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ABSTRACT 
 
This work discusses the image neuromorphic encoding/decoding issues inspired by the 

mechanisms of visual perception encoding/decoding. The importance of this topic is directly 

related to the current problems of perceptual quality and perceptual reconstruction of images 

today. Therefore, to obtain reliable results in these directions, it was natural to turn to the most 

adequate mechanisms of perception. As a result, we propose a new approach to image 

processing, which uses the most realistic representation of the input data in the form of a stream 

of events or counts. Such events / counts simulate the firing of retinal receptors in response to 
the action of radiation recorded. The statistical model of the counts stream is chosen in the form 

of the two-dimensional inhomogeneous Poisson point processes, considered as a convenient 

representation of the input data. In the current paper such a representation is referred to as 

sampling representation. To adequately model the mechanisms of neural encoding of input data, 

we consistently use the concept of receptive fields. This general model implements well-known 

features of neural processing, including central/lateral inhibition. Decoding issues are 

considered in the context of Retinex paradigm of contrast detection. It is shown that the model 

of coupled ON-OFF receptive fields allows to restore sharp image details in the form of local 

edges. At the end of the work, we demonstrate an interpretation of synthesised 

encoding/decoding as classical smoothing and edge outlining of encoded images.  
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1. INTRODUCTION 
 

The current time is often characterized as the time of Big Data. Over the past few decades, thanks 
to the explosive growth of the Internet and the development of its numerous services, the growth 

of the volumes of data surrounding us has increased unprecedentedly. However, this also brought 

a lot of specific problems that could be also called the “Big Problem”. This problem is big not 
only because it causes a lot of inconvenience for people, but also because it involves the need to 

store, process and exchange huge amounts of data between users, applications, and corporations. 

To a certain extent, the Big Problem is the other side of Big Data. 
 

The Big Problem is most obvious in the case of visual content, for which the Internet has become 

a worldwide repository. It is estimated that the number of digital images will rise to 1.80 trillion 

in 2023 and it is expected to surpass two trillion in 2025. A massive portion of images are related 
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to the rapidly growing smartphone users. The development of CMOS video cameras and the 
increase in smartphone memory have led to the fact that in 2023 the average owner stores about 

2100 photos on it. This in turn has led to the creation of specialized platforms on the Internet that 

support image exchange and give rise to a new unique media environment with a daily volume of 

data exchange of ~ 7 billion images [1]. 
 

The principal problems with video data lie in their usually significant binary volumes (even in 

comparison with audio data, not to mention texts). At the same time, the problems of storing 
large amounts of data associated with the required large memory resources are not so critical, but 

the problems of transmitting visual content over channels with physically limited capacity 

become fundamentally important. This problem is known as the “bottleneck problem” – an 
information systems problem where one component limits the performance of the entire system. 

The latter inevitably leads to increased transmission times, higher delays, and inconvenience for 

end users. At the same time, it cannot be said that the bottleneck problem is a part of the Big 

Problem and arose along with it. It always took place in a less acute form; moreover, it was, in 
fact, the main incentive for the creation of modern information theory by K. Shannon and his 

colleagues. Over the past decades, the theory has achieved impressive results. Let us note such a 

direction as the rate-distortion theory, directly related to the problem of the bottleneck [2]. 
Unfortunately, most results of this theory are of an asymptotic, recommendatory nature and in 

practical situations provide only potential (upper/lower) estimates of the performance of the 

system, but not specific methods for approaching them. 

 
At the same time, fairly optimal practical solutions to the problem noted above exist and they 

were found by nature itself for living systems. This refers to the neurosensory systems and, first 
to the visual system of humans and higher vertebrates. Indeed, if we consider that the number of 

retinal receptors (“image pixels”) reaches ~108, and the number of optic nerve axons 

(transmission channel capacity) is only 106 [3], then the degree of compression (distortion) of the 
input data encoding on the retina is ~ one hundred times, and this does not lead to a noticeable 

loss of information. In this regard, there is a strong opinion that a minimal deviation of 

reconstructed compressed images from the original ones does not in itself necessarily lead to 

good quality of perception. For example, it has been shown that the use of coding methods in 
generative adversarial networks can lead to a noticeable improvement in the quality of image 

perception, although the distortion of the original image may not be minimal [4]. In this regard, 

several attempts have recently been made to include additional elements in the theory of image 
coding that increase the resulting quality of their perception [5, 6]. New approaches have 

radically revised the classical methods for assessing image quality using distortion functions, 

which are usually defined as absolute or quadratic deviations of the restored version of the image 

from the original. It turned out that such functional metrics are poorly adequate to the 
peculiarities of human perception. In this regard, several attempts have been made to search for 

those non-traditional metrics that would objectively correspond to perception. Among the most 

well-known perceptual metrics are the structural similarity metric (SSIM) [7], the visual 
information-based metric (VIF) [8], and the metric based on spatial and temporal most apparent 

distortion (MAD) [9]. 

