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ABSTRACT 
 
Nutrient enrichment of aquatic environments is a prevalent issue with wide-reaching negative 

implications for ecological stability, tourism and recreation, and vital drinking supplies. Proper 

management of nutrient influxes—primarily nitrogen and phosphorus—into aquatic 

environments is facilitated by continuous monitoring of nutrient levels within water bodies of 
interest, which offers a more complete understanding of seasonal trends and faster response 

times compared to traditional lab testing. However, continuous nutrient monitoring systems are 

prohibitively expensive, with ongoing energy and maintenance requirements that limit 

deployment. Machine learning shows potential for virtual sensor development with real-time 

nutrient prediction, based on continuously monitored surrogate indicators. In this study, we test 

the feasibility of this premise by evaluating the performance of Random Forest regressor (RF), 

k-Nearest Neighbors (kNN), Support Vector Machine regression (SVM), Decision Tree 

regressor, Artificial Neural Network, Gradient Boosting Regressor (GBR), and Histogram 

Gradient Boosting Regressor (HGBR) on one year of water quality testing data from sites 

across the Continental United States (CONUS). To address values missing not at random, an 

issue prevalent in water quality testing data, important surrogate indicators are identified by 
permutation importance. Models are then trained and tuned with Bayesian Optimization to 

identify hyperparameters optimal for explaining target variance. Across both phosphorus and 

nitrogen prediction, RF achieved the highest validation performance, with GBR and HGBR 

trailing marginally. Ensemble tree models appear to be well-suited to continuous nutrient 

monitoring and may be a cost-efficient solution to greatly supplement the existing high-

frequency testing network. 
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1. INTRODUCTION 
 

The widespread adoption of inorganic fertilizer, which contains high proportions of nitrogen and 

phosphorus essential to plant growth, is central to achieving current levels of global food 
production. However, the excessive application of fertilizers, combined with animal manure and 

human wastewater discharge, result in nutrient enrichment and significant transformation of 

aquatic environments [1]. Eutrophication from human activities diminishes quality of drinking 
water, deters recreational activity, and impacts ecosystems worldwide, resulting in an estimated 

$2.2 billion in annual economic loss in the U.S. alone [2]. Eutrophication is associated with 

harmful algal blooms (HABs) and hypoxia, posing a risk to animals and humans alike. Total 
nitrogen and total phosphorus, in addition to water temperature and illumination, are the factors 
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with the most impact in the development of eutrophic bodies [3]. Phosphorus is generally 
considered to be the limiting nutrient regulating eutrophication in freshwater environments and is 

often the target of aquatic research and environmental regulation [4]. Nitrogen enrichment is also 

worth consideration. Ammonium, the most bioavailable form of nitrogen, regulates functions 

such as toxin production in cyanobacteria, the primary culprit behind freshwater HABs [4]. 
Fertilizer pollution is a major non-point source of both phosphorus and nitrogen in aquatic 

environments. Although nitrate, a highly mobile form of nitrogen in water, is relatively non-toxic, 

its metabolites, such as nitrite and nitric oxide, pose life-threatening health risks and make 
nitrates a target for regulation [5][6]. Widespread, continuous monitoring of nutrient 

concentrations would facilitate faster and better-informed management decisions to mitigate 

eutrophication, a primarily-anthropogenic issue causing ecological and economic harm. 
 

Three similar studies were found on the application of ML to continuous nutrient monitoring in 

aquatic environments. Shen et al. [7] also use data from the EPA’s Water Quality Portal to train 

RF models, but process test results from a far longer timeframe to develop seasonal models for 
total nitrogen and total phosphorus. Despite their expanded dataset, which necessitated multicore 

supercomputing, the final models developed were in line with or less effective than our model. 

We also expanded on their approach by testing the performance of six additional models and 
optimization of hyperparameters to establish the potential of two additional models, GBR and 

HGBR, in nutrient prediction.  

