” with a probability of 0.35; 

“above normal” with a probability of 0.28; “below normal” with a probability of 0.17; 

“significantly above normal” with a probability of 0.15; “significantly below normal” with a 

probability of 0.15; “critically above normal” with a probability of 0.03.} 
 

As can be seen from the above estimate, each of the alternative estimates has a low confidence (a 

high degree of uncertainty). However, in the aggregate, this estimate has a confidence close to 
one, namely, its probability is 0.99. 

 

A posteriori linguistic evaluation of the second factor (the average scale) is represented by a list 

of 6 components and has the form:  = {“normal” with probability 0.31; 

“below normal” with probability 0.29; “significantly below normal” with probability 0.17; 
“above normal” with probability 0.12; “critically below normal” with probability 0.07; 

“extremely below normal” with probability 0.01}. 

 
The reliability of the combined assessment of the second factor is 0.97. 

 

A posteriori linguistic assessment of the second factor (middle scale) is represented by a list of 6 

components has the form: A posteriori linguistic assessment of the second factor (middle scale) is 
represented by a list of 6 components has the form: A posteriori linguistic assessment of the 

integral third factor (lower scale) is represented by a list of 3 components and has the form: 

 = {“normal” with probability 0.8; “below normal” with probability 0.12; 

“above normal” with probability 0.07}. 
 

The reliability of the integral factor estimation is 0.99. 
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Figure 3. Architecture of an intelligent complex for monitoring the water supply network based on 

Bayesian intelligent measurement technologies. 

 
Based on these calculations and considerations, it can be concluded that when dealing with high 

initial information uncertainty, regularizing Bayesian estimates exhibit high reliability. This 

reinforces the effectiveness of the regularizing Bayesian approach in such situations. 
Furthermore, the development of the structure of the SDC (Solution Decision Center) is closely 

aligned with the structure of the MDC (Model Decision Center). This alignment leads to the 

emergence of new branches of information technologies focused on measuring new indicators, 
monitoring and auditing them, interpreting complex situations, generating recommendations, and 

more. This continuous development of models and information technologies based on the 

regularizing Bayesian approach (RBA) highlights the adaptability and versatility of this 

approach. 
 

The process of implementing Bayesian convolution of two indicators, as defined by the formula 

(7), is depicted in Figure 2. Through multiple convolutions, there is a significant reduction in the 
dimensionality of the feature space, enabling the processing of a large number of data streams at 

high speeds. 

 

Central to the synthesis of information technologies based on RBA is the principle of unity of 
measurements. This principle allows for the coordination of inputs and outputs of individual 

scales, transforming them as needed to meet the functional requirements of the information 

technology and to comply with metrological standards for information system solutions. 
Alongside the computational process, the metrological support of each solution is integrated, 

encompassing indicators such as accuracy, reliability, consistency, entropy, and risk. These 

indicators are organized into comprehensive metrological characteristics. 
 

The solution obtained through Bayesian intelligent measurements (BIM-solution) consists of a 

series of alternative estimates for the property of interest, each accompanied by corresponding 
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metrological characteristics. This BIM-solution is essentially a regularized Bayesian estimate 
(RBE), and it is demonstrated in [7] that these estimates possess desirable properties of being 

unbiased, consistent, and efficient. 

 

It's worth noting that in scenarios with significant uncertainty, individual elementary solutions 
within the RBE composition may not exhibit high reliability or reliability. However, collectively, 

the RBE provides adequate coverage of the true value with satisfactory quality indicators and 

minimal risk. 
 

The metrological justification of information technologies for addressing problems in uncertain 

conditions enables the evaluation of the quality of information from each data source and each 
resulting solution. This evaluation is facilitated through the use of metrological indicators such as 

accuracy, reliability, consistency, risk, entropy, and information volume. Accuracy, for example, 

is determined by the following formula:  

 

where  is the scale range,  – maximum distance between adjacent 

elements of the scale carrier. 

 
The reliability of the result characterizes the stability of the solution. The reliability indicator is 

based on the error levels of the first and second kind and is defined as: 

 
 

where  is the level of errors of the first kind (reflecting the probability of rejecting the correct 

decision on the scale);  – the level of errors of the second kind (characterizing the probability 

of making the wrong decision on the scale). 
 