 
However, the greatest success in improving the quality of perception was achieved not by 

improving distortion metrics, but by revising the concept of distortion itself. We are talking about 

generative modelling, which is playing an increasingly important role in machine learning [10]. 

Generative models consider the entire set of (input/output) data as a set of random variables and, 
unlike discriminative models, are focused on their joint probability distributions rather than 

conditional ones. The practical success of generative models has not been fully clarified 

theoretically; however, one often hears the assertion that this may be due to more adequate 
modelling of perception features [11]. In this regard, special emphasis should be placed on the 
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role of data representations [12]. Modelling of retinal function and structure largely determines 
the representation of input-intermediate-output data and their relationships. Based on this, issues 

of choosing data representations should apparently play an important role in the development of 

new methods for images processing focused on high quality perception.  

 
A detailed discussion of general issues on this topic can be found in our previous works, for 

example, in [13] (further references to the literature on the topic can also be found there). Current 

work is devoted to the presentation of new results obtained in the same direction – in the 
adaptation of neuro-encoding procedures inspired by the mechanisms of visual perception to the 

problems of optimal encoding (compression) and decoding of images. Thus, our main goal in this 

article is to present and discuss new results on the most rigorous statistical basis within the 
framework of adequate neural modelling. 

 

2. STATISTICAL DESCRIPTION OF IMAGES IN THE FORM OF SAMPLING 

REPRESENTATIONS 
 

A feature of our proposed approach is the special representation of images not in the form of 

continuous intensity 𝐼(�⃗�), �⃗� ∈ Ω of radiation incident on the retinal receptors, but in the form of 

a stream of random, discrete events at their output - in the form of the so-called (photo) counts. 

Note that from a physical point of view, also artificial imaging systems, such as CMOS cameras 
[14], form images through multiplication, accumulation, etc. samples of the initial photocurrent. 

A good discussion of the model of signals represented by streams of events and its statistical 

justification based on two-dimensional point Poisson processes can be found, for example, in 

[15]. A statistical description of this representation can also be obtained using the concept of an 
ideal recording device [13]. Namely, the result of registration by an ideal device of a flow of 

events from a photosensitive surface Ω is a set of samples 𝑋 = {�⃗�𝑖}, where each �⃗�𝑖, 𝑖 =
1, . . . , 𝑁 is the vector of coordinates of registered events - random points on Ω. Note that the 

number of recorded samples 𝑁 is itself a random variable, its statistics is given by the Poisson 

distribution with the mean value �̅� = ∫ 𝛼𝐼(�⃗�)
Ω

𝑑�⃗�, where the coefficient 𝛼 = 𝜂(ℎ�̅�)−1 is 

determined, among other things, by the quantum efficiency 𝜂 of an ideal imaging device [13]. 

 

It is easy to show [15] that a set of random 𝑁 samples {�⃗�𝑖} is also described by the probability 

distribution of a random number of points of some inhomogeneous point Poisson process with 

intensity function 𝛼𝐼(�⃗�). Since the number of samples 𝑁 is a random variable, this description is 

inconvenient for practical use (especially for large 𝑁). Therefore, we proposed to represent point 

processes by sets of random points, as in the original Poisson process, but with a fixed 

(controlled) number of points 𝑁𝑠 ≪ �̅�. It was shown [16] that the statistics of a fixed (non-

random) size 𝑁𝑠 sample 𝑋𝑠 = {�⃗�𝑗} from 𝑋 = {�⃗�𝑖} can be given by a single distribution density 

of the form: 

                   
𝜌(𝑋𝑠 = {�⃗�𝑗}, | 𝐼(�⃗�)) = ∏ 𝜌(�⃗�𝑗 |𝐼(�⃗�))

𝑁𝑠
𝑗=1 ,

𝜌(�⃗�𝑗 |𝐼(�⃗�)) = 𝐼(�⃗�𝑗) ∫ 𝐼(�⃗�)𝑑�⃗�
Ω

⁄ .  
,                                                (1) 

 

In accordance with the above construction, the representation of images by counts 𝑋𝑠 = {�⃗�𝑗} , 

𝑗 = 1, . . . , 𝑁𝑠 was proposed to be called a sampling representation. 