 
Recently, Paepae et al. compared the feasibility of continuous nutrient monitoring with various 

ML models, finding that RF and ET performed well on their two selected water bodies [8]. Both 

rivers they studied had long-term continuous monitoring data available, allowing them to achieve 

relatively high model accuracies. However, the lack of complete high-frequency data across a 
majority of testing sites and necessity for individualized model training to each body of water 

restrict the applicability of their approach. Our evaluation including traditional lab testing data 

from sites across the CONUS should better account for variation between water bodies to create a 
more versatile prediction model for deployment across multiple locations. 

 

Elsewhere, Chen et al. tested RF, SVM, and BPNN models for estimation of riverine total 

phosphorus, total nitrogen, and ammonia across data sampled at different frequencies [9]. Their 
study similarly found that RF outperformed SVM and BPNN models, as well as finding that 

higher frequency data improved prediction performance. Notably, this study focuses on testing 

data from one single automatic testing system, increasing the potential that the performance seen 
is not representative of all ML nutrient prediction across the region. With a diverse dataset, our 

evaluation of a wide array of supervised ML models suggests the suitability of RF, GBM, and 

HGBM across a more representative set of testing sites. 
 

Applying Machine-Learning (ML) to nationwide water quality testing data may offer a robust 

and cost-efficient method of monitoring concentrations of nitrogen and phosphorus in surface 

waters. ML algorithms tend to outperform traditional regression in modeling non-linear relations, 
such as those that relate nutrient concentrations to other often-measured water quality indicators 

(see Figure 1). 
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Figure 1. Plot graph showing non-linear correlations between water quality characteristics 

 

High-frequency data, which could be provided with a prediction model and readily-measured 

characteristics, can better highlight seasonal trends in nutrient concentration, reduce sampling 
bias, and illustrate aliasing by traditional discrete sampling taken 12-18 times per year [10]. 

Currently, three major technologies are commercially available for continuous nutrient testing: 

UV sensors, wet-chemical colorimetric sensors, and ion-selective electrodes (ISE) [11]. For in 
situ phosphorus testing, only wet-chemical sensors are currently available. Given the high cost of 

optical UV nitrate sensors ($15,000-$25,000) and wet-chemical nutrient sensors (>$10,000) and 

frequent calibration requirements of ISE systems, an algorithm-based approach to continuous 

nutrient monitoring could offer aforementioned insights at significantly reduced costs, enabling 
greater deployability and a more granular understanding of the impacts of aquatic nutrient 

contamination.  

 
The dataset utilized in our analysis includes all tests in the EPA Water Quality Portal performed 

on lake, reservoir, and impoundment sites between July 5, 2022 and July 5, 2023 from sites 

primarily located within the US [12]. 
 

The experiments conducted illustrate the potential of improving “black-box” ML models with 

automated hyperparameter tuning and the versatility of ML powered virtual sensors across 

different target characteristics.  
 

Manual hyperparameter tuning is a challenging endeavor that often requires years of experience 

to efficiently perform. Common automated approaches, such as grid search and random search, 
tend to be slow and computationally-intensive due to their exhaustive search process. We opted 

to test Bayesian Optimization, an algorithm that continuously narrows down values being tested 

based on previous cycles, to efficiently identify optimal hyperparameters. Hyperparameters 
modifying the fitment of the top four models were run through the optimizer for 100-200 

iterations, until coefficients of variation appeared to level off. RF and HGBR experienced the 

greatest improvement of 14.16% and 9.32% increases in R2, respectively. Optimal 

hyperparameters for these two models likely boosted generalization ability, as training and 
validation scores were brought closer in line. Meanwhile, Bayesian Optimization of kNN and 

GBR saw less significant improvements and no reduction of training scores, suggesting the 

importance of increasing generalization for ML approaches to water quality monitoring.  
 

The methodology developed in this work was applied to total nitrogen to explore the applicability 

of the framework outside of phosphorus modeling. Important features for nitrogen prediction 
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were identified with the same combination of HGBR and RF to facilitate removal of excessive 
missing values, before the set of seven models evaluated with total phosphorus were applied. 

Following hyperparameter optimization, all models performed marginally better in nitrogen 

prediction compared to phosphorus prediction, with RF, GBR, and HGBR standing out as 

consistently effective models across both nutrients, likely due to the inclusion of ensembling 
methods that mitigate overfitting of training data. 

 

2. CHALLENGES 
 
In order to build the project, a few challenges have been identified as follows. 