Reliability is a crucial aspect of the measurement process. The reliability of each hypothesis on 

the scale is determined by the a posteriori probability of its occurrence, which is calculated using 
the Bayes formula. It's important to note that the confidence of the entire scale is considered to be 

the sum of the confidence of the individual hypotheses, and therefore, it equals one. 

 

However, in practical situations, it may be necessary to simplify the scale by retaining only a 
subset of hypotheses that meet specific significance criteria. In such cases, the reliability of the 

decision on the scale is determined as follows: 

 
 

where  is the final confidence of the solution on the scale  is the confidence of the scale 

before removing non-significant hypotheses;  is the set of significant hypotheses on the scale. 

Risk – a value that indicates the risk of making this decision. Calculated as , where  is 

the confidence. 
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The distinctive characteristics of BIM and SM can be summarized as follows: 
 

1. Measurement is treated as a decision-making process concerning the size of the object 

being measured. 

2. Information sources include both data in the form of information flows and expert 
assessments and other forms of knowledge. 

3. The dynamic compactness of measurement solutions constitutes a two-dimensional 

metric space encompassing gradations (including values) of measured object properties 
along with their associated probabilities, possibilities, or subjective probabilities. 

4. Measurement results can be presented either in numerical or linguistic form, typically as 

a list of alternative estimates accompanied by their corresponding sets of metrological 
characteristics, particularly reliability. 

5. BIM and SM employ computationally efficient but semantically rich scales, such as 

nominal and ordinal scales for linguistic information. For numerical information, ratio 

scales are employed, which differ in computational power. The conjugate scale, as 
depicted in Figure 1, combines the properties of these scales, offering both computational 

capabilities and semantic interpretation for processing both numerical and linguistic 

information. 
6. BIM and SM produce results in the form of a set of alternatives with metrological 

justification and can be viewed as "fuzzy" measurements. 

7. Results obtained through BIM and SM are accompanied by comprehensive sets of 
metrological characteristics encompassing accuracy, reliability, robustness, risk, entropy, 

Fischer's information volume, and more. 

8. The outcomes of BIM and SM include explanations for the results, including reasons for 

their derivation, identification of influencing factors, determination of trends in 
indicators, and, when necessary, suggestions for improvement. 

9. Recalculations are conducted using special scales, such as scales with dynamic 

constraints, where reference points represent hypotheses regarding possible values or 
gradations of the measured property. 

10. Logic criteria and inference rules are tailored to the specific measurement task and 

conditions. 

11. Scales and models within the BIM and SM frameworks are dynamic entities and can 
undergo transformation during the measurement process. 

12. BIM and SM are particularly valuable when conditions for conducting measurement 

experiments lack repeatability, and only individual facts, small data samples, and 
significant uncertainties are available. 

 

4. CONCLUSION: KEY FINDINGS AND FUTURE PROSPECTS FOR  

BIM AND SM 
 
The emergence of new technological trends in the contemporary IT industry, such as the Internet 

of Things (IoT), Big Data, Data Science, and Business Intelligence (BI), is intricately linked to 

the acquisition and processing of diverse data streams. These data exhibit unique characteristics, 

including diversity, spatial and temporal distribution, varying physical attributes, complexity of 
interpretation, and uniqueness, making their processing challenging within the aforementioned 

technologies. Measurement information is frequently a prominent source of such data. These data 

usually originate from complex anthropogenic or natural objects and systems. 
 

The specificity of complex objects and systems lies in their fundamental unknowability, 

unpredictability, and inaccessibility for direct observation to the extent necessary for a reliable 
assessment of their properties. This scenario leads to a state of information uncertainty wherein 



Computer Science & Information Technology (CS & IT)                                   55 

 

precise values or conclusions cannot be obtained through parameter measurements, property 
evaluations, or system audits. In such situations, measurement accuracy is achieved by 

incorporating additional information in the form of knowledge about the object under 

measurement and the factors influencing it. In this context, approaches that yield multiple 

alternative solutions, encapsulated within a specific interval (space) of solutions, are employed. 
This methodology aids in reducing result uncertainty by leveraging additional information 

derived from alternative solutions. The acquisition of these alternatives necessitates the 

utilization of specially designed methods. 
 

Given the requirements described above and focusing on the attributes of integration, metrology, 

and the self-development of methodological foundations of the Regularized Bayesian Approach 
(RBA) underpinned by intelligent technologies, specifically Bayesian Intelligent Technology 

(BIT) and Bayesian Intelligent Measurement (BIM), it becomes evident that these approaches 

hold promise for developing intelligent measurement and monitoring systems for complex 

objects and implementing a "soft control" scheme. 
 