 
For illustrative purposes, as an example, we generated a sampling representation of image 

“butterfly-19” from the standard MPEG7 database [17], see Figure 1. The set 𝑋𝑠 = {�⃗�𝑗} of 𝑁𝑠 =

10 000 000  counts, for the GIF image “butterfly-19” of size 429×421 pixels, colour depth 𝜐 = 8 
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bits, was previously converted to PNG format with the same colour depth, but of size 𝑠 ×
𝑠 =1000×1000 pixels. In this case, only two shades of gray 100 and 255 were used for the 

image. The counts were generated by the Monte Carlo rejection method with a uniform auxiliary 

distribution 𝑢(�⃗� ) = 𝑠−2 and an auxiliary constant 𝑀 = 2𝜐. 

 

 
 

Figure 1. Representation of an image based on a sample of counts (sampling representation). On the left 

hand is the original image “butterfly-19” [17]. On the right hand is a sampling representation of 10 000 000 

counts. 

 

3. SAMPLING REPRESENTATION COMPRESSION BY A SYSTEM OF 

RECEPTIVE FIELDS  
 

The sample representation 𝑋𝑠 = {�⃗�𝑗} introduced above is most adequate to the data of receptors 

(rods/cones) in the outer layer of the retina when forming images based on the recorded intensity 

𝐼(�⃗�), �⃗� ∈ Ω. However, the impulses sent to the brain from neurons in the inner layer of the 

retina are different from the data directly recorded. They are formed based on the latter with the 
help of intermediate interneurons of the middle and inner layers. As a result, the output neurons 

of the retina, which form the input representation for subsequent parts of the visual cortex, 

aggregate samples from tens and sometimes thousands of receptors located in small areas of the 

retina, called receptive fields (RF). The systematic study of the RP system and the neural 
transformation of input data from receptors into a sequence of retinal output data is usually 

associated with the fundamental work of Hubel and Wiesel [18]. A modern presentation of the 

structure and functions of the RP can be found in [19].  
 

The functions and sizes of various RPs are determined by the types of ganglion cells (retinal 

output neurons) associated with them. There are about ~20 types of ganglion cells and, 

accordingly, types of RP. In what follows, for simplicity, only the family of midget ganglion cells 

encoding the spatial distribution on Ω of intensity 𝐼(�⃗�) is considered. Typical responses of 

midget cells to the nature of lighting/darkening of the corresponding RF are determined by its 

centre-antagonistic structure. Thus, the ON-cell is excited when the centre of the RF is stimulated 
and inhibited when the concentric periphery is stimulated. On the contrary, the OFF cell is 

activated upon stimulation of the RF periphery and inhibited upon stimulation of the centre [18]. 

The presence of two types of midget cells is due to the peculiarities of neural coding of 
positive/negative changes in stimuli (ON is activated when the stimulation of the centre exceeds 

the average stimulation in the field, OFF is the opposite).  
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As for the spatial location of the RFs, it was found that neighbouring ON and OFF cells have 
significantly overlapping fields, and the RF of cells of the same type practically do not overlap. 

In this case, non-overlapping RFs of each type are tightly adjacent to each other, forming a kind 

of mosaic that tightly covers the retina [20]. Thus, for the mathematical formalization of the 

structure of the RF system, it is sufficient to allow the intersection of ON fields only with 
neighbouring OFF fields and the absence of intersections with other ON fields, however, 

allowing for the contact of their boundaries. The same is true for the ON ↔ OFF exchange. A 

formal representation of the region Ω by square RFs with round centres, which will be used later 
for algorithmic purposes, is presented in Figure 2 (see details in [21]). 

 

 
 

Figure 2. Partition of the image surface Ω by a system of receptive ON fields {𝐶𝑘(𝑥), 𝑆𝑘(𝑥)}  with square 

support 𝛥𝑘 ∪ 𝛥𝑠 located at the nodes of a regular square lattice. 