 

2.1. Data Analysis 
 

The raw data extracted from the EPA’s Water Quality Portal individually lists each test result 

separately, even when testing multiple parameters on the same sample. Performing regression 
analysis on these parameters requires identifying and grouping tests performed on each sample. 

One possible approach is to group based on the metadata retrieved on each test, including testing 

site coordinates and timing. This facilitates establishing correlation between indicators.  

 

2.2. Water Quality Parameters 
 
Testing stations located across the United States test for a variety of different water quality 

parameters. The data retrieved from July 2022 to July 2023 includes test results for 714 physical, 

chemical, and biological characteristics, with 790,392 values from 7,723 sites in total. No sample 

was tested for all characteristics; the sites testing for the maximum of 200-250 characteristics 
tend to have between 1 and 4 annual visits. To obtain a dataset suitable for regression, which 

would be used to establish associations between different characteristics, test results for multiple 

characteristics should originate from near-identical samples. Selecting important characteristics 
frequently sampled together is critical to maintaining a large sample size, which may mitigate 

exaggerated accuracy from random chance or overfitting of training data [13].   

 

2.3. Selecting the Correct ML Model 
 

Selecting the correct ML model is fundamental to the accuracy of prediction. Due to the labeled 
nature of water quality testing indicators, focus was put on supervised learning methods, which 

attempt to connect and identify relationships between inputs and outputs to generate a model [14]. 

Many supervised learning models have been developed in recent decades, such as the seven to be 
tested here: Random Forest regressor (RF), k-Nearest Neighbors (kNN), Support Vector Machine 

regression (SVM), Decision Tree regressor, Artificial Neural Network, Gradient Boosting 

Regressor (GBR), and Histogram Gradient Boosting Regressor (HGBR) [15]. Training each of 

these models offers the option to compare their effectiveness based on coefficients of 
determination.   

 

3. SOLUTION 
 
The major components in this process include data retrieval, preprocessing, fitting of models, and 

prediction. One year of water quality data is retrieved from the EPA database using their Tools 

for Automated Data Analysis (TADA) [12]. This time frame ensures coverage of variation in 

nutrient concentration over the course of the year, while keeping to a relatively workable size. 
Attempts to retrieve data on five- or ten-year time spans resulted in timeouts and preprocessing 

hinderance from memory limitations. The dataset is reformatted through offline processing with 
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Excel to group concurrent tests on individual samples based on latitude, longitude, and time, as 
well as converting inconsistent units within individual characteristic measurements. Once 

grouped, the data are passed through further preprocessing to be standardized and to remove 

NaNs, which impede model fitting. To fit and optimize models, a train-test split of 0.6 to 0.4 was 

found to maximize model strength. Following fitting of the ML models, predictions were 
performed using test data and evaluated. 

 

TADA is a suitable utility for data retrieval due to its accessibility and in-built basic processing 
functions. As shown in Figure 2, it has the ability to flag and remove nonsensical test values, 

such as invalid combinations of unit and characteristic, non-numeric values, and duplicates. 

These entries add complexity to processing and finished models, adding noise that increases the 
possibility of error in further steps. Thus, the 85,765 flagged test values from 53 sites are 

removed, reducing the total dataset size to 704,627 values. 

 

 
 

Figure 2.  Screenshot of TADA processing options 

 

Preprocessing of the retrieved water quality data is central to obtaining a functional prediction 
model. Over the course of one year, 69,030 discrete samples were taken; in this study, samples 

taken at distinct latitudes, longitudes, or times are considered discrete. However, no sample was 

tested for all 713 available characteristics in the database, leading a large portion of the dataset to 
consist of NaN values. To highlight the scale of this effect, only 9970 discrete samples include 

measurement of phosphorus, a highly tested nutrient in water and one of the targets of this study. 

Since many machine-learning algorithms are unable to natively handle datasets with missing 

values, selecting a smaller subset of characteristics effective in prediction offers an alternative to 
mass replacement or imputation [8]. 