An essential facet of the future prospects of BIM methodology and systems involves their 

integration with emerging realms of artificial intelligence. 
 

BIM and Soft Measurement (SM) methodologies and systems exhibit potential in various 

domains: 
 

1. Data Science Systems: They are employed for metrological certification of data and 

knowledge flows and their subsequent integration. 

2. IoT Systems: These systems are instrumental in collecting, integrating, and interpreting 
instrument data. 

3. BI Systems: They play a vital role in the analytical processing and interpretation of 

information. 
4. Neural Networks: They facilitate the collection, metrological certification, and 

convolution of data and knowledge to enhance data set compilation and neural network 

training. 

5. Big Data Processing Systems: BIM and SM aid in significantly reducing the 
dimensionality of information flows. 

6. Mathematical and Analytical Information Processing Systems: They are beneficial, 

especially for handling uncertainty and small sample sizes. 
7. Complex System Monitoring and Management: These methodologies find application 

in monitoring and managing intricate industrial and socio-economic complexes, as well 

as facilitating their sustainable development. 
 

The integration of measurement approaches and methodologies grounded in intelligent 

measurements defines a necessary and promising stage in the evolutionary development of 

measurement theory and artificial intelligence. 

 

Figure 5: Dynamic Model of Pressure Fluctuations in a Pipeline, Constructed by Integrating 

Various Data Types. 

 

Figure 4: Cognitive Graphic Model of a Section of a Water Supply Network. 
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4.1. Solutions to Applied Problems in Conditions of Significant Information 

Uncertainty Based on BIM 
 
The BIM and SM methodologies, technologies, and systems have given rise to a multitude of 

applications spanning Bayesian mathematical statistics, Bayesian econometrics, Bayesian 

measurement neural networks, and various applied systems in domains such as industry, energy, 

economics, the social sphere, ecology, and geopolitics. These applications are constructed on the 
foundation of BIM and SM. 

 

The BIM methodology enables the organization of problem-solving processes in uncertain 
scenarios, encompassing the following stages: 

 

 Problem Definition: Identifying goals, constraints, and requirements. 
 Measurement Situation Identification: Determining the measurement type and 

conditions. 

 Compact Solution Formation: Building a compact solution based on measurement 

conditions. 
 Input Information Space Creation: Establishing a space for input data. 

 Metrological Justification of Information Sources: Ensuring information source 

reliability. 
 Hierarchical Modeling: Constructing hierarchical models of the measurement object 

and environmental models using dynamic constraints. 

 Indicator Selection: Choosing balanced indicators based on developed models and 
integrating them into a unified measurement space using regularizing Bayesian methods. 

 Inference Rule Selection and Decision Logic: Determining the inference rule and 

decision logic. 

 Measurement Scale Creation: Developing specific measurement scales for selected 
indicators. 

 Information Mapping to Scales: Transferring information to the scales. 

 Information Convolution: Employing modified Bayesian convolution to derive 
solutions in the form of multiple alternatives, along with their associated likelihood, 

reliability, risk, informativeness, and more. 

 Quality Control: Ensuring solution quality. 

 Decision Process Correction: Adjusting all components of the decision-making 
process. 

 Iterative Self-Development: Repeating the process, starting from the initial stage, to 

obtain refined solutions. 
 

These technologies have proven effective in the auditing and management of distributed man-

made systems that interact dynamically with the external environment. Such systems include fuel 
and energy complexes, transportation networks, and territories. These systems represent typical 

subjects for multisystem auditing and management in the context of complex dynamic systems 

with changing spatial and temporal characteristics. In situations of active interaction between 

these systems and the external environment, along with significant information uncertainty, 
measurement system limitations may change as the systems operate according to varying 

measurement conditions. This dynamic feature ensures the continued adequacy of the models 

used in these systems, even as properties and characteristics of the managed systems, business 
landscapes, or natural and economic environments evolve. 

 

To implement the BIM methodology, a range of platforms has been developed for the rapid 
creation of application systems dedicated to intelligent data processing under conditions of 

uncertainty. These platforms support monitoring, auditing, decision support, management, risk 
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assessment, and control of complex systems. An example of such a system is the intelligent 
monitoring system for water supply networks developed on the "Infoanalytic" platform. 