 

In view of the noted symmetry in the arrangement of ON and OFF fields, we will consider the RF 
system for only one, for example, ON type of fields. Based on the previous brief review, we 

formalize the probability density model of the sample �⃗�𝑗 on Ω – 𝜌(�⃗�𝑗 |𝐼(�⃗�)) (1) as a parametric 

family of probability densities ℙ = {𝜌(�⃗�; 𝜃)|𝜃 ∈ 𝛩}, which are mixtures of 𝐾 pairs of 

components {𝐶𝑘(�⃗�), 𝑆𝑘(�⃗�)}, 𝑘 = 1, … , 𝐾: 
 

 𝜌(�⃗� ; 𝜃) = ∑ 𝑤𝑘𝐶𝑘(�⃗�) + 𝑣𝑘𝑆𝑘(�⃗�)𝐾
𝑘=1                                        (2) 

 

where 𝜃 = {𝑤𝑘, 𝑣𝑘} are the positive weights of the mixture, the parameters of the model ℙ, and 

the mixture components 𝐶𝑘(�⃗�) and 𝑆𝑘(�⃗�) represent the centre and antagonistic surround of the 

𝑘-th RF. The components 𝐶𝑘(�⃗�) and 𝑆𝑘(�⃗�) are specified by positive, normalized probability 

distribution densities having compact supports 𝛥𝑘
𝑐 = {�⃗� |𝐶𝑘(�⃗�) > 0} and 𝛥𝑘

𝑠 = {�⃗� |𝑆𝑘(�⃗�) > 0}, 

which form the combined supports of the 𝑘-th RFs: 𝛥𝑘 = 𝛥𝑘
𝑐 ∪ 𝛥𝑘

𝑠  (see Figure 2): 

 

 ∫ 𝐶𝑘(�⃗�)𝑑�⃗�
𝛥𝑘

𝑐 = ∫ 𝑆𝑘(�⃗�)𝑑�⃗�
𝛥𝑘

𝑠 = 1.                                               (3) 

 

The meaning of the introduced parameters 𝜃 ∈ 𝛩 becomes transparent if we recall the identity of 

the density 𝜌(�⃗�𝑗 |𝐼(�⃗�)) of the normalized version of 𝐼(�⃗�) fixed by (1). Essentially (2), up to a 

normalizing factor, specifies the expansion of intensity 𝐼(�⃗�) over a system of local distributions, 

as is customary, for example, in wavelet or any other multi-resolution analysis [22]. Relations (3) 



162                                    Computer Science & Information Technology (CS & IT)  

fix the normalization of the basis functions. The analogy can be extended even further if we 

assume that the supports of the centre and the antagonistic surround of the 𝑘-th RF 𝛥𝑘
𝑐  and 𝛥𝑘

𝑠  do 

not have common points 𝛥𝑘
𝑐 ∩ 𝛥𝑘

𝑠 = ∅. Then to the normalization relations (3) we can also add 

relations of the orthogonality type:  

 

 ∫ 𝑆𝑘(�⃗�)𝑑�⃗�
𝛥𝑘

𝑐 = ∫ 𝐶𝑘(�⃗�)𝑑�⃗�
𝛥𝑘

𝑠 = 0.                                   (4) 

 

Remembering, in addition, that the set of RF supports {𝛥𝑘} constitutes an exact partition 

of the retinal surface, i.e., all of them do not intersect in pairs, but together they densely 

cover Ω, it is possible, just as in multi-resolution analysis, to express the model 

parameters 𝜃 = {𝑤𝑘 , 𝑣𝑘} through the corresponding density 𝜌(�⃗� ; 𝜃) (2) integrals over 

the corresponding RF supports:  

 

 

𝑤𝑘 = ∫ 𝜌(�⃗� ; 𝜃)𝑑�⃗�
𝛥𝑘

𝑐  ,

𝑣𝑘 = ∫ 𝜌(�⃗� ; 𝜃)𝑑�⃗�
𝛥𝑘

𝑠  .
.                                                           (5) 

 

which leads to the interpretation of the parameters 𝑤𝑘, 𝑣𝑘  also as the probabilities of a counts 

falling into the center 𝛥𝑘
𝑐  or into the surround 𝛥𝑘

𝑠 of the 𝑘-th RF. An equivalent interpretation is to 

characterize 𝑤𝑘 , 𝑣𝑘  (5) as the average values of the characteristic functions 𝛱𝑘
𝑐(�⃗�) = 1, 𝑖𝑓 �⃗� ∈

𝛥𝑘
𝑐 , 𝑒𝑙𝑠𝑒 0 and 𝛱𝑘

𝑐(�⃗�) = 1 , 𝑖𝑓 �⃗� ∈ 𝛥𝑘
𝑠 , 𝑒𝑙𝑠𝑒 0   on the surface Ω . 