 

 
 

Figure 3. Screenshot of code 1 
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Figure 4. Screenshot of code 2 

 

 
 

Figure 5. Screenshot of code 3 

 
Since it is unfeasible for every test site to test every sample for all 712 characteristics available in 

the dataset, there are many values missing not at random. Testing sites likely select 

characteristics to measure based on their local analytical value; thus, the missing values are 
neither completely random nor able to be entirely explained by the available data. To effectively 

select characteristics with useful associations to the prediction target, Hist Gradient Boosting 

Regressor (HGBR) was applied to the full dataset and permutation importance was calculated 

(see Figure 3). HGBR is suitable for this initial task due to its support for missing values and 
relative efficiency on large datasets [16]. As shown in Figure 4, RF was also tested for this 

application, but required imputation or replacement of missing values; due to the large number of 

missing values in some characteristics, missing value replacement with zeros was selected over 
imputation or replacement with median values, in order to minimize influence from generated 

values. 

 
Initially, the dataset included orthophosphate, a component of total phosphorus representing loose 

phosphate ions within the water. We chose to omit this characteristic in pursuit of the goal to 

develop a functional, cost-effective alternative to traditional phosphorus testing. Following the 

removal of orthophosphate, both models identified, in order of importance, nitrogen, chlorophyll 
A, and secchi disk depth as features useful in the prediction of phosphorus (see Figures 4 and 5). 

The HGBR model also identified pheophytin A as an important characteristic.  

 
After identifying important characteristics, a new dataset is created to evaluate ML models less 

suitable for running on the entire set. Characteristics are selected based on both their initial 

importance and instances of concurrent measurement with other important features, in order to 

obtain a large sample of data useful to prediction. Then, individual models are fitted and tweaked 

to maximize their representation of the relationship between input and target variables. 
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Figure 6. Screenshot of code 4 
 

Creating a useful subset makes training and testing models more efficient in terms of time and 

computational intensity, while also enabling the removal of missing values to ensure 

compatibility. However, the set of samples tested for phosphorus, nitrogen, chlorophyll A, 
uncorrected chlorophyll A, pheophytin A, and secchi disk depth is empty. Between chlorophyll A 

and uncorrected chlorophyll A, it was found that uncorrected chlorophyll A was measured 

significantly more often with nitrogen, phosphorus, and secchi disk depth, at 126 and 2014 
samples respectively. Pheophytin A is similarly identified as restricting the sample size, having 

been tested in only 8 samples together with the aforementioned characteristics. To maintain a 

relatively large sample size, the final subset includes nitrogen, phosphorus, uncorrected 

chlorophyll, and secchi disk depth.  
 

Using this new subset of the data, various supervised ML models were fitted (see Figure 6). This 

component involves dividing the new dataset into train and test sets, in order to train the model 
and then effectively evaluate its accuracy. Without a train-test split, ML models are prone to 

overfitting to the dataset, resulting in high accuracy with the specific training set but low 

accuracy when applied to alternate data, such as during utilization of trained models. The test size 
was adjusted to maximize accuracy on the test set, which serves as an approximation of the entire 

population. A higher test set accuracy suggests that the model is more effective in representing 

the general relationship between inputs and outputs and better able to make accurate predictions. 

After establishing an optimal train-test split of 0.6 to 0.4, we pass through the “X-train” and “y-
train” subsets to fit the models.  

 

To establish a baseline, linear regression was performed. The simplicity and prevalence of this 
model for addressing continuous prediction problems makes it a suitable tool to compare more 

complex machine-learning models. For the train and test sets, it achieved R2 values of 0.425 and 

0.441, respectively. 
 

The fitment and evaluation of the supervised models is best illustrated by this cell. In this 

example, the model is Scikit-learn’s random forest, an ensemble model that generates multiple 

different decision trees, called estimators, based on random subsets of the data. This 
randomization means that not all of the features are made available to each tree, reducing 

overfitting and ensuring that the estimators are not overly correlated with one another [17]. The 

model is fit to the training sets of inputs and outputs, before being evaluated with the model.score 
method, which returns the R2 value of the model when applied to provided datasets. Using 

default hyperparameters, RF achieved an R2 of 0.939 and 0.565 for train and validation sets, 

respectively. While modeling more of the target variable variation than linear regression, the 

significant difference in model effectiveness between train and test data suggests that overfitting 
of the training data is occurring; the model is picking up patterns in the noise present in the 

training set, making it less generalized and less able to make accurate predictions with alternate 

data. 
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Using the same train-test split, six other models were also trained: kNN, decision tree, SVM, 
GBR, HGBR, and a sequential neural network. RF, GBR, and kNN were found to be the most 

effective of the seven models tested. GBR matches the R2 value achieved by RF, with values of 