 

The relevance of establishing a methodology and system for monitoring water supply networks 

within the context of big data and information uncertainty can be attributed to several factors: 
 

1. Diverse Information Sources: Various metering and monitoring devices provide real-

time data. 
2. Extensive Network Length: Water supply networks often span great distances. 

3. Information Source Uncertainty: Information sources regarding water supply 

networks are often uncertain. 
4. Expert Knowledge: A substantial portion of information relies on expert opinions, 

assessments, and specialist knowledge. 

5. Subjectivity: Assessments of water supply network conditions and integral indicators 

can be subjective. 
6. Decision-Making Subjectivism: Management decisions may also be subjective. 

7. Lack of Automated Coordination: Coordination in monitoring and managing water 

supply networks is often not automated. 
 

The intelligent system's objectives include: 

 

1. Cost Reduction: Optimize resource allocation to minimize repair expenses. 

2. Enhanced Energy Efficiency: Identify and address losses promptly to improve energy 

efficiency. 

3. Decision Support: Assist municipal heating network and water utility leaders in making 

decisions regarding planned and unscheduled pipeline repairs. 

4. Technological Scheme Creation: Prepare materials for pipeline technological 

schematics and certification. 

 

The system's tasks encompass: 
 

1. Building a hierarchical model of interrelated enterprise processes and factors influencing 

the water management complex and water supply enterprise. 

2. Assessing indicators determining the state of heat and water supply networks and water 
supply processes under conditions of uncertainty and limited information. 

3. Evaluating and analyzing the production situation within the chosen enterprise. 

4. Identifying key production processes. 
5. Formulating principles and creating an effective water supply management scheme. 

6. Developing and employing forecasts of the company's operational development to 

facilitate effective management decisions. 

 
The complex's structure comprises a primary unit for mathematical data processing based on 

BIM, neural network processing of thermal images, neural network decision-making for 

comprehensive water distribution network assessment based on RBA, data extraction, 
transformation, and loading (ETL) block with advanced processing capabilities, IoT integration, 

cognitive user interfaces, web services, and other components. 

 
Data sources include measurement data from pressure sensors in pipes, water flow velocity 

meters, flow meters, leak meters, thermometers, vibrometers, thermal imagers, and other sensors. 

This measurement information undergoes analytical processing after collection. 

 



58                                                Computer Science & Information Technology (CS & IT) 

 

 
Production information encompasses: 

 

 Water Supply Network Structure 

 Network Equipment Configuration 
 Water Supply Network Operation Rules 

 Water Quality Control 

 Production Process Automation 
 Analysis of Water Supply Incidents 

 New Construction 

 Capital Construction and Network Reconstruction 
 

Information is received at varying frequencies, including monthly and quarterly reports, daily 

operation logs, daily device diagrams, and continuous annual reports. 

 
Linguistic information sources for assessing the water supply network's condition include: 

 

 Logs of preventative maintenance work 
 Logs of well and chamber processing 

 Logs of pressure gauge health 

 Logs of valve inspections (Diameter: 600-1200 mm) 
 Logs of network inspections in reservoirs during winter 

 Logs of well and chamber inspections during winter 

 Logs of intersections with metro and railway inspections 

 Intelligent measurement technologies and sensors for water supply systems 
 Journals of intelligent measurement technology and sensor usage for water supply 

systems 

 Journals of winter work preparations 
 Journals of valve insulation in chambers 

 Logs of insulation removal from fittings in chambers 

 Journals of water supply source examinations 

 
Figures 4 and 5: These figures display the results of modeling, calculations of characteristics, 

and cognitive assessments of the water supply network's condition in various Russian cities, all 

based on the BIM methodology. 
 

The functioning of this intelligent system yields the following conclusions: 

 
1. Integration of IoT, Bayesian intelligent measurement, and neural networks, guided by a 

regularizing Bayesian approach, is effective in addressing water management network 

monitoring challenges. 

2. Bayesian intelligent technologies facilitate the efficient utilization of diverse information 
types, both numerical and linguistic, encompassing measurement data and specialist 

knowledge. 

3. Leveraging regularizing Bayesian approach technologies ensures the system's 
operational stability, even in scenarios involving significant information uncertainty and 

vast data processing. 