 

Obviously, connections (5) cannot be used to find 𝑤𝑘 , 𝑣𝑘, since the density 𝜌(�⃗� ; 𝜃) is not 

known, only the sample 𝑋𝑠 = {�⃗�𝑗} is known in relation to it. However, here you can use the 

standard technique trick, presented, for example, in [25]. Namely, taking into account the 

asymptotic of the law of large numbers and replacing the averages of 𝛱𝑘
𝑐(�⃗�) and 𝛱𝑘

𝑠(�⃗�) with 

their sample (empirical) averages, we can approximately write: 
 

 

𝑤𝑘 =
1

𝑁𝑠
∑ 𝛱𝑘

𝑐(�⃗�𝑗)
𝑁𝑠
𝑗=1 =

𝑛𝑘
𝑐

𝑁𝑠
 ,

𝑣𝑘 =
1

𝑁𝑠
∑ 𝛱𝑘

𝑠(�⃗�𝑗)
𝑁𝑠
𝑗=1 =

𝑛𝑘
𝑠

𝑁𝑠
 ,

                                                            (6) 

 

where 𝑛𝑘
𝑐  and 𝑛𝑘

𝑠  are the numbers of counts in the centre and in the surround of the 𝑘-th RF. 

Note that the approximate values of parameters (6) do not depend on the form of components 

𝐶𝑘(�⃗�) and 𝑆𝑘(�⃗�), but only on the form of their supports 𝛥𝑘
𝑐  and 𝛥𝑘

𝑠 . It follows that for an 

approximate estimate of the probability density 𝜌(�⃗� ; 𝜃) (3) only the numbers 𝑛𝑘
𝑐  and 𝑛𝑘

𝑠  of 

counts in the centres / surrounds of the receptive fields are sufficient. In other words, the 

sampling representation 𝑋𝑠 = {�⃗�𝑗} of the image can be reduced (compressed) in the case under 

consideration to a “occupation number” representation 𝑌𝑠 = {𝑛𝑘
𝑐  , 𝑛𝑘

𝑠 }, which in this context is 

sufficient statistics of the sampling representation.  

 

4. THRESHOLD ENCODING OF COMPRESSED SAMPLING REPRESENTATIONS 
 

Starting from the compressed representation of an image with occupation numbers 𝑌𝑠 =
{𝑛𝑘

𝑐  , 𝑛𝑘
𝑠 }, let's look in more detail at how this data can be encoded (compressed) when passing it 
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to subsequent processing / analysis stages. Let us assume for simplicity that the RF system is 
homogeneous – all its fields are identical in structure and function (see Figure 2). Let a typical 

field on Ω have area 𝜎 = |𝛥|, its centre has area 𝜎𝑐 = |𝛥𝑐| and the antagonistic surround has 

area 𝜎𝑠 = |𝛥𝑠|, 𝜎 = 𝜎𝑐 + 𝜎𝑠. 
 

Further, let a typical RF has a simple set of functions – it can find the total number of counts 𝑛 

belonging to it, the number of counts in the centre 𝑛с and their arbitrary linear combination 

𝛼𝑛 + 𝛽𝑛с (including 𝑛𝑠 = 𝑛 − 𝑛с). It is assumed that the coefficients 𝛼 and 𝛽 can be arbitrary 

both in magnitude and sign, which is determined by the excitatory / inhibitory nature of the 

corresponding RF regions. Due to the random nature of counts registration, the numbers 𝑛, 𝑛с 

and 𝑛𝑠  are also random, although dependent (𝑛 = 𝑛с + 𝑛𝑠). It is easy to show that for sampling 

representations 𝑋𝑠 = {�⃗�𝑗} the typical field data 𝑛, 𝑛с and 𝑛𝑠 are Poisson random variables. Here 

it should be noted that since the centre and surround of the RF are non-overlapping areas, 𝑛с and 

𝑛𝑠 are statistically independent. Accordingly, their probability distributions have the form: 

 

 