0.769 and 0.593 for train and validation sets, respectively. While RF uses bagging, GBR is based 

on the boosting method of ensembling, where learners are trained sequentially off previous trees 
to gradually reduce errors and converge towards an optimal model. HGBR was also tested as a 

more efficient implementation of this process than traditional GBR because it incorporates 

discrete binning of continuous data to significantly reduce possible locations to split the 
underlying tree structure [13]. With this dataset and default hyperparameters, HGBR nears the 

effectiveness of GBR, with R2 values of 0.798 and 0.558, suggesting that it may be a suitable 

alternative for larger datasets where the computational intensity of GBR may be impractical or 
cost-inefficient. 

 

Compared to the ensemble tree algorithms, the basic decision tree and SVM seem less suited to 

phosphorus prediction. SVM significantly underperforms compared to linear regression, with R2 
values of 0.250 and 0.283 for train and test sets, respectively. Decision tree regressor shows 

strong signs of overfitting, with a training R2 of 0.999 and validation R2 of -0.001; the model is 

fit so tightly to the training data that it predicts none of the variation present in the test set. While 
pre-pruning and post-pruning of the tree may be able to significantly reduce this effect, ensemble 

methods are likely better options overall.  

 
Unoptimized, KNN marginally outperforms the benchmark, with training and test R2 values of 

0.627 and 0.477 compared to 0.425 and 0.441 for linear regression. For regression, kNN takes the 

k closest points to the target to interpolate an output, weighing points uniformly, by distance, or 

with customized sets of weights. After dimensionality reduction—selecting only the water quality 
characteristics with greatest impact on the target—the major downsides of kNN are largely 

addressed; namely, its computational intensity and difficulty with calculating distance on datasets 

with high dimensionality, also known as the “dimensionality curse” [18]. Thus, it is a viable 
option following such processing, albeit with a relatively low effectiveness. 

 

4. EXPERIMENT 
 

4.1. Experiment 1 
 

While the Scikit-learn library offers workable default parameters for each ML model, adjusting 
hyperparameters can improve prediction accuracy or increase fitting efficiency. The initial 

fitment of the five models we tested took between 10 seconds and 2 minutes running on a 

portable laptop computer, so we prioritized optimizing prediction accuracy.  With larger datasets, 
computational load may merit additional consideration in order to minimize solution cost.  

 

There are multiple approaches for optimizing machine-learning hyperparameters, the simplest 

being random search and grid search, which is also most popular [12]. Essentially, a ML model is 
trained repeatedly using different combinations of hyperparameters until a combination that 

maximizes a predefined scoring method is found. Grid search runs through lists of user-defined 

options for each hyperparameter, while random-search randomly generates values for each 
parameter within user-defined ranges. Bayesian optimization is an alternate method to 

optimization that recursively builds on information derived from previous training cycles to 

arrive at optimal hyperparameters in a small number of cycles. As one of the more efficient 
processes for improving black-box models, it serves our goal to develop an accurate and cost-

efficient solution to phosphorus prediction. Bayesian optimization was applied to each of the four 

models that outperformed the baseline. We opted to maintain the same R2 scoring for the 
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Bayesian optimizer as our comparison of models with default hyperparameters, in order to 
maintain comparability between optimized and unoptimized models.  

 

 
 

Figure 7. Bayesian Optimization for Hyperparameters 

 
Table 1. Results of Bayesian Optimization in experiment 1 

 

 
 

Across the board, applying Bayesian Optimization resulted in higher test R2 values, suggesting 

that the models were better tuned to the actual relationships between characteristics or less 

influenced by noise in the training set (see Figure 7 and Table 1). RF had the most significant 
improvement, with a 14.16% improvement in validation R2. The training set R2 also decreased 

by 28.27%, bringing the training R2 roughly in line with the validation R2. The optimal 

hyperparameters involved setting a max depth, the number of decision nodes in each of the 
estimators, to 235. It also increased the number of underlying estimators from 100 to 118 and set 

minimums for splits and leaves at 0.00566 and 0.00106, respectively. By imposing limits on the 

depth of each tree, the optimized RF model is more generalized, as illustrated by the convergence 

of training and test R2 values.  
 