4. Metrological support, in the form of comprehensive metrological characteristics 
covering accuracy, reliability, solution robustness, risk assessments, and information 

quantity assessments, is provided for all measurement solutions, ensuring control over 

solution quality. 
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5. Solutions obtained exhibit stability under uncertain conditions, enabling their application 
in the measurement of technical and socio-economic system properties, as well as in 

their monitoring and management within complex information environments. 

6. All decisions are accompanied by explanatory descriptions and cognitive interpretations, 

enhancing specialists' control over the measurement process and enabling online 
management. 

7. Integration of IoT and neural network technologies with Bayesian intelligent 

technologies extends their capabilities, allowing them to address an expanded range of 
tasks. 

8. The proposed BIM methodology and technologies find relevance in various industries. 

 
By the present time, significant experience has been accumulated in the application of Bayesian 

measurement technologies in information-related tasks across various domains of human activity. 

Such applications include tasks related to assessing the state of complex objects, managing them, 

monitoring situations, and developing scenarios in industrial, energy, socio-economic, and other 
fields. 

 

The methodology of Bayesian intelligent measurements (BIM) is particularly relevant for 
enhancing the resilience and efficiency of small businesses. The application of the RBA 

methodology not only allows for assessing the business situation but also enables the creation of 

digital twins of small enterprises to increase profitability, create a comfortable environment for 
employees, and enhance competitiveness within the market. 

 

 
 

Figure 4: Cognitive Graphic Model of a Water Supply Network Section 

 
This illustration depicts a cognitive graphic model representing a section of a water supply 

network. The model provides a visual representation of the network's components and their 

interactions, allowing for a better understanding of the system's behavior and performance. 
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Figure 5: Dynamic Model of Pipe Pressure Change 

 

This figure illustrates a dynamic model of pressure changes within the pipe. The model is 
constructed through the integration of various types of data, allowing for a comprehensive 

understanding of pressure fluctuations and variations over time. 

 

5. CONCLUSION: KEY INSIGHTS AND FUTURE PROSPECTS FOR BIM AND 

SM 

 
The evolving landscape of the modern IT industry, marked by trends like IoT, BIG DATA, 
DATA SCIENCE, and BI, involves the acquisition and processing of diverse and complex 

information streams. This information, characterized by its diversity, spatial and temporal 

distribution, varying physical attributes, and interpretational complexities, presents challenges 

for these technologies. A significant source of such intricate data is measurement information, 
often originating from complex anthropogenic or natural systems. 

 

Complex objects and systems inherently possess fundamental characteristics of unknowability, 
unpredictability, and limited accessibility for direct observation, making it challenging to reliably 

assess their properties and states. Consequently, this results in situations of information 

uncertainty, where precise values or conclusions cannot be obtained solely from parameter 

measurements or property evaluations. In these scenarios, accuracy in measurements is achieved 
by incorporating additional knowledge about the object and influencing factors. Approaches that 

yield multiple alternative solutions within a defined interval are employed to mitigate result 

uncertainty by harnessing this supplementary information. Specialized methods are developed to 
obtain these alternatives. 
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Given these requirements and with a focus on integration, Metrology, and self-development, the 
methodological foundations of the Regularizing Bayesian Approach (RBA) combined with 

intelligent technologies (Bayesian Intelligent Technology - BIT) offer promising avenues for 

specific Soft Bayesian Measurements (CM). These approaches are well-suited for the 

development of intelligent measurement and monitoring systems for complex objects, auditing, 
and soft control schemes. 

 

An important prospect lies in the integration of BIM methodologies and systems with emerging 
areas of artificial intelligence. 

The methodologies and systems of BIM and Soft measurements show promise in various 

domains, including: 

 
1. In DATA SCIENCE systems, for the metrological certification of data and knowledge 

flows and their seamless integration. 
2. In IoT systems, for the collection, integration, and interpretation of instrument data. 

3. In BI systems, for the analytical processing and interpretation of information. 

4. In neural networks, for data collection, metrological certification, and convolution, aiding 
in additional information integration during dataset compilation and network training. 

5. In big data processing systems, for significantly reducing the dimensionality of 

information flows. 

6. In systems for mathematical and analytical information processing, particularly for 
handling uncertainty and small datasets. 

7. For creating systems to monitor and manage complex industrial and socio-economic 

complexes, fostering sustainable development. 
 

The integration of measurement approaches and methodologies rooted in intelligent 

measurements represents a necessary and promising stage in the evolutionary development of 
measurement theory and artificial intelligence. 
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