𝑃с(𝑛𝑐| 𝜆) =
(𝜎𝑐𝜆)𝑛𝑐

𝑛𝑐!
exp{−𝜎𝑐𝜆} ,

𝑃𝑠(𝑛𝑠| 𝜇) =
(𝜎𝑠𝜇)𝑛𝑠

𝑛𝑠!
exp{−𝜎𝑠𝜇} ,

                                                  (7) 

 

where 𝜆 and 𝜇 are the intensity values of the counts in the centre and in the surround of the RF: 

 

 𝜆 =
𝛼

𝜎𝑐
∫ 𝐼(𝑥)𝑑𝑥

𝛥𝑐 , 𝜇 =
𝛼

𝜎𝑠
∫ 𝐼(𝑥)𝑑𝑥

𝛥𝑠                                          (8) 

 

Note that the average values of distributions (7) are related to intensities (8) through �̅�с = 𝜎𝑐𝜆 

and �̅�𝑠 = 𝜎𝑠𝜇. Therefore, the RF data 𝑛с and 𝑛𝑠, being unbiased estimates of their averages �̅�с 

and �̅�𝑠 , also provide unbiased estimates 𝑛𝑐 𝜎𝑐⁄  and 𝑛𝑠 𝜎𝑠⁄  of 𝜆 and 𝜇. 

 

The joint distribution of 𝑛с and 𝑛𝑠, due to their independence, is obtained by the usual 

multiplication of distributions (7). If we pass from the data 𝑛с and 𝑛𝑠 first to the numbers 𝑛с and 

𝑛, and then from them to 𝛿 = 𝑛с − (𝜎𝑐 𝜎)𝑛⁄  and 𝑛, then after approximating the binomial 

distribution by Gaussian and a number of transformations and simplifications we will arrive at 

the following RF data model: 

 

 

𝑃(𝛿, 𝑛| 𝜆, 𝜇) = 𝑃(𝛿|𝑛, 𝜆, 𝜇)𝑃(𝑛| 𝜈),    

𝑃(𝛿|𝑛, 𝜆, 𝜇) =
1

√2𝜋𝛾2
exp (−

(𝛿−𝜀)2

2𝛾2 ) ,   𝜀 =
𝜎𝑐𝜎𝑠

𝜎2 (
𝜆−𝜇

𝜈
) 𝑛, 𝛾2 =

𝜎𝑐𝜎𝑠

𝜎𝑖
2

𝜆𝜇

𝜈2 𝑛 ,

𝑃(𝑛| 𝜈) =
(𝜎𝜈)𝑛

𝑛!
exp{−𝜎𝜈} , 𝜈 =

𝜎𝑐

𝜎
𝜆 +  

𝜎𝑠

𝜎
𝜇 .

  
         (9) 

 
For a complete statistical description of the (generative) RF model, it is necessary to specify an a 

priori joint distribution of intensities 𝜆 and 𝜇. Let's choose it in the form: 

 

 𝜌(𝜆 | 𝜇) = 𝜔𝛿(𝜆 − 𝜇) + (1 − 𝜔)℘(𝜆)                                   (10) 

 

where the weights 𝜔 and 1 − 𝜔 can be interpreted as the probability of the 0-hypothesis 𝐻0 that 

𝜆 and 𝜇 coincide and, accordingly, as the probability of the alternative �̅�0 that 𝜆 and 𝜇 are 
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independent. From this interpretation it follows that ℘(𝜆) represents the a priori unconditional 

probability distribution of each of the intensities 𝜆 and 𝜇. 

 

Basing on the generative RF model (9–10) and using standard statistical methods, it is possible to 

obtain posterior (depending on observed data 𝛿 and 𝑛) distributions 𝜆 and 𝜇 and their optimal (in 

the sense of the maximum posterior probability) estimates, to derive tests of 𝐻0 vs �̅�0, etc. 

Omitting intermediate calculations and approximations, we present only one of the final results. 

The first moments (average values) of the posterior distribution 𝜌(𝜆, 𝜇 |𝑛𝑐  , 𝑛), which can be 

chosen as MAP (maximum posteriori probability) estimates �̅�(𝛿, 𝑛) and �̅�(𝛿, 𝑛) for the 

intensities 𝜆 and 𝜇 have the form: 

 

 

�̅�(𝛿, 𝑛) = {
    𝑛 𝜎⁄ ,   |𝛿| ≤ 𝐷√𝑛 ;  

𝑛𝑐 𝜎𝑐⁄ , |𝛿| > 𝐷√𝑛 ;
 ,

�̅�(𝛿, 𝑛) = {
    𝑛 𝜎⁄ ,   |𝛿| ≤ 𝐷√𝑛 ;  

𝑛𝑠 𝜎𝑠⁄ , |𝛿| > 𝐷√𝑛 ;
 .