Bayesian optimization appears to have had a similar effect with HGBR, which experienced a 9.32% 

improvement in validation R2 and 14.28% decrease in training R2. For HGBR, max_bins and 
max_iter were the hyperparameters altered most. The max bins parameter, which controls the 

number of discrete groups the continuous data is separated into, was reduced from the default 255 

to 103. The max number of iterations was effectively halved, going from 100 to 51 in the 

optimized model. These two changes make sense for increasing generalization because reducing 
the number of bins results in larger individual bins, which serves to ‘blur’ the actual values of the 

training set. Reducing the number of models in the training sequence reduces opportunity for the 

model to pick up on noise, resulting in a model better suited for general application.  
 

Gradient Boosting Regressor and k-Nearest Neighbors saw less dramatic increases in validation 

model strength of 4.384% and 6.918%, respectively. Both also saw increases in training R2, with 
kNN achieving a training R2 of 0.999. This can be attributed to a change in weighing of nearby 

points from uniform to distance, which inversely values each neighbor based on their distance 

and causes the model to tightly fit to every single point in the training set. In theory, it should 

increase overfitting and make a less generalized model; however, it resulted in a marginal 
increase in validation R2 as well.  
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4.2. Experiment 2 
 

While the main focus of this paper is on phosphorus prediction, this framework can be applied to 
the prediction of almost any characteristic. Take nitrogen, one of the most important features in 

phosphorus prediction. By setting nitrogen as the target characteristic, the effectiveness of 

Bayesian optimized machine learning models can be efficiently evaluated, offering insight into 
the consistency of models across different water quality prediction tasks. 

 

HGBR and RF were run on the entire dataset with nitrogen as the target, in accordance with the 

procedure previously outlined, resulting in the same four characteristics being identified as 
important features. This makes sense because nitrogen and phosphorus are tightly correlated as 

main components of crop fertilizer, which enters freshwater environments and increases levels of 

turbidity and chlorophyll a. Thus, the turbidity and chlorophyll a relationship to phosphorus also 
applies to nitrogen. Following selection of important features, each of the seven models was 

trained and tested. Then, Bayesian optimization is applied to the top four models before 

comparison. This test is set up through the same pipeline to test the versatility of this process 
across modeling varying characteristics.  
 

 
 

Figure 8. Prediction of Nitrogen and Phosphorus 

 

The top four models in phosphorus prediction: RF, GBR, HGBR, and kNN remain the most 

effective when applied to nitrogen prediction. Overall, all models predict nitrogen slightly more 
effectively than phosphorus, suggesting that the relationship between nitrogen and the three input 

variables is slightly clearer than that of phosphorus (see Figure 8). RF, GBR, and HGBR model 

approximately the same proportion of variation in the target, with RF retaining the highest 

validation R2 value at 0.673, indicating their suitability for usage in predictive nutrient 
monitoring (see Table 2). 

 
Table 2. Model performances across two target nutrients 

 

 
 

 



Computer Science & Information Technology (CS & IT)                                           153 

 

5. RELATED WORK 
 
Research by Shen et al. tackles total phosphorus and total nitrogen prediction with a similar 

approach [7]. Using water quality data derived from the period between 1994 and 2018, they 

trained RF models to construct a gridded network of phosphorus and nitrogen concentrations 

across the continental US with a resolution of approximately 1 km, separated by season. Their 
model tends to achieve lower effectiveness in representing the relationship between input and 

target variables. For total phosphorus prediction, they achieved a maximum R2 of 0.656 for 

Spring predictions, with R2 values of 0.533, 0.410, and 0.314 for Summer, Autumn, and Winter 
predictions, respectively. With our implementation of RF, we achieved an R2 of 0.645 across 

data from all seasons. Their research processes 47 predictors across a far longer timescale; 

however, the high intensity, big data approach taken to create their model significantly increases 

the cost of the implementation for little improvement in accuracy. With the availability of cloud 
supercomputing, computational intensity can be directly related to cost of implementation; thus, 

building a smaller model may be more sensible, particularly without decrease in prediction 

capability. 
 