                                          (11) 

 

where the threshold coefficient 𝐷2 = 2𝜎𝑐𝜎𝑠 ln{�̅�0} 𝜎2⁄  does not depend on the data, but 

depends only on the parameters of the problem, including the a priori likelihood �̅�0, which, 

under reasonable assumptions, can be given by the following approximate expression:  

 

 �̅�0 =
4𝜔

𝜋(1−𝜔)
√

𝜎𝑐𝜎𝑠�̅�

𝜎2                                                               (12) 

 

where �̅� = 𝜎�̂�, �̂� is the characteristic scale of the a priori probability distribution ℘(𝜈). 

Encoding RF data 𝛿 and 𝑛 into threshold estimates �̅�(𝛿, 𝑛) and �̅�(𝛿, 𝑛) for the Figure 1. 

image on a 50 × 50 RF lattice (see Figure 2) is illustrated in Figure 3. 
 

 
 

Figure 3. Illustration of the procedure (11) encoding results for a sampling representation of the “butterfly-

19” image [17] Figure 1 by a 50 × 50 RF lattice. On the left hand is a sampling representation, on the 
right hand is the RF lattice with marked non-zero 𝛿 fields – ON responses (𝛿 > 0) in white, OFF responses 

(𝛿 < 0) in black. 

 

Procedure (11) can be considered as a regression in data compression [23], if we consider 𝑛 𝜎⁄  as 

a predictor of both intensities 𝜆 and 𝜇 (provided that the 0-hypothesis 𝐻0 holds), and values 

𝛿 𝜎𝑐⁄ = 𝑛с 𝜎𝑐⁄ − 𝑛 𝜎⁄ , 𝛿 𝜎𝑠⁄ = 𝑛𝑠 𝜎𝑠⁄ − 𝑛 𝜎⁄  as residuals for such estimate. The only 
difference between (11) and the LASSO procedure (for the “smallest absolute shrinkage 
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operator”) proposed in [23] is the dependence of the threshold 𝐷√𝑛 on the total number of 

counts 𝑛 on the RP. The latter is due to the correlation of the of Poisson noise intensity with the 

image signal power (i.e., with the intensity 𝐼(�⃗�)). In this regard, procedure (11) can be also 

defined as a noise dependent shrinkage encoder. 

 

5. DECODING COMPRESSED SAMPLING REPRESENTATIONS USING 

SMOOTHING AND EDGE ENHANCEMENT 
 
To assess the effectiveness of the proposed encoding procedure (11), it is desirable to evaluate 

the degree of distortion of images after their decoding (reconstruction). To do this, without 

resorting to formal statistical synthesis of decoders, it is possible, at least to a first approximation, 
to use well-known methods of interpolating images with low due to compression (coding) 

resolution. Considering that the number of RF counts {𝑛𝑘} is the output of a smoothing filter 

with a sliding window of area 𝜎, we can immediately say that the distortions associated with this 
part of the code have the form of the original image blurring (see Figure 4 on the left). The 

filtering associated with the rest part of the code {𝛿𝑘} can be implemented by a piecewise-

constant filter, having constant and positive value in the region of the centre of the RF, constant 

but negative at its surround and zero overall DC response. Similar filters are well-known in the 

field of digital image processing, in particular, the synthesized filter exactly matches the COSO 

(centre-ON-surround-OFF) filter proposed in [24]. The COSO filter was proposed to simulate the 
response of the LoG (Laplacian of Gaussian) filter used by Marr and Hildreth in the theory of 

edge detection [25]. Therefore, since the codes {𝛿𝑘} turn out to be closely related to the Laplace 

operator, the zeros of their linear interpolation along the edges of the RF lattice represent the 
points of intersection of the image edges (sharp contrast changes) with lattice (Marr’s thesis). 

Therefore, numerous edge-enhancement methods can be used to reconstruct images that preserve 

meaningful details [26]. 
 

 
 

Figure 4. Example of restored (decoded) image “butterfly-19” [17] Figure. 1, defined by the compressed 

sampling representation 𝑌𝑠 = {𝑛𝑘
𝑐  , 𝑛𝑘

𝑠 } on a 50×50 lattice. On the left hand is a smoothed image decoded 

using only the “smooth” part {𝑛𝑘} of the code, on the right hand are edge contours, which were determined 

by {𝛿𝑘} added to the smoothed image.  