Another paper by Paepae et al. approaches nutrient prediction with a variety of different 

supervised ML models, including RF, kNN, and extremely randomized trees (ET) [8]. The team 
takes a very similar approach to our research, retrieving UK publicly available water quality data, 

processing it with scalers, and training models with grid search optimization to develop a virtual 

sensor for nitrogen and phosphorus concentration. Notably, they train separate models on 2-3 

years of continuous monitoring data from the two water bodies studied. They found that RF and 
ET were both extremely effective at predicting total phosphorus, achieving max R2 values of 

0.8059 and 0.8229 in the river ‘The Cut’ and 0.9386 and 0.9498 in the River Enborne. However, 

the river-by-river approach to their modeling makes it highly unlikely that either model has 
generalization ability to other bodies of water, particularly with their usage of continuous testing 

data. Relatively few bodies of water are equipped with a whole range of continuous monitoring 

equipment, limiting the potential range of application. 
 

A third study on ML estimation of total nitrogen and total phosphorus concentration was used to 

evaluate the impact of data input frequency in the Chinese Aitoutan watershed [9]. The 

researchers tested three models: RF, SVM, and back-propagation neural network on 4-hourly, 
daily, and weekly data across a period of approximately two years. This paper restricted inputs to 

five water quality indicators cost-effectively continuously measured. As with our analysis, they 

found that turbidity (measured as secchi disk depth in our dataset) was strongly positively 
correlated with both nitrogen and phosphorus. RF was also identified as the most effective model 

with the highest coefficient of determination, achieving an R2 of 0.602 at the weekly timeframe. 

This study indicates that high-frequency monitoring data significantly increases the effectiveness 

of nutrient prediction, with the RF model accounting for 78.5% of phosphorus variation with 
four-hourly data. Unlike this study, our dataset primarily consists of low frequency lab test data 

from freshwater bodies across the entire CONUS, including significantly more variation; even so, 

when compared to this study’s closest parallel of the weekly timeframe data, the importance of 
hyperparameter optimization is apparent, as our more versatile model achieves a 7.14% higher 

R2. Incorporation of more sources of high-frequency testing data may result in further increases 

in model aptitude. 
 

6. CONCLUSIONS 
 

While the feasibility of a small-scale nutrient prediction model has been evaluated with actual 

water quality data, there are potential limitations and further research directions to be considered. 
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In the interest of developing a robust model for nutrient prediction across the entire Continental 
United States (CONUS), water quality testing data was retrieved from all testing stations. 

However, the heterogeneous distribution of testing stations across different regions and spatial 

variation of nutrient pollution may result in differing performance of proposed models across 

different regions. The testing sites incorporated into the final dataset were primarily selected for 
consistent simultaneous testing of important characteristics, rather than a representative sample of 

all freshwater bodies in the CONUS. Thus, for the future, we can try to randomly select testing 

sites across various strata, such as region, body size, or eutrophication level. Additionally, our 
feature identification and listwise deletion approach to missing values effectively cleaned the 

dataset, but introduces a high likelihood of sampling bias. Although related studies have found 

that imputation methods for missing value replacement fail to improve nutrient prediction, further 
exploration in advanced imputation may enable the consideration of more well-correlated 

characteristics that are tested together with phosphorus and nitrogen less frequently. 

 

Across total nitrogen and total phosphorus prediction, the RF, GBR, and HGBR ensemble trees 
show the most potential as a low-cost supplement to infrequent lab testing or expensive nutrient 

monitoring systems. Combined with off-the-shelf sensors for continuous measurement of 

surrogate characteristics, an Internet-of-Things approach should be investigated to lower the 
barrier to entry of nutrient monitoring. Expanding the availability of real-time data in water 

bodies of lesser criticality or economically-constrained regions would enable faster, better 

informed water management decisions to more effectively mitigate the impacts of human-driven 
eutrophication.  
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