 

To illustrate the reconstruction (decoding) of images, we used the encoded sampling 

representation of “butterfly-19” image, shown in Figure 3 on the right. The image area Ω was 
covered by a set of 2500 square receptive fields arranged at the nodes of a 50 × 50 square lattice 
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(see Figure 2 and details in [21]). At each 𝑘-th node, the values {𝛿𝑘 , 𝑛𝑘} were calculated, after 

which 𝛿𝑘 was censored with a threshold 𝐷√𝑛𝑘 (11). Classic bilinear interpolation, shown in 

Figure 4 on the left shows a reconstruction based only on a subset {𝑛𝑘} of the coded data, 

interpolating them first linearly along the vertical edges of the lattice, and then linearly across all 

rows of all lattice cells basing on the already interpolated values of the vertical edges. Obviously, 
the image obtained as a result of such an interpolation (a kind of smoothing) does not have very 

high visual quality, mainly due to the blurring of the boundaries between dark and light areas. To 

enhance edge contrast, we follow Marr's suggestions by detecting local edges of image and 
outlining them with a contrasting (black) color. Algorithmically, this procedure is implemented 

as follows. For each lattice cell – each receptive field, all four edges of its boundary are analyzed 

from the point of view of their intersections with the edges of objects in the image. A lattice edge 

is considered to intersect with some edge of the image if at its boundary node-points the values 𝛿𝑖 

and 𝛿𝑗 are non-zero and if they have different signs. The middle of this lattice edge is taken as the 

intersection point. If the above condition is not met, the lattice edge is considered free of 
intersections. Once all edges of a cell boundary have been analyzed, it is determined whether the 

cell in question contains an image edge fragment. Namely, if it contains exactly two intersecting 

lattice edges, their intersection points are connected by a straight-line segment, which is then 
considered as a fragment of an image edge in this cell. Note that if two adjacent lattice cells have 

a common intersecting edge, then the corresponding fragments together form a section of the 

broken line of the contour of some image object. By constructing similar fragments for all cells, 

we, in a certain sense, decode the additional part of the code {𝛿𝑘} associated with the edges-
details of the image. The results of the procedure described are presented on the right side of 

Figure 4 and give some insight into the quality of images reconstructed on the basis of the 

proposed neuromorphic encoding/decoding. These results (see Figure 4 right) appear to have 

better visual quality compared to classical bilinear interpolation (see Figure. 4 left).  
 

6. CONCLUSIONS 
 

In this work, in the context of modeling a number of functions and mechanisms of the periphery 
of the visual system (retina), it was possible to formulate a general approach to the synthesis of 

procedures for neuromorphic encoding/decoding of images. It is shown that on the basis of the 

proposed approach it is possible to substantiate a number of well-known features of visual 

perception, including those that form the basis of the popular image processing approach under 
the general name Retinex. Here, the first thing to note is the statistical substantiation of the 

importance of the central/lateral inhibition mechanism for enhancing image contrast. 

 
Within the framework of the proposed approach, we were able to completely synthesize the 

encoding procedure and interpret it in terms of methods of optimal image processing and 

restoration known in DSP. By conveniently describing the input data in the form of a sampling 
representation, we succeeded in adequately modelling many neural coding mechanisms and we 

effectively incorporated them into the presented generative coding model. Of particular note here 

is the fact that the proposed model is strongly motivated by systems of ON-OFF coupled 

receptive fields –a universal principle underlying biological neural systems. 
 

It should be stressed that the proposed generative approach to the synthesis of methods for 

perceptual coding of images, due to the possibility of transferring a part of the processing 
procedures directly to the periphery of image formation (by analogy with the retina-cortex 

system), opens up wide opportunities for research in the field of neuromorphic information 

systems. In this regard, basing on the results obtained and the numerical experiments performed, 
we can express the hope that the approach proposed in the work will find further theoretical 

development and effective use in applied problems. This is confirmed by the fact the proposed 
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approach has a natural extension to the field of parameters shrinkage methods, and the latter, as it 
turned out recently, has numerous, non-trivial connections with such areas of machine learning as 

anisotropic diffusion methods, wavelet approaches and variational techniques, which have shown 

themselves as the best tools in the field of CNN architecture [27]. 
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